metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[2,6-bis­­(4H-1,2,4-triazol-4-yl)pyridine-κN2]bis­­(seleno­cyanato-κN)cobalt(II)

aTianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: liuyuanyuan1973@yahoo.com.cn

(Received 12 July 2012; accepted 17 July 2012; online 21 July 2012)

In the title compound, [Co(NCSe)2(C9H7N7)2(H2O)2], the Co2+ cation is coordinated by two seleno­cyanate anions, two 2,6-bis­(4H-1,2,4-triazol-4-yl)pyridine ligands and two water mol­ecules within a slightly distorted N4O2 octa­hedron. The asymmetric unit consists of one Co2+ cation, which is located on a center of inversion, as well as one seleno­cyanate anion, one 2,6-bis­(4H-1,2,4-triazol-4-yl)pyridine ligand and one water mol­ecule in general positions. Inter­molecular O—H⋯N hydrogen bonds join the complex mol­ecules into layers parallel to the bc plane. The layers are linked by C—H⋯N and C—H⋯Se hydrogen bonds into a three-dimensional supra­molecular architecture.

Related literature

For general background to this work, see: Liu et al. (2007[Liu, Y. Y., Huang, Y. Q., Shi, W., Cheng, P., Liao, D. Z.& Yan, S. P. (2007). Cryst. Growth Des. 7, 1483-1489.]). Previous research on compounds with Co(II) as cation have found a slow relaxation of the magnetization, see: Boeckmann & Näther (2010,[Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019-11026.] 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.], 2012)[Boeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587-595.]. For related structures, see: Du et al. (2009[Du, Z.-Y., Sun, Y.-H., Liu, Q.-Y., Xie, Y.-R. & &Wen, H.-R. (2009). Inorg. Chem. 48, 7015-7017.]); Yang et al. (2008[Yang, B.-P., Prosvirin, A. V., Guo, Y.-Q. & Mao, J.-G. (2008). Inorg. Chem. 47, 1453-1459.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCSe)2(C9H7N7)2(H2O)2]

  • Mr = 731.35

  • Monoclinic, C 2/c

  • a = 17.5460 (16) Å

  • b = 7.2752 (7) Å

  • c = 20.3148 (19) Å

  • β = 95.691 (2)°

  • V = 2580.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 173 K

  • 0.15 × 0.14 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.619, Tmax = 0.656

  • 6336 measured reflections

  • 2280 independent reflections

  • 2083 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.05

  • 2280 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N8 2.097 (2)
Co1—N3 2.122 (2)
Co1—O1 2.1434 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2 0.84 2.43 3.017 (3) 127
O1—H1B⋯N7ii 0.84 2.00 2.837 (3) 173
C1—H1⋯N6iii 0.95 2.37 3.293 (3) 163
C5—H5⋯N8iv 0.95 2.56 3.356 (3) 142
C7—H7⋯N6iii 0.95 2.46 3.373 (3) 162
C9—H9⋯Se1iv 0.95 2.96 3.877 (3) 164
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Previously we have reported on the a series of novel zinc(II) and cadmium(II) compounds based on 2,6-di-(1,2,4-triazole-4-yl)pyridine (Liu et al., 2007). On the other hand, dependent on the nature of the metal cation, anti- or ferromagnetic ordering is observed and for the compounds with Co(II) as cation preivous resrarch have found a slow relaxation of the magnetization (Boeckmann & Näther 2010, 2011, 2012). To investigate the influence of the co-ligand on the magnetic properties for the compounds with Co(II), we tried to prepare cobalt(II) compounds based on 2,6-di-(1,2,4-triazole-4-yl)pyridine, which resulted in the formation of the title compound in which the neutral ligands are only terminal N-coordinated. This compound was characterized only by single-crystal X-ray diffraction. In the crystal structure the cobalt(II) cations are coordinated by four nitrogen atoms of two terminal N-bonded seleno-cyanato anions and two terminal bonded 2,6-di-(1,2,4-triazole-4-yl)pyridine co-ligands as well as two water molecules into discrete complexes (Fig. 1). The coordination polyhedron of the Co cations can be described as a slightly distorted octahedron with the Co cation located on a centre of inversion. The discrete cobalt complexes are bridged by intermolecular O—H···N, C—H···N and C—H···Se hydrogen bonds (Yang et al., 2008; Du et al., 2009), wich assemble (I) into a three-dimensional supra-molecular architecture(Fig. 2 and Table 1).

Perspective drawing with the atomic numbering scheme is illustrated in figure 1. Selected geometric parameters (Å, °) for (I) are listed in table 1. Selected hydrogen-bonding geometric parameters (Å, °) for (I) are listed in table 2. The two-dimensional supramolecular framework of (I) is shown in Figure 2.

Related literature top

For general background to this work, see: Liu et al. (2007). Previous research on compounds with Co(II) as cation have found a slow relaxation of the magnetization, see: Boeckmann & Näther (2010, 2011, 2012). For related structures, see: Du et al. (2009); Yang et al. (2008).

Experimental top

The compound was synthesized under hydrothermal conditions. A mixture of L (L = 1,4-Bis(2,6-Bis(4H-1,2,4-triazol-4-yl)pyridine) (0.3 mmol, 0.0636 g), CoSO4.7H2O (0.1 mmol, 0.028 g), KSeCN (0.2 mmol, 0.029 g) and water (10 ml) was placed in a 25 ml acid digestion bomb and heated at 393 K for two days, then equably cooled to room temperature for three days. After washed by 5 ml water for twice, Red block crystals of the compound were obtained..

Refinement top

The water H atoms were located in a Fourier difference map and refined subject to an O—H restraint 0.88 (1) Å and an H···H restraint of 1.42 (2) Å. Other H atoms were allowed to ride on their parent atoms with C—H distances of 0.93 Å (Uiso(H) = 1.2Ueq(C)). All of the non-hydrogen atoms were refined anisotropically..

Structure description top

Previously we have reported on the a series of novel zinc(II) and cadmium(II) compounds based on 2,6-di-(1,2,4-triazole-4-yl)pyridine (Liu et al., 2007). On the other hand, dependent on the nature of the metal cation, anti- or ferromagnetic ordering is observed and for the compounds with Co(II) as cation preivous resrarch have found a slow relaxation of the magnetization (Boeckmann & Näther 2010, 2011, 2012). To investigate the influence of the co-ligand on the magnetic properties for the compounds with Co(II), we tried to prepare cobalt(II) compounds based on 2,6-di-(1,2,4-triazole-4-yl)pyridine, which resulted in the formation of the title compound in which the neutral ligands are only terminal N-coordinated. This compound was characterized only by single-crystal X-ray diffraction. In the crystal structure the cobalt(II) cations are coordinated by four nitrogen atoms of two terminal N-bonded seleno-cyanato anions and two terminal bonded 2,6-di-(1,2,4-triazole-4-yl)pyridine co-ligands as well as two water molecules into discrete complexes (Fig. 1). The coordination polyhedron of the Co cations can be described as a slightly distorted octahedron with the Co cation located on a centre of inversion. The discrete cobalt complexes are bridged by intermolecular O—H···N, C—H···N and C—H···Se hydrogen bonds (Yang et al., 2008; Du et al., 2009), wich assemble (I) into a three-dimensional supra-molecular architecture(Fig. 2 and Table 1).

Perspective drawing with the atomic numbering scheme is illustrated in figure 1. Selected geometric parameters (Å, °) for (I) are listed in table 1. Selected hydrogen-bonding geometric parameters (Å, °) for (I) are listed in table 2. The two-dimensional supramolecular framework of (I) is shown in Figure 2.

For general background to this work, see: Liu et al. (2007). Previous research on compounds with Co(II) as cation have found a slow relaxation of the magnetization, see: Boeckmann & Näther (2010, 2011, 2012). For related structures, see: Du et al. (2009); Yang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 50% probability displacement ellipsoids and the atom-numbering schemes. Atoms of the inversion-related half-complex have symmetry code: (2 - x, y, 1/2 - z).
[Figure 2] Fig. 2. The three-dimensional layer structure of the title complex. Purple Dashed lines indicate O—H···N, C—H···N and C—H···Se hydrogen bonds.
Diaquabis[2,6-bis(4H-1,2,4-triazol-4-yl)pyridine- κN2]bis(selenocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCSe)2(C9H7N7)2(H2O)2]Z = 4
Mr = 731.35F(000) = 1444
Monoclinic, C2/cDx = 1.883 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 17.5460 (16) ŵ = 3.54 mm1
b = 7.2752 (7) ÅT = 173 K
c = 20.3148 (19) ÅBlock, red
β = 95.691 (2)°0.15 × 0.14 × 0.13 mm
V = 2580.4 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2280 independent reflections
Radiation source: fine-focus sealed tube2083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 209
Tmin = 0.619, Tmax = 0.656k = 88
6336 measured reflectionsl = 2324
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0325P)2 + 4.1522P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.59 e Å3
2280 reflectionsΔρmin = 0.58 e Å3
186 parameters
Crystal data top
[Co(NCSe)2(C9H7N7)2(H2O)2]V = 2580.4 (4) Å3
Mr = 731.35Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.5460 (16) ŵ = 3.54 mm1
b = 7.2752 (7) ÅT = 173 K
c = 20.3148 (19) Å0.15 × 0.14 × 0.13 mm
β = 95.691 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2280 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2083 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.656Rint = 0.026
6336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.05Δρmax = 0.59 e Å3
2280 reflectionsΔρmin = 0.58 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.85337 (6)0.25000.01309 (13)
Se11.238743 (15)0.51140 (3)0.329458 (13)0.02053 (11)
O11.08413 (10)1.0675 (2)0.26203 (8)0.0171 (4)
H1A1.11361.05780.23210.026*
H1B1.11161.06230.29830.026*
N11.01232 (11)0.7890 (3)0.04271 (10)0.0134 (4)
N21.08763 (12)0.9006 (3)0.12643 (10)0.0171 (5)
N31.01748 (11)0.8524 (3)0.14815 (10)0.0143 (4)
N40.91149 (11)0.6660 (3)0.02481 (10)0.0125 (4)
N50.80409 (12)0.5469 (3)0.08553 (10)0.0136 (4)
N60.69319 (13)0.4701 (3)0.05234 (12)0.0217 (5)
N70.68675 (13)0.4682 (3)0.12169 (11)0.0182 (5)
N81.09050 (12)0.6689 (3)0.27341 (10)0.0180 (5)
C11.08281 (14)0.8611 (3)0.06371 (12)0.0156 (5)
H11.12280.87970.03610.019*
C20.97369 (14)0.7874 (3)0.09813 (12)0.0139 (5)
H20.92270.74520.09980.017*
C30.98360 (13)0.7256 (3)0.02156 (12)0.0114 (5)
C40.88145 (14)0.6091 (3)0.08405 (12)0.0135 (5)
C50.91929 (15)0.6072 (3)0.14054 (12)0.0160 (5)
H50.89490.56560.18170.019*
C60.99442 (14)0.6689 (3)0.13447 (12)0.0163 (5)
H61.02260.67020.17200.020*
C71.02849 (14)0.7287 (3)0.07389 (12)0.0150 (5)
H71.08010.76980.06850.018*
C80.76306 (16)0.5177 (3)0.03236 (14)0.0199 (6)
H80.78290.53050.01260.024*
C90.75337 (15)0.5140 (3)0.13963 (13)0.0171 (6)
H90.76510.52330.18420.020*
C101.14850 (15)0.6077 (3)0.29588 (12)0.0167 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0104 (2)0.0163 (2)0.0123 (2)0.0000.00015 (19)0.000
Se10.01776 (16)0.02176 (16)0.02165 (17)0.00585 (11)0.00019 (12)0.00176 (10)
O10.0126 (8)0.0238 (9)0.0150 (9)0.0010 (8)0.0014 (7)0.0007 (7)
N10.0111 (10)0.0154 (10)0.0138 (11)0.0007 (8)0.0017 (8)0.0003 (8)
N20.0118 (11)0.0201 (10)0.0192 (12)0.0021 (9)0.0015 (9)0.0001 (9)
N30.0113 (10)0.0159 (10)0.0158 (11)0.0006 (8)0.0020 (9)0.0017 (8)
N40.0110 (10)0.0127 (9)0.0138 (10)0.0004 (8)0.0017 (8)0.0005 (8)
N50.0101 (10)0.0156 (10)0.0150 (11)0.0016 (8)0.0012 (9)0.0010 (8)
N60.0156 (11)0.0293 (12)0.0205 (12)0.0058 (10)0.0033 (10)0.0008 (10)
N70.0151 (11)0.0208 (11)0.0185 (12)0.0006 (9)0.0005 (9)0.0004 (9)
N80.0191 (12)0.0200 (10)0.0151 (11)0.0031 (10)0.0023 (9)0.0022 (9)
C10.0121 (12)0.0177 (12)0.0171 (13)0.0028 (10)0.0017 (10)0.0015 (10)
C20.0122 (11)0.0159 (12)0.0140 (12)0.0007 (10)0.0032 (10)0.0016 (10)
C30.0105 (11)0.0089 (11)0.0145 (12)0.0003 (9)0.0002 (10)0.0012 (9)
C40.0106 (12)0.0108 (11)0.0189 (13)0.0008 (10)0.0007 (10)0.0007 (10)
C50.0182 (13)0.0155 (11)0.0145 (12)0.0021 (10)0.0021 (10)0.0032 (10)
C60.0174 (13)0.0181 (12)0.0140 (12)0.0005 (10)0.0055 (10)0.0013 (10)
C70.0104 (11)0.0157 (12)0.0190 (13)0.0000 (10)0.0021 (10)0.0022 (10)
C80.0171 (14)0.0266 (14)0.0161 (14)0.0047 (11)0.0019 (11)0.0026 (10)
C90.0157 (13)0.0193 (13)0.0160 (14)0.0017 (10)0.0002 (11)0.0005 (10)
C100.0198 (14)0.0157 (12)0.0152 (13)0.0000 (11)0.0052 (11)0.0036 (10)
Geometric parameters (Å, º) top
Co1—N8i2.097 (2)N5—C81.373 (3)
Co1—N82.097 (2)N5—C41.428 (3)
Co1—N3i2.122 (2)N6—C81.300 (4)
Co1—N32.122 (2)N6—N71.402 (3)
Co1—O12.1434 (18)N7—C91.302 (3)
Co1—O1i2.1433 (17)N8—C101.162 (3)
Se1—C101.803 (3)C1—H10.9500
O1—H1A0.8400C2—H20.9500
O1—H1B0.8400C3—C71.385 (3)
N1—C21.371 (3)C4—C51.382 (3)
N1—C11.372 (3)C5—C61.387 (4)
N1—C31.429 (3)C5—H50.9500
N2—C11.301 (3)C6—C71.384 (3)
N2—N31.393 (3)C6—H60.9500
N3—C21.300 (3)C7—H70.9500
N4—C41.331 (3)C8—H80.9500
N4—C31.333 (3)C9—H90.9500
N5—C91.365 (3)
N8i—Co1—N8100.44 (12)C9—N7—N6107.1 (2)
N8i—Co1—N3i92.26 (8)C10—N8—Co1161.5 (2)
N8—Co1—N3i87.48 (8)N2—C1—N1111.0 (2)
N8i—Co1—N387.48 (8)N2—C1—H1124.5
N8—Co1—N392.26 (8)N1—C1—H1124.5
N3i—Co1—N3179.60 (11)N3—C2—N1109.7 (2)
N8i—Co1—O1171.22 (7)N3—C2—H2125.2
N8—Co1—O186.66 (7)N1—C2—H2125.2
N3i—Co1—O193.20 (7)N4—C3—C7125.2 (2)
N3—Co1—O187.09 (7)N4—C3—N1113.4 (2)
N8i—Co1—O1i86.66 (7)C7—C3—N1121.4 (2)
N8—Co1—O1i171.22 (7)N4—C4—C5125.0 (2)
N3i—Co1—O1i87.09 (7)N4—C4—N5114.1 (2)
N3—Co1—O1i93.20 (7)C5—C4—N5120.9 (2)
O1—Co1—O1i86.76 (9)C4—C5—C6117.0 (2)
Co1—O1—H1A108.8C4—C5—H5121.5
Co1—O1—H1B113.3C6—C5—H5121.5
H1A—O1—H1B106.9C7—C6—C5120.2 (2)
C2—N1—C1104.6 (2)C7—C6—H6119.9
C2—N1—C3126.1 (2)C5—C6—H6119.9
C1—N1—C3129.3 (2)C6—C7—C3116.7 (2)
C1—N2—N3106.3 (2)C6—C7—H7121.6
C2—N3—N2108.43 (19)C3—C7—H7121.6
C2—N3—Co1129.19 (17)N6—C8—N5110.3 (2)
N2—N3—Co1121.72 (15)N6—C8—H8124.8
C4—N4—C3115.8 (2)N5—C8—H8124.8
C9—N5—C8104.8 (2)N7—C9—N5110.6 (2)
C9—N5—C4127.9 (2)N7—C9—H9124.7
C8—N5—C4127.2 (2)N5—C9—H9124.7
C8—N6—N7107.2 (2)N8—C10—Se1179.1 (2)
C1—N2—N3—C20.3 (3)C4—N4—C3—C71.3 (3)
C1—N2—N3—Co1171.20 (16)C4—N4—C3—N1178.59 (19)
N8i—Co1—N3—C212.0 (2)C2—N1—C3—N42.0 (3)
N8—Co1—N3—C2112.4 (2)C1—N1—C3—N4179.1 (2)
N3i—Co1—N3—C262.2 (3)C2—N1—C3—C7178.1 (2)
O1—Co1—N3—C2161.1 (2)C1—N1—C3—C70.8 (4)
O1i—Co1—N3—C274.5 (2)C3—N4—C4—C50.3 (3)
N8i—Co1—N3—N2157.53 (17)C3—N4—C4—N5179.81 (19)
N8—Co1—N3—N257.18 (17)C9—N5—C4—N4166.4 (2)
N3i—Co1—N3—N2107.3 (3)C8—N5—C4—N49.4 (3)
O1—Co1—N3—N229.36 (17)C9—N5—C4—C513.7 (4)
O1i—Co1—N3—N2115.95 (17)C8—N5—C4—C5170.5 (2)
C8—N6—N7—C90.3 (3)N4—C4—C5—C60.3 (4)
N8i—Co1—N8—C10156.3 (7)N5—C4—C5—C6179.6 (2)
N3i—Co1—N8—C1064.4 (6)C4—C5—C6—C70.1 (4)
N3—Co1—N8—C10115.9 (6)C5—C6—C7—C30.9 (3)
O1—Co1—N8—C1028.9 (6)N4—C3—C7—C61.6 (4)
O1i—Co1—N8—C1012.6 (10)N1—C3—C7—C6178.2 (2)
N3—N2—C1—N10.2 (3)N7—N6—C8—N50.3 (3)
C2—N1—C1—N20.0 (3)C9—N5—C8—N60.3 (3)
C3—N1—C1—N2179.1 (2)C4—N5—C8—N6176.8 (2)
N2—N3—C2—N10.3 (3)N6—N7—C9—N50.1 (3)
Co1—N3—C2—N1170.33 (15)C8—N5—C9—N70.1 (3)
C1—N1—C2—N30.2 (3)C4—N5—C9—N7176.6 (2)
C3—N1—C2—N3178.9 (2)Co1—N8—C10—Se1132 (15)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.842.433.017 (3)127
O1—H1B···N7ii0.842.002.837 (3)173
C1—H1···N6iii0.952.373.293 (3)163
C5—H5···N8iv0.952.563.356 (3)142
C7—H7···N6iii0.952.463.373 (3)162
C9—H9···Se1iv0.952.963.877 (3)164
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(NCSe)2(C9H7N7)2(H2O)2]
Mr731.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)17.5460 (16), 7.2752 (7), 20.3148 (19)
β (°) 95.691 (2)
V3)2580.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.54
Crystal size (mm)0.15 × 0.14 × 0.13
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.619, 0.656
No. of measured, independent and
observed [I > 2σ(I)] reflections
6336, 2280, 2083
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.05
No. of reflections2280
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.58

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL and DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co1—N8i2.097 (2)Co1—N32.122 (2)
Co1—N82.097 (2)Co1—O12.1434 (18)
Co1—N3i2.122 (2)Co1—O1i2.1433 (17)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.842.433.017 (3)127.1
O1—H1B···N7ii0.842.002.837 (3)172.5
C1—H1···N6iii0.952.373.293 (3)163.1
C5—H5···N8iv0.952.563.356 (3)141.7
C7—H7···N6iii0.952.463.373 (3)161.8
C9—H9···Se1iv0.952.963.877 (3)163.6
Symmetry codes: (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+2, y+1, z.
 

Acknowledgements

This work was supported financially by Tianjin Educational Committee (20090504, 20110301) and Tianjin Normal University (1E0402B).

References

First citationBoeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019–11026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587–595.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, Z.-Y., Sun, Y.-H., Liu, Q.-Y., Xie, Y.-R. & &Wen, H.-R. (2009). Inorg. Chem. 48, 7015–7017.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Y. Y., Huang, Y. Q., Shi, W., Cheng, P., Liao, D. Z.& Yan, S. P. (2007). Cryst. Growth Des. 7, 1483–1489.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, B.-P., Prosvirin, A. V., Guo, Y.-Q. & Mao, J.-G. (2008). Inorg. Chem. 47, 1453–1459.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds