metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Ethyl­enedi­amine-κ2N,N′)bis­­(perchlorato-κO)bis­­(pyridine-κN)copper(II)

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri-Constantine, 25000, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 13 June 2012; accepted 30 June 2012; online 7 July 2012)

In the title compound, [Cu(ClO4)2(C2H8N2)(C5H5N)2], the CuII cation is located on a twofold rotation axis and is coordinated by four N and two O atoms in a tetragonally distorted octahedral geometry. The crystal packing can be described as ClO4 tetra­hedra and CuN4O2 octa­hedra alternating in a zigzag fashion along the c axis. The structure is stabilized by intermolecular N—H⋯O and C—H⋯O hydrogen bonds, as well as ππ interactions [centroid–centroid distance = 3.7179 (15) Å].

Related literature

For synthesis and applications of similar compounds, see: De Stefano et al. (1999[De Stefano, C., Foti, C. & Sammartano, S. (1999). J. Chem. Eng. Data, 44, 744-749.]); Sing et al. (2004[Sing, G., Premfelix, S. & Padney, D. K. (2004). Thermochim. Acta, 411, 61-71.]); Elliot & Herchenhart (1982[Elliot, C. M. & Herchenhart, E. J. (1982). J. Am. Chem. Soc. 104, 7519-7526.]); Moncol et al. (2008[Moncol, J., Segľa, P., Mikloš, D., Fischer, A. & Marian, K. (2008). Acta Cryst. E64, m509-m510.]); Costes et al. (1998[Costes, J. P., Dahan, F., Fernandez, M. B. F., Garcia, M. I. F., Garcia Deibe, A. M. & Sanmartin, J. (1998). Inorg. Chim. Acta, 274, 73-81.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(ClO4)2(C2H8N2)(C5H5N)2]

  • Mr = 480.74

  • Monoclinic, C 2/c

  • a = 7.697 (1) Å

  • b = 17.238 (2) Å

  • c = 14.206 (1) Å

  • β = 100.551 (1)°

  • V = 1853.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 295 K

  • 0.17 × 0.15 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4657 measured reflections

  • 2400 independent reflections

  • 2117 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.08

  • 2400 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Selected bond lengths (Å)

N1—Cu1 2.017 (2)
N2—Cu1 2.0206 (19)
O11—Cu1 2.613 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O12 0.90 2.44 3.213 (3) 144
N1—H1C⋯O12i 0.90 2.50 3.247 (3) 140
N1—H1D⋯O14ii 0.90 2.23 3.111 (4) 166
C2—H2⋯O11 0.93 2.53 3.076 (4) 118
C5—H5⋯O13iii 0.93 2.57 3.208 (4) 126
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Aliphatic and aromatic amines such as ethylenediamine and pyridine are commonly known as the good chelating properties towards transition metals (De Stefano et al., 1999). In this case, the title compound was obtained when mixing ethylenediamine, 2-hydroxy-6-[3-(1H-pyrrol-1-yl)propoxy]acetophenone and perchlorate of copper in a methanolic solution. This work have been focused the synthesis of half-units for the preparation of non-symmetrical Schiff base ligands (Costes et al., 1998) but, the resulting compound was not the expected material. Thus, it seems that the preferential formation of unexpected copper complex is probably due to the no heating of the mixture at the first moments after mixing the different reagents or to the higher affinity the copper ion towards the amines previously indicated (Moncol et al., 2008). This is in accordance with high donor effect of these both amines as reported in the literature for the synthesis of coordination compounds using aliphatic (Sing et al., 2004)) and aromatic amines such as bipyridinc ligands (Elliot & Herchenhart, 1982). We report here the synthesis of title compound and its crystal structure. The molecular geometry of structure, (I), and the atomic numbering used, is illustrated in Fig. 1. The CuII ion is coordinated in an irregular octahedral geometry by four N atoms via two pyridine and one ethylenediamine moiety and two O atoms via two perchlorate. The bond lengths for coordination CuII sphere is ranging from 2.017 (2) to 2.0206 (19) Å for Cu—N distances and is 2.613 (3) Å for Cu—O distance (Table 1). The crystal packing in the title structure can be described by alterning ClO4 tetrahedra and CuN4O2 octahedra of complex in zigzag along the c axis (Fig. 2). It's stabilized by intermolecular N—H···O hydrogen bonding (Table 2) and ππ interactions.

Related literature top

For synthesis and applications of similar compounds, see: De Stefano et al. (1999); Sing et al. (2004); Elliot & Herchenhart (1982); Moncol et al. (2008); Costes et al. (1998).

Experimental top

259 mg (1 mmol) of 2-hydroxy-6-[3-(1H-pyrrol-1-yl)propoxy]acetophenone, 373 mg (1 mmol) of copper perchlorate hexahydrated and an excess of pyridine were dissolved in 12 ml of methanol. This solution was placed in a three necked flask surmounted by a condenser before to add it dropwisely a methanolic solution (8 ml) containing 60 mg (1 mmol) of ethylenediamine. This mixture was kept under nitrogen atmosphere and stirring for about 2 h to observe an abundant mallow precipitate. This solid was recovered by filtration, copiously washed with methanol and the suitable crystals were obtained by slow evaporation from the filtrate.

Refinement top

The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H = 0.97 Å (methylene) or 0.93 Å (aromatic) and N—H = 0.90 Å with Uiso(H) = 1.2Ueq(C or N).

Structure description top

Aliphatic and aromatic amines such as ethylenediamine and pyridine are commonly known as the good chelating properties towards transition metals (De Stefano et al., 1999). In this case, the title compound was obtained when mixing ethylenediamine, 2-hydroxy-6-[3-(1H-pyrrol-1-yl)propoxy]acetophenone and perchlorate of copper in a methanolic solution. This work have been focused the synthesis of half-units for the preparation of non-symmetrical Schiff base ligands (Costes et al., 1998) but, the resulting compound was not the expected material. Thus, it seems that the preferential formation of unexpected copper complex is probably due to the no heating of the mixture at the first moments after mixing the different reagents or to the higher affinity the copper ion towards the amines previously indicated (Moncol et al., 2008). This is in accordance with high donor effect of these both amines as reported in the literature for the synthesis of coordination compounds using aliphatic (Sing et al., 2004)) and aromatic amines such as bipyridinc ligands (Elliot & Herchenhart, 1982). We report here the synthesis of title compound and its crystal structure. The molecular geometry of structure, (I), and the atomic numbering used, is illustrated in Fig. 1. The CuII ion is coordinated in an irregular octahedral geometry by four N atoms via two pyridine and one ethylenediamine moiety and two O atoms via two perchlorate. The bond lengths for coordination CuII sphere is ranging from 2.017 (2) to 2.0206 (19) Å for Cu—N distances and is 2.613 (3) Å for Cu—O distance (Table 1). The crystal packing in the title structure can be described by alterning ClO4 tetrahedra and CuN4O2 octahedra of complex in zigzag along the c axis (Fig. 2). It's stabilized by intermolecular N—H···O hydrogen bonding (Table 2) and ππ interactions.

For synthesis and applications of similar compounds, see: De Stefano et al. (1999); Sing et al. (2004); Elliot & Herchenhart (1982); Moncol et al. (2008); Costes et al. (1998).

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Drawing the molecular geometry of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Alternating polyhedra of (I) viewed via a axis showing ClO4 tetrahedra in green and CuN4O2 octahedra in yellow. Hydrogen bond [N—H···O] are in (red) dashed line.
(Ethylenediamine-κ2N,N')bis(perchlorato- κO)bis(pyridine-κN)copper(II) top
Crystal data top
[Cu(ClO4)2(C2H8N2)(C5H5N)2]F(000) = 980
Mr = 480.74Dx = 1.723 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.697 (1) ÅCell parameters from 2471 reflections
b = 17.238 (2) Åθ = 1.0–28.7°
c = 14.206 (1) ŵ = 1.52 mm1
β = 100.551 (1)°T = 295 K
V = 1853.0 (3) Å3Prism, colourless
Z = 40.17 × 0.15 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
2117 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590Rint = 0.026
Graphite monochromatorθmax = 28.7°, θmin = 2.9°
Detector resolution: 9 pixels mm-1h = 1010
CCD rotation images, thick slices scansk = 2123
4657 measured reflectionsl = 1919
2400 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0907P)2 + 1.252P]
where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Cu(ClO4)2(C2H8N2)(C5H5N)2]V = 1853.0 (3) Å3
Mr = 480.74Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.697 (1) ŵ = 1.52 mm1
b = 17.238 (2) ÅT = 295 K
c = 14.206 (1) Å0.17 × 0.15 × 0.13 mm
β = 100.551 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2117 reflections with I > 2σ(I)
4657 measured reflectionsRint = 0.026
2400 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.08Δρmax = 0.87 e Å3
2400 reflectionsΔρmin = 0.75 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0960 (4)1.02744 (14)0.77477 (19)0.0420 (5)
H1A1.17271.03160.72790.050*
H1B1.11911.07110.81830.050*
C20.6763 (3)0.78272 (14)0.66706 (18)0.0373 (5)
H20.62320.82320.69460.045*
C30.5711 (3)0.72425 (15)0.6214 (2)0.0434 (5)
H30.44920.72560.61760.052*
C40.6494 (4)0.66365 (15)0.5815 (2)0.0443 (6)
H40.58150.62300.55140.053*
C50.8304 (4)0.66431 (15)0.5869 (2)0.0453 (6)
H50.88620.62420.56030.054*
C60.9274 (3)0.72536 (15)0.63244 (18)0.0413 (5)
H61.04890.72610.63480.050*
N11.1296 (3)0.95373 (12)0.82833 (15)0.0375 (4)
H1C1.09230.95760.88460.045*
H1D1.24630.94370.84050.045*
N20.8526 (3)0.78360 (11)0.67335 (14)0.0331 (4)
O110.7648 (4)0.86617 (14)0.8613 (2)0.0731 (8)
O120.8304 (3)0.97537 (13)0.95701 (16)0.0552 (5)
O130.6922 (4)0.86854 (17)1.0120 (2)0.0783 (9)
O140.5379 (3)0.9459 (2)0.8925 (3)0.0996 (11)
Cl10.70478 (7)0.91475 (3)0.93029 (4)0.0372 (2)
Cu11.00000.86690 (2)0.75000.03224 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0521 (15)0.0313 (11)0.0429 (12)0.0063 (10)0.0091 (11)0.0030 (9)
C20.0338 (11)0.0349 (11)0.0425 (12)0.0019 (8)0.0053 (9)0.0036 (9)
C30.0361 (12)0.0412 (13)0.0515 (14)0.0038 (9)0.0043 (10)0.0029 (10)
C40.0472 (14)0.0382 (13)0.0462 (13)0.0093 (10)0.0048 (11)0.0065 (10)
C50.0515 (15)0.0365 (12)0.0500 (14)0.0010 (10)0.0154 (11)0.0102 (10)
C60.0352 (12)0.0423 (13)0.0469 (13)0.0015 (9)0.0089 (10)0.0059 (10)
N10.0377 (10)0.0357 (10)0.0373 (9)0.0011 (8)0.0022 (8)0.0035 (8)
N20.0334 (9)0.0302 (9)0.0347 (9)0.0003 (7)0.0031 (7)0.0025 (7)
O110.0894 (19)0.0654 (16)0.0759 (16)0.0184 (12)0.0450 (15)0.0287 (12)
O120.0490 (11)0.0538 (12)0.0612 (12)0.0194 (9)0.0058 (9)0.0112 (10)
O130.085 (2)0.091 (2)0.0637 (16)0.0214 (14)0.0274 (14)0.0171 (13)
O140.0421 (13)0.085 (2)0.154 (3)0.0104 (13)0.0286 (16)0.007 (2)
Cl10.0288 (3)0.0418 (3)0.0406 (3)0.00471 (19)0.0051 (2)0.0045 (2)
Cu10.0302 (3)0.0291 (3)0.0357 (3)0.0000.00142 (16)0.000
Geometric parameters (Å, º) top
C1—N11.479 (3)C6—N21.342 (3)
C1—C1i1.517 (5)C6—H60.9300
C1—H1A0.9700N1—H1C0.9000
C1—H1B0.9700N1—H1D0.9000
C2—N21.343 (3)N1—Cu12.017 (2)
C2—C31.379 (3)N2—Cu12.0206 (19)
C2—H20.9300O11—Cu12.613 (3)
C3—C41.379 (4)O11—Cl11.428 (2)
C3—H30.9300O12—Cl11.427 (2)
C4—C51.381 (4)O13—Cl11.425 (3)
C4—H40.9300O14—Cl11.406 (2)
C5—C61.381 (4)Cu1—N1i2.017 (2)
C5—H50.9300Cu1—N2i2.0206 (19)
N1—C1—C1i107.61 (17)C1—N1—H1D109.8
N1—C1—H1A110.2Cu1—N1—H1D109.8
C1i—C1—H1A110.2H1C—N1—H1D108.3
N1—C1—H1B110.2C6—N2—C2118.1 (2)
C1i—C1—H1B110.2C6—N2—Cu1121.47 (17)
H1A—C1—H1B108.5C2—N2—Cu1120.30 (15)
N2—C2—C3122.6 (2)Cl1—O11—Cu1139.39 (15)
N2—C2—H2118.7O14—Cl1—O13109.3 (2)
C3—C2—H2118.7O14—Cl1—O12110.42 (17)
C2—C3—C4118.9 (2)O13—Cl1—O12109.67 (17)
C2—C3—H3120.5O14—Cl1—O11110.5 (2)
C4—C3—H3120.5O13—Cl1—O11108.03 (18)
C3—C4—C5118.9 (2)O12—Cl1—O11108.87 (15)
C3—C4—H4120.5N1—Cu1—N1i84.17 (12)
C5—C4—H4120.5N1—Cu1—N2i93.31 (9)
C6—C5—C4119.1 (2)N1i—Cu1—N2i175.59 (8)
C6—C5—H5120.5N1—Cu1—N2175.59 (8)
C4—C5—H5120.5N1i—Cu1—N293.31 (9)
N2—C6—C5122.4 (2)N2i—Cu1—N289.42 (11)
N2—C6—H6118.8N1—Cu1—O1189.85 (8)
C5—C6—H6118.8N1i—Cu1—O1190.56 (10)
C1—N1—Cu1109.36 (15)N2i—Cu1—O1193.06 (9)
C1—N1—H1C109.8N2—Cu1—O1186.55 (8)
Cu1—N1—H1C109.8
N2—C2—C3—C40.8 (4)C1—N1—Cu1—N269.6 (10)
C2—C3—C4—C51.3 (4)C1—N1—Cu1—O11104.80 (17)
C3—C4—C5—C60.3 (4)C6—N2—Cu1—N1179 (100)
C4—C5—C6—N21.3 (4)C2—N2—Cu1—N13.5 (11)
C1i—C1—N1—Cu139.1 (3)C6—N2—Cu1—N1i125.50 (19)
C5—C6—N2—C21.8 (4)C2—N2—Cu1—N1i58.60 (19)
C5—C6—N2—Cu1174.2 (2)C6—N2—Cu1—N2i51.04 (17)
C3—C2—N2—C60.7 (4)C2—N2—Cu1—N2i124.9 (2)
C3—C2—N2—Cu1175.34 (19)C6—N2—Cu1—O11144.1 (2)
Cu1—O11—Cl1—O14107.9 (3)C2—N2—Cu1—O1131.77 (19)
Cu1—O11—Cl1—O13132.5 (3)Cl1—O11—Cu1—N117.1 (3)
Cu1—O11—Cl1—O1213.5 (4)Cl1—O11—Cu1—N1i67.1 (3)
C1—N1—Cu1—N1i14.22 (12)Cl1—O11—Cu1—N2i110.4 (3)
C1—N1—Cu1—N2i162.14 (16)Cl1—O11—Cu1—N2160.4 (3)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O120.902.443.213 (3)144
N1—H1C···O12ii0.902.503.247 (3)140
N1—H1D···O14iii0.902.233.111 (4)166
C2—H2···O110.932.533.076 (4)118
C5—H5···O13iv0.932.573.208 (4)126
Symmetry codes: (ii) x+2, y+2, z+2; (iii) x+1, y, z; (iv) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(ClO4)2(C2H8N2)(C5H5N)2]
Mr480.74
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)7.697 (1), 17.238 (2), 14.206 (1)
β (°) 100.551 (1)
V3)1853.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.17 × 0.15 × 0.13
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4657, 2400, 2117
Rint0.026
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.08
No. of reflections2400
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.75

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—Cu12.017 (2)O12—Cl11.427 (2)
N2—Cu12.0206 (19)O13—Cl11.425 (3)
O11—Cu12.613 (3)O14—Cl11.406 (2)
O11—Cl11.428 (2)
N1—Cu1—N2175.59 (8)N2—Cu1—O1186.55 (8)
N1—Cu1—O1189.85 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O120.902.443.213 (3)144.00
N1—H1C···O12i0.902.503.247 (3)140.00
N1—H1D···O14ii0.902.233.111 (4)166.00
C2—H2···O110.932.533.076 (4)118.00
C5—H5···O13iii0.932.573.208 (4)126.00
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y, z; (iii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support, and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Université Rennes 1, France) for helpful discussions.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCostes, J. P., Dahan, F., Fernandez, M. B. F., Garcia, M. I. F., Garcia Deibe, A. M. & Sanmartin, J. (1998). Inorg. Chim. Acta, 274, 73–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Stefano, C., Foti, C. & Sammartano, S. (1999). J. Chem. Eng. Data, 44, 744–749.  Web of Science CrossRef CAS Google Scholar
First citationElliot, C. M. & Herchenhart, E. J. (1982). J. Am. Chem. Soc. 104, 7519–7526.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMoncol, J., Segľa, P., Mikloš, D., Fischer, A. & Marian, K. (2008). Acta Cryst. E64, m509–m510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSing, G., Premfelix, S. & Padney, D. K. (2004). Thermochim. Acta, 411, 61–71.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds