organic compounds
4-{[Bis(2-hydroxyethyl)amino]methyl}-6-methoxy-2H-chromen-2-one
aP.G. Department of Chemistry, Karnatak University, Dharwad 580 003, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, and cDepartment of Physics, M.S. Ramaiah Institute of Technology, Bangalore 560054, India
*Correspondence e-mail: manohar274@gmail.com
In the title compound, C15H19NO5, an intramolecular O—H⋯O hydrogen bond links the hydroxyethyl side chains, forming a seven-membered ring. In the crystal, molecules are linked into chains via O—H⋯O hydrogen bonds along the b axis. Further, molecules are linked by weak intermolecular C—H⋯O and π–π stacking interactions [centroid–centroid distance = 3.707 (4) Å].
Related literature
For the properties of et al. (1989); Baures et al. (2002); Jadhav et al. (2010); Basanagouda et al. (2011); Kokila et al. (1995); Khan et al. (2008). For 4-bromomethyl-6-methoxy-2H-chromen-2-one, see: Basanagouda et al. (2011). For aromatic compounds containing a β-hydroxyethyl side chain, see: Khan et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995). For C—H ⋯O interactions, see: Desiraju (2005). For stacking interactions, see: Janiak (2000). For related literature on 4-bromomethyl-2H-chromen-2-one, see: Basanagouda & Kulkarni (2011).
see: MengExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2008); cell SMART; data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812030759/zj2082sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812030759/zj2082Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812030759/zj2082Isup3.cml
The mixture of 4-(bromomethyl)-6-methoxy-2H-chromen-2-one (2.68 g, 0.01 mol) and diethanol amine (1.05 g, 0.015 mol) in a 1:1 (25 ml) mixture of ethylalcohol and ethyl acetate was refluxed for 5-6 h. After completion of the reaction, solvent was removed using rotary evaporator. Obtained viscous mass was diluted with ice cold water and extracted with ethyl acetate and purified by ν in cm-1) 1716 (C=O), 3319 (OH); 1H NMR (CDCl3, 300 MHz, TMS): δ ppm 2.15 (s, br, 1H, OH, D2O exchangeable), 2.82 (t, 4H, J = 6Hz, 2N-CH2), 3.34 (s, br, 1H, OH, D2O exchangeable), 3.69 (t, 4H, J = 6Hz, 2CH2-OH), 3.86 (s, 3H, C6-OCH3), 3.89 (s, 2H, C4-CH2), 6.67 (s, 1H, C3-H), 7.09 (d, 1H, J = 9Hz, Ar-H), 7.23-7.28 (m, 2H, Ar-H). MS m/z (M+1) 294. Anal. Calcd for C15H19NO5 (%):Calcd. C, 61.42; H, 6.53; N, 4.78. Found: C, 61.28; H, 6.39; N, 4.62.
using hexane/ ethyl acetate (6:4) as eluting solvent. A slow evaporation technique was used to grow crystals suitable for diffraction studies in ethyl acetate/ hexane (1:1.5) solvent mixture. Light yellow solid; yield 70%; m.p.98-100oC; IR (KBr,All H atoms were fixed geometrically and treated as riding with C-H = 0.95Å (aromatic), 0.98Å (methyl) or 0.99Å (methylene) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).
Coumarins have been shown to be important molecular models, revealing different aspects of solid state organic chemistry. Derivatives of coumarin have been investigated for their solid state dimerisation (Meng et al., 1989), self association in the solid state (Baures et al., 2002), and host of other interesting features which have come to light by their
studies (Jadhav et al., 2010). Our earlier studies have shown that 4-aryloxymethyl exhibit a Head-tail packing (Gupta et al., 2011), whereas 4-arylamino methyl exhibit a layer like arrangement (Kokila et al., 1995) in solid state.Diethanol β-hydroxy ethyl side chain (Khan et al., 2008). In the light of above observations it was thought of considerable interest to study the title compound (Fig. 1) which was intermediate in a series of synthesised for their anti-cancer activities.
are the key intermediate in the synthesis of and there are few reports on the structures possessingThe X-ray crystal structures of the title compound reveal that molecule is non-planar. The diethanol amine side chain is oriented towards the coumarin ring with the nitrogen being out of the plane of the molecule shown by the dihedral angles of C7-C8-C11-N1 -122.53 (2)° and C9-C8-C11-N1 62.23 (2)° . The shortened C2-O5 bond distance of 1.371 (3)Å compared to the C1-O5 bond distance of 1.417 (3) Å indicates the delocalization of lone pair of electrons on the O5 oxygen atom across the coumarin ring. The π–π stacking interactions [centroid-centroid distance = 3.707 (4)Å symmetry -x,-y,1-z]. (Table1)
of the compound is stabilized by of both intra and intermolecular O-H···O hydrogen bonds and inter molecular C-H···O interactions. The intramolecular O-H···O hydrogen bond connects diethanol amine side chains. In the solid state, molecules are linked via O-H···O hydrogen bonds. Further molecules are connected by weak C-H···O interactions andFor the properties of β-hydroxyethyl side chain containing see: Khan et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995). For C—H ···O interactions, see: Desiraju (2005). For stacking interactions, see: Janiak (2000). For related literature [on what subject?], see: Basanagouda & Kulkarni (2011).
see: Meng et al. (1989); Baures et al. (2002); Jadhav et al. (2010); Gupta et al. (2011); Kokila et al. (1995); Khan et al. (2008). For 4-(bromomethyl)-6-methoxy-2H-chromen-2-one, see: Basanagouda et al. (2011). For [the structure of a?]Data collection: SMART (Bruker, 2008); cell
SMART (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).C15H19NO5 | F(000) = 624 |
Mr = 293.31 | Dx = 1.348 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2837 reflections |
a = 9.3038 (5) Å | θ = 2.8–29.6° |
b = 7.9290 (5) Å | µ = 0.10 mm−1 |
c = 19.6216 (12) Å | T = 123 K |
β = 92.944 (5)° | Block, white |
V = 1445.56 (15) Å3 | 0.2 × 0.18 × 0.18 mm |
Z = 4 |
Bruker SMART APEX CCD detector diffractometer | 1994 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 25.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −11→11 |
Tmin = 0.98, Tmax = 0.982 | k = −9→9 |
14012 measured reflections | l = −23→23 |
2694 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.149 | w = 1/[σ2(Fo2) + (0.0607P)2 + 0.6914P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2694 reflections | Δρmax = 0.51 e Å−3 |
194 parameters | Δρmin = −0.26 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0048 (14) |
C15H19NO5 | V = 1445.56 (15) Å3 |
Mr = 293.31 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.3038 (5) Å | µ = 0.10 mm−1 |
b = 7.9290 (5) Å | T = 123 K |
c = 19.6216 (12) Å | 0.2 × 0.18 × 0.18 mm |
β = 92.944 (5)° |
Bruker SMART APEX CCD detector diffractometer | 2694 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 1994 reflections with I > 2σ(I) |
Tmin = 0.98, Tmax = 0.982 | Rint = 0.040 |
14012 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.149 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.51 e Å−3 |
2694 reflections | Δρmin = −0.26 e Å−3 |
194 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6985 (3) | 0.3637 (5) | 0.38763 (14) | 0.0794 (9) | |
H1A | 0.6439 | 0.2862 | 0.3572 | 0.119* | |
H1B | 0.7954 | 0.3787 | 0.3713 | 0.119* | |
H1C | 0.6494 | 0.473 | 0.3881 | 0.119* | |
C2 | 0.5821 (2) | 0.2628 (3) | 0.48505 (12) | 0.0478 (6) | |
C3 | 0.5966 (3) | 0.1769 (3) | 0.54703 (13) | 0.0576 (7) | |
H3 | 0.6895 | 0.1449 | 0.5648 | 0.069* | |
C4 | 0.4789 (3) | 0.1386 (3) | 0.58220 (12) | 0.0582 (7) | |
H4 | 0.4892 | 0.0812 | 0.6247 | 0.07* | |
C5 | 0.3436 (3) | 0.1843 (3) | 0.55550 (11) | 0.0477 (6) | |
C6 | 0.0911 (3) | 0.1865 (3) | 0.57398 (13) | 0.0587 (6) | |
C7 | 0.0712 (2) | 0.2717 (3) | 0.50921 (11) | 0.0489 (6) | |
H7 | −0.0241 | 0.2978 | 0.4929 | 0.059* | |
C8 | 0.1804 (2) | 0.3160 (3) | 0.47075 (10) | 0.0384 (5) | |
C9 | 0.3255 (2) | 0.2694 (3) | 0.49382 (10) | 0.0388 (5) | |
C10 | 0.4483 (2) | 0.3085 (3) | 0.45839 (11) | 0.0403 (5) | |
H10 | 0.4391 | 0.3666 | 0.416 | 0.048* | |
C11 | 0.1511 (2) | 0.4227 (3) | 0.40816 (10) | 0.0396 (5) | |
H11A | 0.0465 | 0.446 | 0.4035 | 0.048* | |
H11B | 0.2009 | 0.5322 | 0.4151 | 0.048* | |
C12 | 0.1882 (2) | 0.4748 (3) | 0.28977 (11) | 0.0533 (6) | |
H12A | 0.1148 | 0.5608 | 0.2994 | 0.064* | |
H12B | 0.1587 | 0.419 | 0.2461 | 0.064* | |
C13 | 0.3309 (3) | 0.5588 (3) | 0.28329 (13) | 0.0631 (7) | |
H13A | 0.3242 | 0.6448 | 0.2467 | 0.076* | |
H13B | 0.3614 | 0.6154 | 0.3266 | 0.076* | |
C14 | 0.1223 (2) | 0.1916 (3) | 0.32783 (12) | 0.0512 (6) | |
H14A | 0.0226 | 0.2163 | 0.3107 | 0.061* | |
H14B | 0.1171 | 0.1226 | 0.3697 | 0.061* | |
C15 | 0.1966 (3) | 0.0928 (4) | 0.27525 (14) | 0.0663 (7) | |
H15A | 0.159 | −0.024 | 0.2744 | 0.08* | |
H15B | 0.1741 | 0.1433 | 0.2298 | 0.08* | |
N1 | 0.19564 (16) | 0.3493 (2) | 0.34476 (8) | 0.0376 (4) | |
O1 | 0.2286 (2) | 0.1440 (2) | 0.59428 (8) | 0.0618 (5) | |
O2 | −0.0017 (2) | 0.1540 (3) | 0.61251 (10) | 0.0857 (7) | |
O3 | 0.43185 (19) | 0.4325 (3) | 0.26743 (10) | 0.0751 (6) | |
H3A | 0.506 | 0.4782 | 0.2532 | 0.113* | |
O4 | 0.34542 (19) | 0.0885 (3) | 0.28742 (12) | 0.0841 (7) | |
H4A | 0.3776 | 0.1875 | 0.2893 | 0.126* | |
O5 | 0.70828 (16) | 0.2960 (2) | 0.45453 (9) | 0.0662 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0469 (14) | 0.131 (3) | 0.0604 (17) | −0.0038 (16) | 0.0068 (12) | −0.0128 (18) |
C2 | 0.0422 (12) | 0.0498 (13) | 0.0503 (13) | 0.0045 (10) | −0.0086 (10) | −0.0120 (11) |
C3 | 0.0588 (15) | 0.0521 (14) | 0.0592 (15) | 0.0117 (12) | −0.0228 (12) | −0.0096 (12) |
C4 | 0.0791 (18) | 0.0484 (14) | 0.0449 (13) | 0.0037 (12) | −0.0171 (12) | 0.0041 (11) |
C5 | 0.0628 (14) | 0.0406 (12) | 0.0396 (12) | −0.0014 (10) | 0.0002 (10) | 0.0000 (10) |
C6 | 0.0666 (16) | 0.0563 (15) | 0.0544 (15) | −0.0097 (13) | 0.0150 (13) | 0.0012 (12) |
C7 | 0.0491 (12) | 0.0529 (13) | 0.0453 (13) | −0.0036 (10) | 0.0101 (10) | −0.0010 (11) |
C8 | 0.0420 (11) | 0.0376 (11) | 0.0357 (11) | 0.0003 (9) | 0.0038 (8) | −0.0056 (9) |
C9 | 0.0465 (12) | 0.0340 (11) | 0.0354 (11) | 0.0012 (9) | −0.0014 (9) | −0.0043 (9) |
C10 | 0.0416 (11) | 0.0404 (11) | 0.0383 (11) | 0.0023 (9) | −0.0026 (9) | −0.0053 (9) |
C11 | 0.0349 (10) | 0.0443 (12) | 0.0400 (11) | 0.0048 (9) | 0.0040 (8) | −0.0015 (9) |
C12 | 0.0523 (13) | 0.0653 (16) | 0.0421 (12) | 0.0122 (11) | 0.0014 (10) | 0.0114 (11) |
C13 | 0.0777 (17) | 0.0579 (16) | 0.0551 (15) | −0.0041 (14) | 0.0164 (13) | 0.0162 (12) |
C14 | 0.0431 (12) | 0.0556 (14) | 0.0556 (14) | −0.0050 (10) | 0.0102 (10) | −0.0145 (11) |
C15 | 0.0559 (15) | 0.0741 (18) | 0.0695 (17) | 0.0041 (13) | 0.0103 (12) | −0.0231 (15) |
N1 | 0.0332 (8) | 0.0461 (10) | 0.0336 (9) | 0.0010 (7) | 0.0036 (7) | 0.0016 (7) |
O1 | 0.0804 (12) | 0.0614 (11) | 0.0441 (9) | −0.0060 (9) | 0.0082 (8) | 0.0127 (8) |
O2 | 0.0929 (14) | 0.0930 (16) | 0.0747 (13) | −0.0181 (12) | 0.0384 (11) | 0.0192 (12) |
O3 | 0.0592 (11) | 0.0812 (14) | 0.0872 (14) | −0.0104 (10) | 0.0272 (10) | 0.0099 (11) |
O4 | 0.0599 (11) | 0.0792 (14) | 0.1143 (17) | 0.0198 (10) | 0.0140 (11) | −0.0294 (13) |
O5 | 0.0376 (9) | 0.0929 (14) | 0.0672 (12) | 0.0067 (9) | −0.0067 (8) | −0.0087 (10) |
C1—O5 | 1.417 (3) | C10—H10 | 0.95 |
C1—H1A | 0.98 | C11—N1 | 1.453 (2) |
C1—H1B | 0.98 | C11—H11A | 0.99 |
C1—H1C | 0.98 | C11—H11B | 0.99 |
C2—O5 | 1.370 (3) | C12—N1 | 1.467 (3) |
C2—C10 | 1.374 (3) | C12—C13 | 1.497 (3) |
C2—C3 | 1.394 (3) | C12—H12A | 0.99 |
C3—C4 | 1.358 (4) | C12—H12B | 0.99 |
C3—H3 | 0.95 | C13—O3 | 1.419 (3) |
C4—C5 | 1.386 (3) | C13—H13A | 0.99 |
C4—H4 | 0.95 | C13—H13B | 0.99 |
C5—O1 | 1.382 (3) | C14—N1 | 1.455 (3) |
C5—C9 | 1.388 (3) | C14—C15 | 1.493 (3) |
C6—O2 | 1.204 (3) | C14—H14A | 0.99 |
C6—O1 | 1.363 (3) | C14—H14B | 0.99 |
C6—C7 | 1.443 (3) | C15—O4 | 1.393 (3) |
C7—C8 | 1.343 (3) | C15—H15A | 0.99 |
C7—H7 | 0.95 | C15—H15B | 0.99 |
C8—C9 | 1.450 (3) | O3—H3A | 0.84 |
C8—C11 | 1.505 (3) | O4—H4A | 0.84 |
C9—C10 | 1.402 (3) | ||
O5—C1—H1A | 109.5 | C8—C11—H11A | 108.5 |
O5—C1—H1B | 109.5 | N1—C11—H11B | 108.5 |
H1A—C1—H1B | 109.5 | C8—C11—H11B | 108.5 |
O5—C1—H1C | 109.5 | H11A—C11—H11B | 107.5 |
H1A—C1—H1C | 109.5 | N1—C12—C13 | 110.84 (18) |
H1B—C1—H1C | 109.5 | N1—C12—H12A | 109.5 |
O5—C2—C10 | 124.2 (2) | C13—C12—H12A | 109.5 |
O5—C2—C3 | 115.36 (19) | N1—C12—H12B | 109.5 |
C10—C2—C3 | 120.4 (2) | C13—C12—H12B | 109.5 |
C4—C3—C2 | 120.5 (2) | H12A—C12—H12B | 108.1 |
C4—C3—H3 | 119.7 | O3—C13—C12 | 107.7 (2) |
C2—C3—H3 | 119.7 | O3—C13—H13A | 110.2 |
C3—C4—C5 | 119.3 (2) | C12—C13—H13A | 110.2 |
C3—C4—H4 | 120.3 | O3—C13—H13B | 110.2 |
C5—C4—H4 | 120.3 | C12—C13—H13B | 110.2 |
O1—C5—C4 | 116.4 (2) | H13A—C13—H13B | 108.5 |
O1—C5—C9 | 122.0 (2) | N1—C14—C15 | 112.37 (19) |
C4—C5—C9 | 121.6 (2) | N1—C14—H14A | 109.1 |
O2—C6—O1 | 117.1 (2) | C15—C14—H14A | 109.1 |
O2—C6—C7 | 126.1 (3) | N1—C14—H14B | 109.1 |
O1—C6—C7 | 116.7 (2) | C15—C14—H14B | 109.1 |
C8—C7—C6 | 123.4 (2) | H14A—C14—H14B | 107.9 |
C8—C7—H7 | 118.3 | O4—C15—C14 | 112.7 (2) |
C6—C7—H7 | 118.3 | O4—C15—H15A | 109.1 |
C7—C8—C9 | 118.5 (2) | C14—C15—H15A | 109.1 |
C7—C8—C11 | 119.67 (19) | O4—C15—H15B | 109.1 |
C9—C8—C11 | 121.66 (17) | C14—C15—H15B | 109.1 |
C5—C9—C10 | 118.31 (19) | H15A—C15—H15B | 107.8 |
C5—C9—C8 | 117.74 (19) | C11—N1—C14 | 112.88 (16) |
C10—C9—C8 | 123.94 (19) | C11—N1—C12 | 110.68 (17) |
C2—C10—C9 | 119.9 (2) | C14—N1—C12 | 114.28 (18) |
C2—C10—H10 | 120.1 | C6—O1—C5 | 121.58 (18) |
C9—C10—H10 | 120.1 | C13—O3—H3A | 109.5 |
N1—C11—C8 | 115.19 (17) | C15—O4—H4A | 109.5 |
N1—C11—H11A | 108.5 | C2—O5—C1 | 117.51 (17) |
O5—C2—C3—C4 | 179.4 (2) | C5—C9—C10—C2 | 0.0 (3) |
C10—C2—C3—C4 | −0.6 (4) | C8—C9—C10—C2 | 178.38 (19) |
C2—C3—C4—C5 | 0.7 (4) | C7—C8—C11—N1 | −122.5 (2) |
C3—C4—C5—O1 | −179.1 (2) | C9—C8—C11—N1 | 62.1 (3) |
C3—C4—C5—C9 | −0.5 (4) | N1—C12—C13—O3 | 60.9 (3) |
O2—C6—C7—C8 | 174.7 (3) | N1—C14—C15—O4 | 43.9 (3) |
O1—C6—C7—C8 | −3.0 (4) | C8—C11—N1—C14 | 61.4 (2) |
C6—C7—C8—C9 | 2.9 (3) | C8—C11—N1—C12 | −169.10 (17) |
C6—C7—C8—C11 | −172.6 (2) | C15—C14—N1—C11 | −163.4 (2) |
O1—C5—C9—C10 | 178.66 (19) | C15—C14—N1—C12 | 68.9 (3) |
C4—C5—C9—C10 | 0.1 (3) | C13—C12—N1—C11 | 94.1 (2) |
O1—C5—C9—C8 | 0.1 (3) | C13—C12—N1—C14 | −137.1 (2) |
C4—C5—C9—C8 | −178.4 (2) | O2—C6—O1—C5 | −176.4 (2) |
C7—C8—C9—C5 | −1.4 (3) | C7—C6—O1—C5 | 1.6 (3) |
C11—C8—C9—C5 | 174.02 (19) | C4—C5—O1—C6 | 178.3 (2) |
C7—C8—C9—C10 | −179.8 (2) | C9—C5—O1—C6 | −0.3 (3) |
C11—C8—C9—C10 | −4.4 (3) | C10—C2—O5—C1 | −7.8 (3) |
O5—C2—C10—C9 | −179.68 (19) | C3—C2—O5—C1 | 172.2 (2) |
C3—C2—C10—C9 | 0.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O4i | 0.84 | 1.85 | 2.685 (3) | 174 |
O4—H4A···O3 | 0.84 | 2.06 | 2.875 (3) | 164 |
C7—H7···O5ii | 0.95 | 2.56 | 3.494 (2) | 167 |
C14—H14B···O2iii | 0.99 | 2.48 | 3.206 (3) | 130 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x−1, y, z; (iii) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C15H19NO5 |
Mr | 293.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 9.3038 (5), 7.9290 (5), 19.6216 (12) |
β (°) | 92.944 (5) |
V (Å3) | 1445.56 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.2 × 0.18 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.98, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14012, 2694, 1994 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.149, 1.02 |
No. of reflections | 2694 |
No. of parameters | 194 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.26 |
Computer programs: SMART (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O4i | 0.84 | 1.85 | 2.685 (3) | 174 |
O4—H4A···O3 | 0.84 | 2.06 | 2.875 (3) | 164 |
C7—H7···O5ii | 0.95 | 2.56 | 3.494 (2) | 167 |
C14—H14B···O2iii | 0.99 | 2.48 | 3.206 (3) | 130 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x−1, y, z; (iii) −x, −y, −z+1. |
Acknowledgements
RJN is grateful to DST, Delhi, India, for providing an INSPIRE fellowship.
References
Basanagouda, M. & Kulkarni, M. V. (2011). Synth. Commun. 41, 2569–2582. Web of Science CrossRef CAS Google Scholar
Basanagouda, M., Kulkarni, M. V., Sharma, D. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 541–544. Web of Science CSD CrossRef CAS Google Scholar
Baures, W., Rush, J. R., Schroeder, S. D. & Beatty, A. M. (2002). Cryst. Growth. Des. 2, 107–110. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2008). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (2005). Chem. Commun. pp. 2995–3001. Web of Science CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Jadhav, V. B., Nayak, S. K., Guru Row, T. N. & Kulkarni, M. V. (2010). Eur. J. Med. Chem. 45, 3575–3580. Web of Science CSD CrossRef CAS PubMed Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Khan, G. S., Clark, G. R. & Barker, D. (2008). Acta Cryst. E64, o1253. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kokila, M. K., Jain, A., Puttaraja,, Kulkarni, M. V. & Shivaprakash, N. C. (1995). Acta Cryst. C51, 2585–2586. Google Scholar
Meng, J., Fu, D., Yao, X. K., Wang, R. & Matsuura, T. (1989). Tetrahedron, 45, 6979–6986. CSD CrossRef CAS Web of Science Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coumarins have been shown to be important molecular models, revealing different aspects of solid state organic chemistry. Derivatives of coumarin have been investigated for their solid state dimerisation (Meng et al., 1989), self association in the solid state (Baures et al., 2002), and host of other interesting features which have come to light by their crystal structure studies (Jadhav et al., 2010). Our earlier studies have shown that 4-aryloxymethyl coumarins exhibit a Head-tail packing (Gupta et al., 2011), whereas 4-arylamino methyl coumarins exhibit a layer like arrangement (Kokila et al., 1995) in solid state.
Diethanol amines are the key intermediate in the synthesis of nitrogen mustards and there are few reports on the structures possessing β-hydroxy ethyl side chain (Khan et al., 2008). In the light of above observations it was thought of considerable interest to study the title compound (Fig. 1) which was intermediate in a series of Nitrogen mustards synthesised for their anti-cancer activities.
The X-ray crystal structures of the title compound reveal that molecule is non-planar. The diethanol amine side chain is oriented towards the coumarin ring with the nitrogen being out of the plane of the molecule shown by the dihedral angles of C7-C8-C11-N1 -122.53 (2)° and C9-C8-C11-N1 62.23 (2)° . The shortened C2-O5 bond distance of 1.371 (3)Å compared to the C1-O5 bond distance of 1.417 (3) Å indicates the delocalization of lone pair of electrons on the O5 oxygen atom across the coumarin ring. The crystal structure of the compound is stabilized by of both intra and intermolecular O-H···O hydrogen bonds and inter molecular C-H···O interactions. The intramolecular O-H···O hydrogen bond connects diethanol amine side chains. In the solid state, molecules are linked via O-H···O hydrogen bonds. Further molecules are connected by weak C-H···O interactions and π–π stacking interactions [centroid-centroid distance = 3.707 (4)Å symmetry -x,-y,1-z]. (Table1)