organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-{[(2-Amino­pyridin-3-yl)imino]­meth­yl}-4,6-di-tert-butyl­phenol

aDepartamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Programa de Doctorado en Fisico-Química Molecula, Santiago, Chile, bUniversité Paul Sabatier, Institut de Chimie de Toulouse (FR 2599), 118 route de Narbonne, 31062 Toulouse Cedex 9, France, cDepartamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago, Chile, and dDepartamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
*Correspondence e-mail: ichavez@uc.cl

(Received 6 June 2012; accepted 13 July 2012; online 21 July 2012)

In the title compound, C20H27N3O, the hy­droxy group forms an intra­molecular O—H⋯N hydrogen bond with the imino N atom. The dihedral angle between the aromatic rings is 33.09 (9)°. In the crystal, mol­ecules form centrosymmetric dimers via pairs of N—H⋯N hydrogen bonds involving amino­pyridine fragments.

Related literature

For asymmetric ligands prepared from aromatic diamines and their metal complexes exhibiting catalytic activity, e.g. metallosalphenes, see: Kleij, Kuil et al. (2005[Kleij, A. W., Kuil, M., Tooke, D. M., Lutz, M., Spek, A. L. & Reek, J. N. H. (2005). Chem. Eur. J. 11, 4743-4750.]); Kleij, Tooke et al. (2005[Kleij, A. W., Tooke, D. M., Spek, A. L. & Reek, J. N. H. (2005). Eur. J. Inorg. Chem. pp. 4626-4634.]). For the synthetic procedure, see: Benisvy et al. (2003[Benisvy, L., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., McInnes, E. J. L., McMaster, J., Whittaker, G. & Wilson, C. (2003). Dalton Trans. pp. 1975-1985.], 2004[Benisvy, L., Bill, E., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., Guindy, C. I., McInnes, E. J. L., McArdle, G., McMaster, J., Wilson, C. & Wolowska, J. (2004). Dalton Trans. pp. 3647-3653.]). For the related structure of 2-amino-3-salicylidenamino­pyridine, see: Cimerman et al. (1992[Cimerman, Z., Galesic, N. & Bosner, B. (1992). J. Mol. Struct. 274, 131-144.]).

[Scheme 1]

Experimental

Crystal data
  • C20H27N3O

  • Mr = 325.45

  • Monoclinic, P 21 /c

  • a = 16.8457 (12) Å

  • b = 10.6227 (8) Å

  • c = 10.4817 (6) Å

  • β = 101.268 (4)°

  • V = 1839.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 193 K

  • 0.6 × 0.06 × 0.04 mm

Data collection
  • Bruker Kappa APEXII Quazar area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.997

  • 29076 measured reflections

  • 4532 independent reflections

  • 2875 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.160

  • S = 1.03

  • 4532 reflections

  • 230 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.84 1.87 2.6214 (19) 149
N3—H203⋯N2i 0.89 (1) 2.16 (1) 3.045 (2) 175 (2)
Symmetry code: (i) -x, -y+2, -z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Aromatic diamines are used as starting materials for the templated synthesis of nonsymmetric metallosalphen complexes. These are useful in homogeneous catalysis. The non-templated synthesis pathway is also possible (Kleij, Kuil et al., 2005; Kleij, Tooke et al., 2005) even using diamino pyridine in combination with salicyl aldehyde derivatives. Additionaly, partially substituted products like mono Schiff bases are possible to be isolated with good yield under the same experimental conditions.

The title compound, mono Schiff base, was prepared by the non-templated direct condensation of 1,2-diaminopyridine and 3,5-di-tert-buthyl-2-ol-benzaldehide according to a previously described method (Benisvy et al., 2003, 2004).

In the title compound, the central benzene ring is substituted at position 1 with a hydroxyl group, at positions 2 and 4 with tert-buthyl groups, and at position 6 with a [(2-aminopyridin-3-yl)imino]methyl. The vicinity of the hydroxyl and the [(2-aminopyridin-3-yl)imino]methyl substituents leads to an intramolecular hydrogen bond with O1···N1 distance of 2.621 (1) Å. The reported value for the similar molecule, 2-amino-3-salicylideneaminopyridine, is 2.649 (1) Å (Cimerman et al., 1992).

In addition to that intramolecular interaction, the molecules form dimers in the solid state via hydrogen bonds between the amino pyridine fragments, as shown in Figure 2.

Related literature top

For nonsymmetric ligands prepared from aromatic diamines and their metal complexes exhibiting catalytic activity, e.g. metallosalphenes, see: Kleij, Kuil et al. (2005); Kleij, Tooke et al. (2005). For the synthetic procedure, see: Benisvy et al. (2003, 2004). For the related structure of 2-amino-3-salicylidenaminopyridine, see: Cimerman et al. (1992).

Experimental top

The compound was prepared by direct interaction between 1,2-diaminopyridine and 3,5-di-tert-butyl-2-ol-benzaldehide (Fig. 3) according to a previously described method (Benisvy et al., 2003, 2004), slighty modified by using ethanol as a solvent, instead of diclorometane and 24 h as reaction time. The synthesis yield was 70%.

Refinement top

The H atoms attached to C and O were positioned geometrically and refined using a riding model, with C—H distances of 0.95 Å (CH) and 0.98 Å (CH3) and O—H equal to 0.84 Å. Uiso(H) values were set equal to 1.5Ueq of the parent atoms for methyl and hydroxyl groups, while 1.2Ueq for the others. The amine hydrogen atoms were located in the difference Fourier map, and their coordinates were refined with N—H distances restrained to 0.88 Å.

Structure description top

Aromatic diamines are used as starting materials for the templated synthesis of nonsymmetric metallosalphen complexes. These are useful in homogeneous catalysis. The non-templated synthesis pathway is also possible (Kleij, Kuil et al., 2005; Kleij, Tooke et al., 2005) even using diamino pyridine in combination with salicyl aldehyde derivatives. Additionaly, partially substituted products like mono Schiff bases are possible to be isolated with good yield under the same experimental conditions.

The title compound, mono Schiff base, was prepared by the non-templated direct condensation of 1,2-diaminopyridine and 3,5-di-tert-buthyl-2-ol-benzaldehide according to a previously described method (Benisvy et al., 2003, 2004).

In the title compound, the central benzene ring is substituted at position 1 with a hydroxyl group, at positions 2 and 4 with tert-buthyl groups, and at position 6 with a [(2-aminopyridin-3-yl)imino]methyl. The vicinity of the hydroxyl and the [(2-aminopyridin-3-yl)imino]methyl substituents leads to an intramolecular hydrogen bond with O1···N1 distance of 2.621 (1) Å. The reported value for the similar molecule, 2-amino-3-salicylideneaminopyridine, is 2.649 (1) Å (Cimerman et al., 1992).

In addition to that intramolecular interaction, the molecules form dimers in the solid state via hydrogen bonds between the amino pyridine fragments, as shown in Figure 2.

For nonsymmetric ligands prepared from aromatic diamines and their metal complexes exhibiting catalytic activity, e.g. metallosalphenes, see: Kleij, Kuil et al. (2005); Kleij, Tooke et al. (2005). For the synthetic procedure, see: Benisvy et al. (2003, 2004). For the related structure of 2-amino-3-salicylidenaminopyridine, see: Cimerman et al. (1992).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing atom labelling scheme and the intramolecular hydrogen bond. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen-bonded molecular dimers in the crystal. Symmetry code: (i) -x, 2 - y, -1 - z.
[Figure 3] Fig. 3. Synthetic route to the title compound.
(E)-2-{[(2-Aminopyridin-3-yl)imino]methyl}-4,6-di-tert- butylphenol top
Crystal data top
C20H27N3OF(000) = 704
Mr = 325.45Dx = 1.175 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4180 reflections
a = 16.8457 (12) Åθ = 2.3–24.2°
b = 10.6227 (8) ŵ = 0.07 mm1
c = 10.4817 (6) ÅT = 193 K
β = 101.268 (4)°Needle, yellow
V = 1839.5 (2) Å30.6 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker Kappa APEXII Quazar area-detector
diffractometer
4532 independent reflections
Radiation source: microfocus sealed tube2875 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.063
φ and ω scansθmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2222
Tmin = 0.957, Tmax = 0.997k = 1414
29076 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0793P)2 + 0.3155P]
where P = (Fo2 + 2Fc2)/3
4532 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H27N3OV = 1839.5 (2) Å3
Mr = 325.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8457 (12) ŵ = 0.07 mm1
b = 10.6227 (8) ÅT = 193 K
c = 10.4817 (6) Å0.6 × 0.06 × 0.04 mm
β = 101.268 (4)°
Data collection top
Bruker Kappa APEXII Quazar area-detector
diffractometer
4532 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2875 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.997Rint = 0.063
29076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
4532 reflectionsΔρmin = 0.26 e Å3
230 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33157 (10)0.86007 (16)0.29538 (16)0.0257 (4)
H10.36740.88290.37360.031*
C20.28038 (10)0.95302 (16)0.23052 (16)0.0249 (4)
C30.22810 (10)0.91744 (16)0.11465 (16)0.0257 (4)
C40.22863 (10)0.79318 (16)0.06788 (16)0.0245 (4)
C50.28054 (10)0.70461 (16)0.13891 (17)0.0266 (4)
H50.27940.62040.1080.032*
C60.33349 (10)0.73537 (16)0.25259 (16)0.0253 (4)
C70.28219 (12)1.08949 (17)0.28088 (17)0.0320 (4)
C80.34609 (13)1.10793 (19)0.40455 (18)0.0390 (5)
H8A0.33321.05440.47390.058*
H8B0.34671.19630.43150.058*
H8C0.39941.08490.38760.058*
C90.19959 (13)1.1247 (2)0.3122 (2)0.0461 (5)
H9A0.1571.10940.23570.069*
H9B0.19971.21390.3360.069*
H9C0.18941.07330.3850.069*
C100.30327 (16)1.17916 (19)0.1770 (2)0.0478 (6)
H10A0.3551.1540.15540.072*
H10B0.30751.26540.21090.072*
H10C0.26071.17520.09870.072*
C110.39232 (11)0.63577 (17)0.32438 (16)0.0304 (4)
C120.43933 (14)0.6829 (2)0.4540 (2)0.0479 (6)
H12A0.47390.61520.49760.072*
H12B0.40140.70940.50880.072*
H12C0.47310.75460.43940.072*
C130.34424 (14)0.5187 (2)0.3506 (2)0.0473 (6)
H13A0.31330.48640.26810.071*
H13B0.3070.54140.4080.071*
H13C0.38180.45370.39230.071*
C140.45191 (13)0.5987 (2)0.2383 (2)0.0484 (6)
H14A0.4220.56550.15550.073*
H14B0.48890.5340.28230.073*
H14C0.48310.67280.22180.073*
C150.17797 (10)0.75478 (17)0.05444 (16)0.0275 (4)
H150.17880.66880.0790.033*
C160.05978 (11)0.86736 (18)0.35148 (17)0.0299 (4)
C170.08167 (10)0.78338 (17)0.24490 (16)0.0281 (4)
C180.04954 (11)0.66344 (19)0.25690 (18)0.0335 (4)
H180.06320.6050.18740.04*
C190.00259 (12)0.6285 (2)0.37037 (18)0.0383 (5)
H190.02310.54510.38190.046*
C200.02377 (12)0.7174 (2)0.46567 (18)0.0397 (5)
H200.06150.69420.54170.048*
N10.13236 (9)0.83038 (15)0.13087 (14)0.0289 (4)
N20.00551 (10)0.83493 (16)0.45811 (14)0.0355 (4)
N30.09503 (10)0.98206 (16)0.35261 (16)0.0369 (4)
H1030.1261 (11)1.010 (2)0.2805 (14)0.044*
H2030.0683 (12)1.0386 (16)0.4065 (17)0.044*
O10.17780 (8)1.00391 (12)0.04615 (12)0.0353 (3)
H1A0.15270.97120.0230.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0288 (9)0.0250 (9)0.0211 (8)0.0005 (7)0.0006 (7)0.0018 (7)
C20.0281 (9)0.0224 (9)0.0234 (8)0.0010 (7)0.0029 (7)0.0004 (7)
C30.0268 (9)0.0238 (9)0.0245 (8)0.0038 (7)0.0001 (7)0.0028 (7)
C40.0253 (9)0.0225 (9)0.0241 (8)0.0017 (7)0.0006 (7)0.0012 (6)
C50.0296 (9)0.0212 (9)0.0275 (9)0.0013 (7)0.0025 (7)0.0020 (7)
C60.0266 (9)0.0246 (9)0.0236 (8)0.0027 (7)0.0025 (7)0.0023 (7)
C70.0436 (11)0.0215 (9)0.0292 (9)0.0018 (8)0.0025 (8)0.0033 (7)
C80.0523 (12)0.0277 (10)0.0331 (10)0.0017 (9)0.0009 (9)0.0065 (8)
C90.0538 (13)0.0368 (12)0.0456 (12)0.0138 (10)0.0043 (10)0.0092 (9)
C100.0753 (16)0.0253 (10)0.0383 (11)0.0091 (11)0.0004 (11)0.0029 (9)
C110.0374 (10)0.0268 (9)0.0243 (9)0.0097 (8)0.0007 (7)0.0006 (7)
C120.0552 (13)0.0433 (13)0.0358 (11)0.0196 (11)0.0141 (10)0.0033 (9)
C130.0563 (14)0.0303 (11)0.0533 (13)0.0066 (10)0.0060 (11)0.0123 (10)
C140.0483 (13)0.0567 (14)0.0394 (12)0.0260 (11)0.0067 (10)0.0056 (10)
C150.0271 (9)0.0266 (9)0.0272 (9)0.0002 (7)0.0016 (7)0.0039 (7)
C160.0288 (9)0.0342 (10)0.0254 (9)0.0033 (8)0.0024 (7)0.0034 (7)
C170.0246 (9)0.0348 (10)0.0229 (9)0.0011 (8)0.0002 (7)0.0038 (7)
C180.0319 (10)0.0374 (11)0.0296 (9)0.0020 (8)0.0020 (8)0.0001 (8)
C190.0386 (11)0.0407 (12)0.0334 (10)0.0104 (9)0.0014 (8)0.0041 (9)
C200.0397 (11)0.0483 (13)0.0270 (10)0.0079 (10)0.0037 (8)0.0072 (9)
N10.0273 (8)0.0332 (9)0.0234 (7)0.0003 (6)0.0016 (6)0.0025 (6)
N20.0363 (9)0.0400 (10)0.0263 (8)0.0014 (7)0.0035 (7)0.0021 (7)
N30.0436 (10)0.0318 (9)0.0298 (9)0.0002 (8)0.0063 (7)0.0015 (7)
O10.0397 (8)0.0274 (7)0.0321 (7)0.0098 (6)0.0093 (6)0.0004 (5)
Geometric parameters (Å, º) top
C1—C21.397 (2)C11—C131.538 (3)
C1—C61.401 (2)C12—H12A0.98
C1—H10.95C12—H12B0.98
C2—C31.406 (2)C12—H12C0.98
C2—C71.541 (2)C13—H13A0.98
C3—O11.356 (2)C13—H13B0.98
C3—C41.409 (2)C13—H13C0.98
C4—C51.396 (2)C14—H14A0.98
C4—C151.453 (2)C14—H14B0.98
C5—C61.381 (2)C14—H14C0.98
C5—H50.95C15—N11.279 (2)
C6—C111.541 (2)C15—H150.95
C7—C81.527 (2)C16—N21.343 (2)
C7—C91.537 (3)C16—N31.357 (3)
C7—C101.539 (3)C16—C171.421 (2)
C8—H8A0.98C17—C181.380 (3)
C8—H8B0.98C17—N11.417 (2)
C8—H8C0.98C18—C191.384 (3)
C9—H9A0.98C18—H180.95
C9—H9B0.98C19—C201.370 (3)
C9—H9C0.98C19—H190.95
C10—H10A0.98C20—N21.339 (3)
C10—H10B0.98C20—H200.95
C10—H10C0.98N3—H1030.882 (9)
C11—C121.518 (3)N3—H2030.885 (9)
C11—C141.527 (3)O1—H1A0.84
C2—C1—C6124.28 (15)C12—C11—C6112.56 (15)
C2—C1—H1117.9C14—C11—C6108.83 (15)
C6—C1—H1117.9C13—C11—C6109.36 (15)
C1—C2—C3116.96 (15)C11—C12—H12A109.5
C1—C2—C7121.96 (15)C11—C12—H12B109.5
C3—C2—C7121.07 (15)H12A—C12—H12B109.5
O1—C3—C2119.77 (15)C11—C12—H12C109.5
O1—C3—C4119.75 (15)H12A—C12—H12C109.5
C2—C3—C4120.47 (15)H12B—C12—H12C109.5
C5—C4—C3119.45 (15)C11—C13—H13A109.5
C5—C4—C15118.68 (15)C11—C13—H13B109.5
C3—C4—C15121.84 (15)H13A—C13—H13B109.5
C6—C5—C4122.16 (16)C11—C13—H13C109.5
C6—C5—H5118.9H13A—C13—H13C109.5
C4—C5—H5118.9H13B—C13—H13C109.5
C5—C6—C1116.65 (15)C11—C14—H14A109.5
C5—C6—C11120.27 (15)C11—C14—H14B109.5
C1—C6—C11123.06 (15)H14A—C14—H14B109.5
C8—C7—C9107.74 (16)C11—C14—H14C109.5
C8—C7—C10107.40 (17)H14A—C14—H14C109.5
C9—C7—C10110.13 (17)H14B—C14—H14C109.5
C8—C7—C2112.01 (15)N1—C15—C4123.62 (16)
C9—C7—C2110.13 (16)N1—C15—H15118.2
C10—C7—C2109.38 (15)C4—C15—H15118.2
C7—C8—H8A109.5N2—C16—N3116.81 (16)
C7—C8—H8B109.5N2—C16—C17121.54 (17)
H8A—C8—H8B109.5N3—C16—C17121.60 (16)
C7—C8—H8C109.5C18—C17—N1124.26 (16)
H8A—C8—H8C109.5C18—C17—C16118.10 (16)
H8B—C8—H8C109.5N1—C17—C16117.58 (16)
C7—C9—H9A109.5C17—C18—C19119.84 (18)
C7—C9—H9B109.5C17—C18—H18120.1
H9A—C9—H9B109.5C19—C18—H18120.1
C7—C9—H9C109.5C20—C19—C18118.20 (19)
H9A—C9—H9C109.5C20—C19—H19120.9
H9B—C9—H9C109.5C18—C19—H19120.9
C7—C10—H10A109.5N2—C20—C19123.99 (17)
C7—C10—H10B109.5N2—C20—H20118
H10A—C10—H10B109.5C19—C20—H20118
C7—C10—H10C109.5C15—N1—C17119.76 (16)
H10A—C10—H10C109.5C20—N2—C16118.12 (17)
H10B—C10—H10C109.5C16—N3—H103118.8 (14)
C12—C11—C14109.03 (17)C16—N3—H203116.5 (14)
C12—C11—C13107.93 (17)H103—N3—H203118 (2)
C14—C11—C13109.08 (17)C3—O1—H1A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.841.872.6214 (19)149
N3—H203···N2i0.89 (1)2.16 (1)3.045 (2)175 (2)
Symmetry code: (i) x, y+2, z1.

Experimental details

Crystal data
Chemical formulaC20H27N3O
Mr325.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)16.8457 (12), 10.6227 (8), 10.4817 (6)
β (°) 101.268 (4)
V3)1839.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.6 × 0.06 × 0.04
Data collection
DiffractometerBruker Kappa APEXII Quazar area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
29076, 4532, 2875
Rint0.063
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.160, 1.03
No. of reflections4532
No. of parameters230
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.841.872.6214 (19)149
N3—H203···N2i0.885 (9)2.162 (10)3.045 (2)175 (2)
Symmetry code: (i) x, y+2, z1.
 

Acknowledgements

The authors acknowledge financial support from UNAB DI-28-10/I, Proyecto P07-006-F de la Iniciativa Científica Milenio del Ministerio de Economía, Fomento y Turismo and ECOS-CONICYT C08E01. AV is a member of Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia FB0807. A. Carreño acknowledges Universidad Andres Bello for a doctoral fellowship.

References

First citationBenisvy, L., Bill, E., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., Guindy, C. I., McInnes, E. J. L., McArdle, G., McMaster, J., Wilson, C. & Wolowska, J. (2004). Dalton Trans. pp. 3647–3653.  Web of Science CSD CrossRef Google Scholar
First citationBenisvy, L., Blake, A. J., Collison, D., Davies, E. S., Garner, C. D., McInnes, E. J. L., McMaster, J., Whittaker, G. & Wilson, C. (2003). Dalton Trans. pp. 1975–1985.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galesic, N. & Bosner, B. (1992). J. Mol. Struct. 274, 131–144.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKleij, A. W., Kuil, M., Tooke, D. M., Lutz, M., Spek, A. L. & Reek, J. N. H. (2005). Chem. Eur. J. 11, 4743–4750.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKleij, A. W., Tooke, D. M., Spek, A. L. & Reek, J. N. H. (2005). Eur. J. Inorg. Chem. pp. 4626–4634.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds