metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aquabis­(thio­cyanato-κN)bis­[6-(4H-1,2,4-triazol-4-yl-κN1)pyridin-2-amine]­cadmium

aTianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: qsdingbin@yahoo.com.cn

(Received 12 July 2012; accepted 17 July 2012; online 21 July 2012)

In the title compound, [Cd(NCS)2(C7H7N5)2(H2O)2], the CdII cation lies on an inversion center and is coordinated by the N atoms of two thiocyanate anions, by N atoms of two 6-(4H-1,2,4-triazol-4-yl)pyridin-2-amine ligands and by the O atoms of two water molecules in a distorted N4O2 octa­hedral geometry. The dihedral angle between the triazole and pyridine rings is 23.15 (12)°. In the crystal, mol­ecules are linked by N—H⋯N and O—H⋯S hydrogen bonds. Offset ππ stacking between parallel pyridine rings of adjacent mol­ecules is also observed, the centroid–centroid distance being 3.6319 (14) Å.

Related literature

For the preparation of the organic ligand, see: Gioia et al. (1988[Gioia, G. L., Bonati, F., Cingolania, A., Leonesia, D. & Lorenzottia, A. (1988). Synth. React. Inorg. Met. Org. Chem. 18, 535-550.]). For complexes with 4-3-pyridyl-1,2,4-triazole ligands, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Pan et al. (2001[Pan, L., Ching, N., Huang, X.-Y. & Li, J. (2001). Chem. Eur. J. 7, 4431-4437.]); Prior & Rosseinsky (2001[Prior, T. J. & Rosseinsky, M. J. (2001). Chem. Commun. pp. 1222-1223.]); Ma et al. (2001[Ma, B.-Q., Gao, S., Sun, H.-L. & Xu, G.-X. (2001). J. Chem. Soc. Dalton Trans. pp. 130-133.]); Ding et al. (2006[Ding, B., Yi, L., Wang, Y., Cheng, P., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H., Song, H.-B. & Wang, H.-G. (2006). Dalton Trans. pp. 65-675.]); Liu et al. (2007[Liu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1483-1489.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C7H7N5)2(H2O)2]

  • Mr = 586.94

  • Triclinic, [P \overline 1]

  • a = 7.5586 (15) Å

  • b = 7.5876 (15) Å

  • c = 11.311 (2) Å

  • α = 106.859 (2)°

  • β = 95.790 (2)°

  • γ = 110.883 (2)°

  • V = 564.7 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.796, Tmax = 0.870

  • 3064 measured reflections

  • 1957 independent reflections

  • 1893 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.046

  • S = 1.05

  • 1957 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.2785 (16)
Cd1—N6 2.3146 (19)
Cd1—O1 2.3501 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯S1ii 0.85 2.51 3.3468 (17) 168
O1—H1B⋯S1iii 0.85 2.51 3.3575 (17) 172
N5—H5A⋯N2iv 0.86 2.23 3.080 (2) 169
N5—H5B⋯N6v 0.86 2.57 3.422 (3) 170
Symmetry codes: (ii) -x+2, -y+2, -z+1; (iii) x, y+1, z; (iv) -x, -y+1, -z; (v) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, considerable efforts have been devoted to crystal engineering of supramolecular architecture sustained by coordination covalent bonding, hydrogen bonding or some molecular interaction and their combination owing to their fascinating structural diversity and potential application in design of porous materials with novel inclusion or reactivity properties and in supramolecular devices such as sensor and indicator (Moulton et al., 2001; Pan et al., 2001; Ma et al., 2001; Prior et al., 2001). Our interest is toexploit the coordination chemistry of 1,2,4-triazole and its derivatives together with their potential application in material science (Liu et al., 2007; Ding et al., 2006).

In the report, the mono-nuclear Cadmium(II) complex was obtained via the reaction of 2-amino-6-(4-triazoyl)pyridine, NH4NCS and corresponding Cadmium(II) salts. A view of the coordination compound [Cd(II)L2(NCS)2(H2O)2] is shown in Figure 1. Single crystal X-ray diffraction analysis reveals that the the Cadmium(II) atom is six-coordinated by two pyridine nitrogen atoms, two NCS nitrogen atoms and two aqua oxygen atoms forming N4O2 donor set. Bond distances of Cd—N and Cd—O(Cd(1)—N(1):2.2785 (16) \%A; Cd(1)—N(6):2.3146 (19) \%A; Cd(1)—O(1):2.3500 (15) \%A) are listed. The coordination geometry around the Cadmium(II) center in the molecular lattice lie in the inversion center and can be described as the Octahedral geometry.

L is mono-dentate terminal ligand coordinated via its pyridine nitrogen atoms. The weak N···N interactions between L triazole rings (N—H···N, 3.080 (2) and 3.422 (3) \%A) between L triazole rings can be observed, The offset π···π stacking interactions between two neighboring pyridine rings are also important for the assembly of the supra-molecular structure,the ring centroid-centroid distance being 3.632 (3) Å. As shown in Figure 2, A two-dimensional supra-molecular network can be observed stablized via N···N interactions and π···π stacking interactions.

Further the non-classic O—H···S hydrogen bonds (O—H···S, 3.346 (8) and 3.357 (5) \%A) also can be observed, which further assembly these two-dimensional supramolecular network to form a three-dimensional supra-molecular structure. The three-dimensional packing architecture in the unit cell of the complex is shown in Figure 3.

Related literature top

For the preparation of the organic ligand, see: Gioia et al. (1988). For complexes with 4-3-pyridyl-1,2,4-triazole ligands, see: Moulton & Zaworotko (2001); Pan et al. (2001); Prior & Rosseinsky (2001); Ma et al. (2001); Ding et al. (2006); Liu et al. (2007).

Experimental top

The organic ligand L was prepared according to the previously reported literature methods (Gioia et al., 1988). A mixture of CdBr2 (27.2 mg, 0.1 mmol), NH4NCS (7.6 mg, 0.1 mmol), L (14.6 mg, 0.1 mmol) and water (10 ml) was stirred for 5 h and filtered. Suitable single crystals for X-ray diffraction study were obtained after a few days, yield 23% (based on Cd(II) salts). Anal. Calc. for C16H18CdN12O2S2: C, 32.74%; H, 3.09%; N, 28.63%. Found: C, 32.86%; H, 3.18%; N, 28.74%. FT-IR (KBr):. 3404w, 3281w, 3135w, 2969w, 2918w, 2069 s, 1625 s, 1524m, 1405 s, 1247m, 1096m, 1017m, 792w, 676w,618w, 529w cm-1.

Refinement top

The H atoms of the aromatic rings were placed at calculated positions, with C—H = 0.93 \%A and O—H = 0.85 \%A. All H atoms were assigned fixed isotropic displacement parameters, with Uιso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

Recently, considerable efforts have been devoted to crystal engineering of supramolecular architecture sustained by coordination covalent bonding, hydrogen bonding or some molecular interaction and their combination owing to their fascinating structural diversity and potential application in design of porous materials with novel inclusion or reactivity properties and in supramolecular devices such as sensor and indicator (Moulton et al., 2001; Pan et al., 2001; Ma et al., 2001; Prior et al., 2001). Our interest is toexploit the coordination chemistry of 1,2,4-triazole and its derivatives together with their potential application in material science (Liu et al., 2007; Ding et al., 2006).

In the report, the mono-nuclear Cadmium(II) complex was obtained via the reaction of 2-amino-6-(4-triazoyl)pyridine, NH4NCS and corresponding Cadmium(II) salts. A view of the coordination compound [Cd(II)L2(NCS)2(H2O)2] is shown in Figure 1. Single crystal X-ray diffraction analysis reveals that the the Cadmium(II) atom is six-coordinated by two pyridine nitrogen atoms, two NCS nitrogen atoms and two aqua oxygen atoms forming N4O2 donor set. Bond distances of Cd—N and Cd—O(Cd(1)—N(1):2.2785 (16) \%A; Cd(1)—N(6):2.3146 (19) \%A; Cd(1)—O(1):2.3500 (15) \%A) are listed. The coordination geometry around the Cadmium(II) center in the molecular lattice lie in the inversion center and can be described as the Octahedral geometry.

L is mono-dentate terminal ligand coordinated via its pyridine nitrogen atoms. The weak N···N interactions between L triazole rings (N—H···N, 3.080 (2) and 3.422 (3) \%A) between L triazole rings can be observed, The offset π···π stacking interactions between two neighboring pyridine rings are also important for the assembly of the supra-molecular structure,the ring centroid-centroid distance being 3.632 (3) Å. As shown in Figure 2, A two-dimensional supra-molecular network can be observed stablized via N···N interactions and π···π stacking interactions.

Further the non-classic O—H···S hydrogen bonds (O—H···S, 3.346 (8) and 3.357 (5) \%A) also can be observed, which further assembly these two-dimensional supramolecular network to form a three-dimensional supra-molecular structure. The three-dimensional packing architecture in the unit cell of the complex is shown in Figure 3.

For the preparation of the organic ligand, see: Gioia et al. (1988). For complexes with 4-3-pyridyl-1,2,4-triazole ligands, see: Moulton & Zaworotko (2001); Pan et al. (2001); Prior & Rosseinsky (2001); Ma et al. (2001); Ding et al. (2006); Liu et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 30% probability dis- placement ellipsoids for non-H atoms..
[Figure 2] Fig. 2. The two-dimensional supra-molecular network stabilized via N···N hydrogen bonds and offset π···π stacking interactions, Blue lines represent N—H···N hydrogen bonds.
[Figure 3] Fig. 3. The three-dimensional supramolecular packing architecture of (I). Red lines represent O—H···S hydrogen bonds and Blue lines represent N—H···N hydrogen bonds.
Diaquabis(thiocyanato-κN)bis[6-(4H-1,2,4-triazol-4-yl- κN1)pyridin-2-amine]cadmium top
Crystal data top
[Cd(NCS)2(C7H7N5)2(H2O)2]Z = 1
Mr = 586.94F(000) = 294
Triclinic, P1Dx = 1.726 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5586 (15) ÅCell parameters from 2419 reflections
b = 7.5876 (15) Åθ = 3.0–27.8°
c = 11.311 (2) ŵ = 1.19 mm1
α = 106.859 (2)°T = 293 K
β = 95.790 (2)°Block, colorless
γ = 110.883 (2)°0.20 × 0.16 × 0.12 mm
V = 564.7 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1957 independent reflections
Radiation source: fine-focus sealed tube1893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.796, Tmax = 0.870k = 98
3064 measured reflectionsl = 1113
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0263P)2 + 0.1431P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.31 e Å3
1957 reflectionsΔρmin = 0.21 e Å3
151 parameters
Crystal data top
[Cd(NCS)2(C7H7N5)2(H2O)2]γ = 110.883 (2)°
Mr = 586.94V = 564.7 (2) Å3
Triclinic, P1Z = 1
a = 7.5586 (15) ÅMo Kα radiation
b = 7.5876 (15) ŵ = 1.19 mm1
c = 11.311 (2) ÅT = 293 K
α = 106.859 (2)°0.20 × 0.16 × 0.12 mm
β = 95.790 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1957 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1893 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.870Rint = 0.010
3064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
1957 reflectionsΔρmin = 0.21 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50001.00000.50000.03514 (8)
S10.76959 (8)0.51242 (8)0.30994 (5)0.04950 (14)
O10.7956 (2)1.2313 (2)0.48659 (14)0.0558 (4)
H1A0.89611.29290.54730.084*
H1B0.77671.29930.44250.084*
N10.3864 (2)0.8993 (2)0.28661 (14)0.0389 (4)
N20.3014 (2)0.6986 (2)0.20991 (15)0.0444 (4)
N30.2754 (2)0.8835 (2)0.09699 (14)0.0333 (3)
N40.0703 (2)0.7895 (2)0.09637 (14)0.0362 (3)
N50.1479 (3)0.6777 (3)0.28550 (16)0.0536 (5)
H5A0.20210.56480.27450.064*
H5B0.19310.69480.35220.064*
N60.6234 (3)0.7555 (3)0.46977 (19)0.0591 (5)
C10.3697 (3)1.0051 (3)0.21725 (17)0.0381 (4)
H10.41621.14480.24650.046*
C20.2365 (3)0.6948 (3)0.09812 (18)0.0419 (4)
H20.17160.57770.02770.050*
C30.2201 (3)0.9376 (3)0.00828 (16)0.0342 (4)
C40.0087 (3)0.8284 (3)0.19785 (17)0.0392 (4)
C50.0995 (3)1.0167 (3)0.21024 (19)0.0451 (5)
H50.05601.04070.28150.054*
C60.2529 (3)1.1644 (3)0.1160 (2)0.0469 (5)
H60.31381.29020.12270.056*
C70.3184 (3)1.1270 (3)0.00964 (19)0.0428 (4)
H70.42231.22460.05600.051*
C80.6818 (3)0.6545 (3)0.40295 (19)0.0419 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03953 (12)0.03434 (12)0.02935 (11)0.01460 (8)0.00083 (8)0.01088 (8)
S10.0553 (3)0.0447 (3)0.0527 (3)0.0247 (2)0.0111 (2)0.0178 (2)
O10.0496 (8)0.0550 (9)0.0509 (9)0.0073 (7)0.0026 (7)0.0226 (7)
N10.0424 (9)0.0367 (8)0.0337 (8)0.0146 (7)0.0009 (7)0.0113 (7)
N20.0504 (9)0.0345 (8)0.0394 (9)0.0105 (7)0.0045 (7)0.0137 (7)
N30.0345 (8)0.0358 (8)0.0298 (7)0.0149 (6)0.0040 (6)0.0121 (6)
N40.0438 (8)0.0380 (8)0.0302 (8)0.0205 (7)0.0055 (7)0.0128 (6)
N50.0694 (12)0.0486 (10)0.0373 (9)0.0225 (9)0.0090 (8)0.0163 (8)
N60.0773 (13)0.0569 (11)0.0539 (11)0.0424 (11)0.0085 (10)0.0178 (9)
C10.0420 (10)0.0348 (9)0.0351 (10)0.0157 (8)0.0034 (8)0.0108 (8)
C20.0456 (10)0.0352 (10)0.0369 (10)0.0126 (8)0.0027 (8)0.0100 (8)
C30.0387 (9)0.0424 (10)0.0309 (9)0.0233 (8)0.0118 (7)0.0162 (8)
C40.0492 (11)0.0472 (11)0.0312 (9)0.0287 (9)0.0115 (8)0.0156 (8)
C50.0564 (12)0.0572 (12)0.0383 (10)0.0315 (10)0.0171 (9)0.0276 (9)
C60.0522 (12)0.0485 (12)0.0539 (12)0.0232 (10)0.0211 (10)0.0310 (10)
C70.0414 (10)0.0451 (11)0.0431 (11)0.0155 (9)0.0098 (9)0.0197 (9)
C80.0450 (10)0.0379 (10)0.0432 (11)0.0172 (9)0.0017 (9)0.0181 (9)
Geometric parameters (Å, º) top
Cd1—N12.2785 (16)N4—C31.324 (2)
Cd1—N1i2.2786 (16)N4—C41.345 (2)
Cd1—N62.3146 (19)N5—C41.354 (3)
Cd1—N6i2.3146 (19)N5—H5A0.8600
Cd1—O1i2.3500 (15)N5—H5B0.8600
Cd1—O12.3501 (15)N6—C81.152 (3)
S1—C81.644 (2)C1—H10.9300
O1—H1A0.8501C2—H20.9300
O1—H1B0.8501C3—C71.368 (3)
N1—C11.301 (2)C4—C51.403 (3)
N1—N21.381 (2)C5—C61.366 (3)
N2—C21.297 (3)C5—H50.9300
N3—C11.348 (2)C6—C71.396 (3)
N3—C21.359 (2)C6—H60.9300
N3—C31.438 (2)C7—H70.9300
N1—Cd1—N1i180.00 (8)C4—N5—H5A120.0
N1—Cd1—N690.53 (6)C4—N5—H5B120.0
N1i—Cd1—N689.47 (6)H5A—N5—H5B120.0
N1—Cd1—N6i89.47 (6)C8—N6—Cd1147.28 (17)
N1i—Cd1—N6i90.53 (6)N1—C1—N3110.42 (17)
N6—Cd1—N6i179.999 (1)N1—C1—H1124.8
N1—Cd1—O1i89.76 (6)N3—C1—H1124.8
N1i—Cd1—O1i90.24 (6)N2—C2—N3111.46 (17)
N6—Cd1—O1i89.56 (7)N2—C2—H2124.3
N6i—Cd1—O1i90.45 (7)N3—C2—H2124.3
N1—Cd1—O190.24 (5)N4—C3—C7126.62 (17)
N1i—Cd1—O189.76 (6)N4—C3—N3113.17 (15)
N6—Cd1—O190.45 (7)C7—C3—N3120.21 (17)
N6i—Cd1—O189.55 (7)N4—C4—N5116.29 (17)
O1i—Cd1—O1180.0N4—C4—C5121.60 (18)
Cd1—O1—H1A123.2N5—C4—C5122.09 (17)
Cd1—O1—H1B111.3C6—C5—C4118.96 (18)
H1A—O1—H1B115.7C6—C5—H5120.5
C1—N1—N2107.86 (15)C4—C5—H5120.5
C1—N1—Cd1129.58 (13)C5—C6—C7120.27 (19)
N2—N1—Cd1122.24 (11)C5—C6—H6119.9
C2—N2—N1105.99 (16)C7—C6—H6119.9
C1—N3—C2104.27 (15)C3—C7—C6115.68 (18)
C1—N3—C3128.48 (15)C3—C7—H7122.2
C2—N3—C3127.20 (15)C6—C7—H7122.2
C3—N4—C4116.86 (16)N6—C8—S1178.77 (19)
N1i—Cd1—N1—C1168 (6)C3—N3—C1—N1177.31 (16)
N6—Cd1—N1—C1146.87 (17)N1—N2—C2—N30.3 (2)
N6i—Cd1—N1—C133.13 (17)C1—N3—C2—N20.0 (2)
O1i—Cd1—N1—C1123.58 (17)C3—N3—C2—N2177.66 (17)
O1—Cd1—N1—C156.42 (17)C4—N4—C3—C70.3 (3)
N1i—Cd1—N1—N25 (6)C4—N4—C3—N3179.64 (15)
N6—Cd1—N1—N240.36 (15)C1—N3—C3—N4155.32 (17)
N6i—Cd1—N1—N2139.64 (15)C2—N3—C3—N421.7 (2)
O1i—Cd1—N1—N249.19 (14)C1—N3—C3—C724.1 (3)
O1—Cd1—N1—N2130.81 (14)C2—N3—C3—C7158.83 (19)
C1—N1—N2—C20.5 (2)C3—N4—C4—N5178.20 (17)
Cd1—N1—N2—C2173.68 (13)C3—N4—C4—C50.4 (3)
N1—Cd1—N6—C826.0 (3)N4—C4—C5—C60.7 (3)
N1i—Cd1—N6—C8154.0 (3)N5—C4—C5—C6177.76 (19)
N6i—Cd1—N6—C819 (5)C4—C5—C6—C70.5 (3)
O1i—Cd1—N6—C8115.8 (3)N4—C3—C7—C60.5 (3)
O1—Cd1—N6—C864.2 (3)N3—C3—C7—C6179.85 (16)
N2—N1—C1—N30.5 (2)C5—C6—C7—C30.1 (3)
Cd1—N1—C1—N3173.11 (11)Cd1—N6—C8—S1123 (9)
C2—N3—C1—N10.3 (2)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S1ii0.852.513.3468 (17)168
O1—H1B···S1iii0.852.513.3575 (17)172
N5—H5A···N2iv0.862.233.080 (2)169
N5—H5B···N6v0.862.573.422 (3)170
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x, y+1, z; (iv) x, y+1, z; (v) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C7H7N5)2(H2O)2]
Mr586.94
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5586 (15), 7.5876 (15), 11.311 (2)
α, β, γ (°)106.859 (2), 95.790 (2), 110.883 (2)
V3)564.7 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.796, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
3064, 1957, 1893
Rint0.010
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.046, 1.05
No. of reflections1957
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Cd1—N12.2785 (16)Cd1—N6i2.3146 (19)
Cd1—N1i2.2786 (16)Cd1—O1i2.3500 (15)
Cd1—N62.3146 (19)Cd1—O12.3501 (15)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S1ii0.852.513.3468 (17)167.7
O1—H1B···S1iii0.852.513.3575 (17)172.0
N5—H5A···N2iv0.862.233.080 (2)168.9
N5—H5B···N6v0.862.573.422 (3)169.5
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x, y+1, z; (iv) x, y+1, z; (v) x1, y, z1.
 

Acknowledgements

This work was supported financially by Tianjin Educational Committee (20090504, 20100504) and Tianjin Normal University (1E0402B).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, B., Yi, L., Wang, Y., Cheng, P., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H., Song, H.-B. & Wang, H.-G. (2006). Dalton Trans. pp. 65–675.  Google Scholar
First citationGioia, G. L., Bonati, F., Cingolania, A., Leonesia, D. & Lorenzottia, A. (1988). Synth. React. Inorg. Met. Org. Chem. 18, 535–550.  Google Scholar
First citationLiu, Y.-Y., Huang, Y.-Q., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1483–1489.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, B.-Q., Gao, S., Sun, H.-L. & Xu, G.-X. (2001). J. Chem. Soc. Dalton Trans. pp. 130–133.  Web of Science CSD CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPan, L., Ching, N., Huang, X.-Y. & Li, J. (2001). Chem. Eur. J. 7, 4431–4437.  CrossRef PubMed CAS Google Scholar
First citationPrior, T. J. & Rosseinsky, M. J. (2001). Chem. Commun. pp. 1222–1223.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds