organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,9-Di­iodo­hexa­cyclo­[9.3.1.12,6.14,8.19,13.01,8]octa­deca­ne

aChemistry Department, University of Cyprus, Nicosia 1678, Cyprus
*Correspondence e-mail: ioannou.savvas@ucy.ac.cy

(Received 13 May 2012; accepted 13 June 2012; online 4 July 2012)

The title compound, C18H24I2, has an adamantanoid structure with tetra­hedral cages having four C atoms lying on the same plane [(I—)C—C—C—C(—I) torsion angle = 0°]. The plane is extended by the two I atoms, each having a deviation of 1.0 (6) Å [C—C—C—I torsion angle = 178.9 (4)°]. The central C—C bond connecting the two quaternary carbons seems enlarged [1.593 (9) Å] in comparison to the corresponding bond in [2]diadamantane [1.554 (3) Å]. This is attributed to the presence of the electronegative I atoms, which affect inductively the C atoms of the four-C-atom plane, making the central C—C bond weaker.

Related literature

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989[Borden, W. T. (1989). Chem. Rev. 89, 1095-1109.], 1996[Borden, W. T. (1996). Synlett, pp. 711-719.]); Vázquez & Camps (2005[Vázquez, S. & Camps, P. (2005). Tetrahedron, 61, 5147-5208.]). For the synthesis of the precursor, hepta­cyclo­[9.3.1.12,6.14,8.19,13.01,9.02,8]octa­decane, see: Ioannou & Nicolaides (2009[Ioannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938-6940.]); Renzoni et al. (1986[Renzoni, G. E., Yin, T. & Borden, W. T. (1986). J. Am. Chem. Soc. 108, 7121-7122.]) and for the synthesis of [2]diadamantane, see: McKervey (1980[McKervey, M. A. (1980). Tetrahedron, 36, 971-992.]); Graham et al. (1973[Graham, W. D., Schleyer, P. von R., Hagaman, E. W. & Wenkert, E. (1973). J. Am. Chem. Soc. 95, 5785-5786.]). For related reactions on diadamantane systems, see: Sosnowski et al. (1984[Sosnowski, J. J. & Murray, R. K. (1984). J. Org. Chem. 49, 4471-4475.]). For the use of iodine as a trapping agent for the inter­mediate radicals of a reaction, see: Castello (1984[Castello, G. (1984). J. Chromatogr. 303, 61-66.]); Wojnarovits & Laverne (1996[Wojnarovits, L. & Laverne, J. (1996). Radiat. Phys. Chem. 57, 99-101.]). For iodine as a catalyst, see: Mullineaux & Raley (1963[Mullineaux, R. D. & Raley, J. H. (1963). J. Am. Chem. Soc. 85, 3178-3180.]); Slaugh et al. (1963[Slaugh, L., Mullineaux, R. D. & Raley, J. H. (1963). J. Am. Chem. Soc. 85, 3180-3183.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24I2

  • Mr = 494.17

  • Triclinic, [P \overline 1]

  • a = 6.8912 (8) Å

  • b = 6.9725 (9) Å

  • c = 8.9927 (10) Å

  • α = 67.964 (11)°

  • β = 74.368 (10)°

  • γ = 78.258 (10)°

  • V = 383.16 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.09 mm−1

  • T = 100 K

  • 0.18 × 0.05 × 0.03 mm

Data collection
  • Oxford Diffraction SuperNova Dual (Cu at 0) Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.527, Tmax = 1.000

  • 2333 measured reflections

  • 1346 independent reflections

  • 1284 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.10

  • 1346 reflections

  • 91 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 1.50 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.][Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.][Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.][Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.][Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.][Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.][Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.][Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.][Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Adamantanoids are cage structures having adamantane as a repeated unit (McKervey 1980\). Their nomenclature derives from the number of the common carbon atoms connecting every adamantane unit to each other (Graham et al. 1973\). 2,9-Diiodo [2]diadamantane (title compound) was the main product of thermolysis of heptacyclo [9.3.1.12,6.14,8.19,13.01,9.02,8] octadecane in the presence of iodine at 150°C. Iodine was used as a trapping agent (Castello 1984\, Wojnarovits et al. 1996\) for the intermediate radicals of the reaction. The corresponding iodides helped in the understanding of the reaction mechanism. Iodine was applied initially at the reaction conditions (5 min, 350°C) predefined for the synthesis of pentacyclo [9.3.1.12,6.14,8.19,13] octadeca-di-1(2),8(9)-ene but it acted as a catalyst instead (Slaugh et al. 1963\, Mullineaux et al. 1963\), leading the reaction spontaneously to the more favored thermodynamically product [2]diadamantane (figure 3). At lower temperature (150°C) the title compound was isolated as the main product of the reaction among other minor products. Another method of producing 2,9-diiodo[2]diadamantane quantitatively is by refluxing the starting material in dichloromethane with 2 equivalents of iodine (lower temperature). Other solvents were used as well, like carbon tetrachloride and chloroform but the reaction was slower having lower yields. Dichloromethane was the most suitable solvent probably due to its bigger dipole moment that helps the homolysis. The title compound has its own interest as the first substituted [2]diadamantane at the specific positions considered by others as the more difficult positions to functionalize (Sosnowski et al. 1984\).

Related literature top

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989, 1996); Vázquez & Camps (2005). For the synthesis of the precursor, heptacyclo[9.3.1.12,6.14,8.19,13.01,9.02,8]octadecane, see: Ioannou & Nicolaides (2009); Renzoni et al. (1986) and for the synthesis of [2]diadamantane, see: McKervey (1980); Graham et al. (1973). For related reactions on diadamantane systems, see: Sosnowski et al. (1984). For the use of iodine as a trapping agent for the intermediate radicals of a reaction, see: Castello (1984); Wojnarovits & Laverne (1996). For iodine as a catalyst, see: Mullineaux & Raley (1963); Slaugh et al. (1963).

Experimental top

Synthesis of 2,9-diiodo-hexacyclo[9.3.1.12,6.14,8.19,13.01,8]octadecane. Heptacyclo[9.3.1.12,6.14,8.19,13.01,9.02,8]octadecane (68 mg, 0.28 mmol), iodine (131 mg, 0.52 mmol) and dichloromethane (10 ml) were refluxed in a round bottom flask for 5 h. Another 10 ml of dichloromethane were added when the mixture cooled down and extracted with 1x30 ml saturated aqueous sodium thiosulfate for the removal of the iodine excess. The organic phase was then dried with anhydrous Na2SO4 and removed under vacuum to give 86 mg (62%) of a white solid (title compound) that was recrystallized (hexane/dichloromethane 5:1) to give pure colorless crystals(mp 240–242°C).

Refinement top

The H atoms are positioned with idealized geometry and refined using a riding model with Uiso(H) = 1.2 of Ueq (C).

Structure description top

Adamantanoids are cage structures having adamantane as a repeated unit (McKervey 1980\). Their nomenclature derives from the number of the common carbon atoms connecting every adamantane unit to each other (Graham et al. 1973\). 2,9-Diiodo [2]diadamantane (title compound) was the main product of thermolysis of heptacyclo [9.3.1.12,6.14,8.19,13.01,9.02,8] octadecane in the presence of iodine at 150°C. Iodine was used as a trapping agent (Castello 1984\, Wojnarovits et al. 1996\) for the intermediate radicals of the reaction. The corresponding iodides helped in the understanding of the reaction mechanism. Iodine was applied initially at the reaction conditions (5 min, 350°C) predefined for the synthesis of pentacyclo [9.3.1.12,6.14,8.19,13] octadeca-di-1(2),8(9)-ene but it acted as a catalyst instead (Slaugh et al. 1963\, Mullineaux et al. 1963\), leading the reaction spontaneously to the more favored thermodynamically product [2]diadamantane (figure 3). At lower temperature (150°C) the title compound was isolated as the main product of the reaction among other minor products. Another method of producing 2,9-diiodo[2]diadamantane quantitatively is by refluxing the starting material in dichloromethane with 2 equivalents of iodine (lower temperature). Other solvents were used as well, like carbon tetrachloride and chloroform but the reaction was slower having lower yields. Dichloromethane was the most suitable solvent probably due to its bigger dipole moment that helps the homolysis. The title compound has its own interest as the first substituted [2]diadamantane at the specific positions considered by others as the more difficult positions to functionalize (Sosnowski et al. 1984\).

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989, 1996); Vázquez & Camps (2005). For the synthesis of the precursor, heptacyclo[9.3.1.12,6.14,8.19,13.01,9.02,8]octadecane, see: Ioannou & Nicolaides (2009); Renzoni et al. (1986) and for the synthesis of [2]diadamantane, see: McKervey (1980); Graham et al. (1973). For related reactions on diadamantane systems, see: Sosnowski et al. (1984). For the use of iodine as a trapping agent for the intermediate radicals of a reaction, see: Castello (1984); Wojnarovits & Laverne (1996). For iodine as a catalyst, see: Mullineaux & Raley (1963); Slaugh et al. (1963).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008\); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008\); data reduction: CrysAlis RED (Oxford Diffraction, 2008\); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008\); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008\); molecular graphics: DIAMOND (Brandenburg, 2006\) and Mercury (Macrae et al., 2006\); software used to prepare material for publication: WinGX (Farrugia, 1999\) and publCIF (Westrip, 2010\).

Figures top
[Figure 1] Fig. 1. Structure of the title compound 2,9-Diiodo-hexacyclo [9.3.1.12,6.14,8.19,13.01,8] octadecane with the atom-labelling. Displacement elipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along [0 1 0].
[Figure 3] Fig. 3. Synthesis of the title compound.
2,9-Diiodohexacyclo[9.3.1.12,6.14,8.19,13.01,8]octadecane top
Crystal data top
C18H24I2Z = 1
Mr = 494.17F(000) = 238
Triclinic, P1Dx = 2.141 Mg m3
a = 6.8912 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.9725 (9) ÅCell parameters from 1750 reflections
c = 8.9927 (10) Åθ = 3.1–28.8°
α = 67.964 (11)°µ = 4.09 mm1
β = 74.368 (10)°T = 100 K
γ = 78.258 (10)°Polyhedral, colorless
V = 383.16 (9) Å30.18 × 0.05 × 0.03 mm
Data collection top
Oxford Diffraction SuperNova Dual (Cu at 0) Atlas
diffractometer
1346 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1284 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4223 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008\)
k = 88
Tmin = 0.527, Tmax = 1.000l = 1010
2333 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.7753P]
where P = (Fo2 + 2Fc2)/3
1346 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 1.50 e Å3
18 restraintsΔρmin = 0.62 e Å3
Crystal data top
C18H24I2γ = 78.258 (10)°
Mr = 494.17V = 383.16 (9) Å3
Triclinic, P1Z = 1
a = 6.8912 (8) ÅMo Kα radiation
b = 6.9725 (9) ŵ = 4.09 mm1
c = 8.9927 (10) ÅT = 100 K
α = 67.964 (11)°0.18 × 0.05 × 0.03 mm
β = 74.368 (10)°
Data collection top
Oxford Diffraction SuperNova Dual (Cu at 0) Atlas
diffractometer
1346 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008\)
1284 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 1.000Rint = 0.040
2333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03218 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.10Δρmax = 1.50 e Å3
1346 reflectionsΔρmin = 0.62 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.33440 (5)0.02562 (5)0.21656 (4)0.01697 (17)
C10.0899 (7)0.4075 (7)0.0021 (6)0.0031 (10)
C20.0901 (8)0.2866 (8)0.1856 (6)0.0050 (10)
C30.1085 (8)0.1932 (7)0.2800 (6)0.0050 (10)
H3A0.10010.11310.39300.006*
H3B0.13350.10090.23060.006*
C40.2820 (8)0.3723 (8)0.2741 (6)0.0055 (10)
H40.41070.31420.33150.007*
C50.2919 (8)0.5004 (8)0.0951 (6)0.0054 (10)
H5A0.40170.61280.09210.006*
H5B0.32030.41240.04360.006*
C60.1293 (8)0.4238 (8)0.2722 (6)0.0056 (10)
H6A0.13570.34140.38530.007*
H6B0.25760.48030.21730.007*
C70.0445 (8)0.6011 (8)0.2666 (6)0.0053 (10)
H70.01970.69150.31910.006*
C80.0557 (8)0.7290 (8)0.0884 (6)0.0052 (10)
H8A0.06950.79120.03190.006*
H8B0.16610.84080.08610.006*
C90.2454 (8)0.5112 (8)0.3588 (6)0.0072 (10)
H9A0.23930.43030.47220.009*
H9B0.35540.62300.35760.009*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0167 (2)0.0151 (2)0.0163 (3)0.00018 (16)0.00330 (17)0.00354 (17)
C10.0030 (13)0.0030 (13)0.0038 (13)0.0003 (9)0.0010 (9)0.0017 (9)
C20.005 (2)0.006 (2)0.006 (2)0.0000 (19)0.002 (2)0.003 (2)
C30.008 (2)0.002 (2)0.005 (2)0.0021 (19)0.001 (2)0.0014 (19)
C40.0049 (13)0.0056 (13)0.0058 (13)0.0009 (9)0.0009 (9)0.0017 (9)
C50.0045 (13)0.0057 (13)0.0057 (13)0.0008 (9)0.0008 (9)0.0016 (9)
C60.005 (2)0.009 (2)0.003 (2)0.001 (2)0.001 (2)0.002 (2)
C70.005 (2)0.006 (2)0.007 (3)0.001 (2)0.002 (2)0.004 (2)
C80.007 (2)0.006 (2)0.004 (2)0.003 (2)0.000 (2)0.002 (2)
C90.007 (2)0.008 (2)0.005 (3)0.002 (2)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
I1—C22.202 (5)C5—H5A0.9700
C1—C21.545 (7)C5—H5B0.9700
C1—C8i1.549 (6)C6—C71.532 (7)
C1—C5i1.550 (7)C6—H6A0.9700
C1—C1i1.593 (9)C6—H6B0.9700
C2—C31.529 (7)C7—C81.528 (7)
C2—C61.541 (7)C7—C91.530 (7)
C3—C41.539 (7)C7—H70.9800
C3—H3A0.9700C8—C1i1.549 (6)
C3—H3B0.9700C8—H8A0.9700
C4—C91.529 (7)C8—H8B0.9700
C4—C51.532 (7)C9—H9A0.9700
C4—H40.9800C9—H9B0.9700
C5—C1i1.550 (7)
C2—C1—C8i113.1 (4)C4—C5—H5B109.4
C2—C1—C5i112.8 (4)C1i—C5—H5B109.4
C8i—C1—C5i106.0 (4)H5A—C5—H5B108.0
C2—C1—C1i106.0 (5)C7—C6—C2108.3 (4)
C8i—C1—C1i109.7 (5)C7—C6—H6A110.0
C5i—C1—C1i109.2 (5)C2—C6—H6A110.0
C3—C2—C6108.4 (4)C7—C6—H6B110.0
C3—C2—C1112.5 (4)C2—C6—H6B110.0
C6—C2—C1112.2 (4)H6A—C6—H6B108.4
C3—C2—I1106.6 (3)C8—C7—C9109.7 (4)
C6—C2—I1105.3 (3)C8—C7—C6109.9 (4)
C1—C2—I1111.4 (3)C9—C7—C6109.8 (4)
C2—C3—C4108.4 (4)C8—C7—H7109.1
C2—C3—H3A110.0C9—C7—H7109.1
C4—C3—H3A110.0C6—C7—H7109.1
C2—C3—H3B110.0C7—C8—C1i111.4 (4)
C4—C3—H3B110.0C7—C8—H8A109.3
H3A—C3—H3B108.4C1i—C8—H8A109.3
C9—C4—C5109.9 (4)C7—C8—H8B109.3
C9—C4—C3109.5 (4)C1i—C8—H8B109.3
C5—C4—C3109.7 (4)H8A—C8—H8B108.0
C9—C4—H4109.2C4—C9—C7108.3 (4)
C5—C4—H4109.2C4—C9—H9A110.0
C3—C4—H4109.2C7—C9—H9A110.0
C4—C5—C1i111.3 (4)C4—C9—H9B110.0
C4—C5—H5A109.4C7—C9—H9B110.0
C1i—C5—H5A109.4H9A—C9—H9B108.4
C8i—C1—C2—C358.8 (5)C9—C4—C5—C1i61.2 (5)
C5i—C1—C2—C3179.0 (4)C3—C4—C5—C1i59.2 (5)
C1i—C1—C2—C361.4 (6)C3—C2—C6—C762.1 (5)
C8i—C1—C2—C6178.6 (4)C1—C2—C6—C762.7 (5)
C5i—C1—C2—C658.4 (5)I1—C2—C6—C7175.9 (3)
C1i—C1—C2—C661.1 (6)C2—C6—C7—C859.0 (5)
C8i—C1—C2—I160.8 (5)C2—C6—C7—C961.7 (5)
C5i—C1—C2—I159.4 (4)C9—C7—C8—C1i61.8 (5)
C1i—C1—C2—I1178.9 (4)C6—C7—C8—C1i59.0 (5)
C6—C2—C3—C462.2 (5)C5—C4—C9—C759.8 (5)
C1—C2—C3—C462.4 (5)C3—C4—C9—C760.8 (5)
I1—C2—C3—C4175.2 (3)C8—C7—C9—C460.0 (5)
C2—C3—C4—C962.1 (5)C6—C7—C9—C460.9 (5)
C2—C3—C4—C558.6 (5)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H24I2
Mr494.17
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.8912 (8), 6.9725 (9), 8.9927 (10)
α, β, γ (°)67.964 (11), 74.368 (10), 78.258 (10)
V3)383.16 (9)
Z1
Radiation typeMo Kα
µ (mm1)4.09
Crystal size (mm)0.18 × 0.05 × 0.03
Data collection
DiffractometerOxford Diffraction SuperNova Dual (Cu at 0) Atlas
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008\)
Tmin, Tmax0.527, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2333, 1346, 1284
Rint0.040
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.10
No. of reflections1346
No. of parameters91
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.50, 0.62

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008\), CrysAlis RED (Oxford Diffraction, 2008\), SHELXS97 (Sheldrick, 2008\), SHELXL97 (Sheldrick, 2008\), DIAMOND (Brandenburg, 2006\) and Mercury (Macrae et al., 2006\), WinGX (Farrugia, 1999\) and publCIF (Westrip, 2010\).

 

Acknowledgements

We are grateful to the Research Promotion Foundation (IΠE) of Cyprus and the European Structural Funds for grant ANABAΘ/ΠAΓIO/0308/12, which allowed the purchase of the XRD instrument, NEKYΠ/0308/02 enabling the purchase of a 500 MHz NMR spectrometer, of the RSC journal archive and for access to Reaxys and financial support to SI (ΠENEK/ENIΣX/0308/01). Partial financial support (SI) was also provided by the SRP "Inter­esting Divalent Carbon Compounds" granted by UCY. The A. G. Leventis Foundation is gratefully acknowledged for a generous donation to the University of Cyprus, enabling the purchase of the 300 MHz NMR spectrometer. Dr Athanassios Nicolaides and Dr Anastasios Tasiopoulos are thanked for illuminating comments.

References

First citationBorden, W. T. (1989). Chem. Rev. 89, 1095–1109.  CrossRef CAS Web of Science Google Scholar
First citationBorden, W. T. (1996). Synlett, pp. 711–719.  CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCastello, G. (1984). J. Chromatogr. 303, 61–66.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGraham, W. D., Schleyer, P. von R., Hagaman, E. W. & Wenkert, E. (1973). J. Am. Chem. Soc. 95, 5785–5786.  CrossRef CAS Web of Science Google Scholar
First citationIoannou, S. & Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938–6940.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKervey, M. A. (1980). Tetrahedron, 36, 971–992.  CrossRef CAS Web of Science Google Scholar
First citationMullineaux, R. D. & Raley, J. H. (1963). J. Am. Chem. Soc. 85, 3178–3180.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRenzoni, G. E., Yin, T. & Borden, W. T. (1986). J. Am. Chem. Soc. 108, 7121–7122.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlaugh, L., Mullineaux, R. D. & Raley, J. H. (1963). J. Am. Chem. Soc. 85, 3180–3183.  CrossRef CAS Web of Science Google Scholar
First citationSosnowski, J. J. & Murray, R. K. (1984). J. Org. Chem. 49, 4471–4475.  CrossRef CAS Web of Science Google Scholar
First citationVázquez, S. & Camps, P. (2005). Tetrahedron, 61, 5147–5208.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojnarovits, L. & Laverne, J. (1996). Radiat. Phys. Chem. 57, 99–101.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds