organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2,6-di­phenyl-1-p-tolyl-4-(p-tolyl­amino)-1,2,5,6-tetra­hydro­pyridine-3-carboxyl­ate

aDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa, and bCenter for Nano Science and Technology at PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milan, Italy
*Correspondence e-mail: katharigattav@dut.ac.za, nksusa@gmail.com

(Received 28 June 2012; accepted 3 July 2012; online 7 July 2012)

In the title compound, C33H32N2O2, the tetra­hydro­pyridine ring adopts a boat conformation with the carbonyl group in an s-cis conformation with respect to the C=C bond of the six-membered tetra­hydro­pyridine ring. The mol­ecular conformation is stabilized by intra­molecular N—H⋯O, C—H⋯O and C—H⋯π inter­actions. Formation of centrosymmetric head-to-head dimers is observed through pairwise inter­molecular N—H⋯O hydrogen bonds. Additional weak C—H⋯O and C—H⋯π inter­actions stabilize the three-dimensional mol­ecular assembly.

Related literature

For background to the applications of piperidines, see: Pearson et al. (2005[Pearson, M. S. M., Mathe-Allainmat, M., Fargeas, V. & Lebreton, J. (2005). Eur. J. Org. Chem. 36, 2159-2191.]); Sakai et al. (1986[Sakai, R., Higa, T., Jefford, C. W., Bernardinelli, G. & Manzamine, A. (1986). J. Am. Chem. Soc. 108, 6404-6405.]); Nayak et al. (2011[Nayak, S. K., Venugopala, K. N., Chopra, D. & Guru Row, T. N. (2011). CrystEngComm, 13, 591-605.]); Mishra & Ghosh (2011[Mishra, S. & Ghosh, R. (2011). Tetrahedron Lett. 52, 2857-2861.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C33H32N2O2

  • Mr = 488.61

  • Monoclinic, P 21 /c

  • a = 13.3701 (11) Å

  • b = 6.1744 (5) Å

  • c = 31.797 (2) Å

  • β = 90.381 (2)°

  • V = 2624.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.29 × 0.13 × 0.05 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.996

  • 16243 measured reflections

  • 5175 independent reflections

  • 3513 reflections with I > 2σ(I)

  • Rint = 0.041

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.03

  • 5175 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C29–C34, C7–C12 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.88 2.11 2.7343 (17) 128
C19—H19⋯O2 0.95 2.47 3.213 (3) 135
N2—H2⋯O1i 0.88 2.52 3.2471 (17) 140
C23—H23⋯O1ii 0.95 2.40 3.236 (2) 147
C24—H24⋯O1iii 0.95 2.58 3.363 (2) 140
C27—H27⋯Cg1 0.95 2.83 3.476 (2) 126
C13—H13BCg2iv 0.98 2.81 3.679 (2) 148
C21—H21CCg3v 0.98 2.97 3.487 (2) 114
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z; (iv) [-x+1, y+{\script{5\over 2}}, -z+{\script{1\over 2}}]; (v) [x+1, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Piperidine iminocyclitols have shown significant pharmacological results against HIV and in cancer therapy. Two deoxynojirimycin derivatives have already found clinical applications in treatment of type-II diabetes and Gaucher's disease (Pearson et al., 2005). Alkaloids containing the piperidine nucleus exhibited a promising wide range of biological activities such as antimicrobial, antiparasitic, cytotoxicity, anti-inflammatory, pesticidal and anti-HIV-1 properties (Sakai et al., 1986; Mishra & Ghosh, 2011). We have been investigating conformational and packing features of on tetrahyropyrimidine derivatives of compound (Nayak et al., 2011). In the extension of our recent work, we have been focusing on the synthesis and biological properties of piperidine analogues. Here, we determined and analyzed the single-crystal structure of the title compound

In the title molecule, the tetrahydropyridine ring adopts a boat conformation. The Cremer & Pople (1975) parameters are Q = 0.603 (2)Å, θ = 98.16 (15)° and φ = 65.53 (15)° respectively. The carbonyl group is in a s-cis conformation with respect to the CC bond of the six-membered tetrahydropyridine ring. The molecular conformation is stabilized by intramolecular N—H···O, C—H···O and C—H···π [C27—H27···Cg1 (centroid of C29—C34)] interactions (Fig.1, Table 1). Bifurcated N—H···O hydrogen bond patterns are observed with both intra- and intermolecular interactions. Pairwise intermolecular N—H···O interactions lead to formation of centrosymmetric head to head dimers (Fig. 2a). Further, weak C—H···O and C—H···π [C13—H13B···Cg2 (centroid of C7—C12); C21—H21C···Cg3 (centroid of C22—C27)] interactions stabilize the 3-dimensional molecular assembly (Fig. 2b).

Related literature top

For background to the applications of piperidines, see: Pearson et al. (2005); Sakai et al. (1986); Nayak et al. (2011); Mishra & Ghosh (2011). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a mixture of p-toluidine (0.01 mol), methylacetoacetate (0.005 mmol), ZnCl2 (0.01 mol) and ethanol (10 ml) in a 50 ml round bottom flask was added benzaldehyde (0.01 mol). The reaction mixture was stirred at room temperature for 16 h, as monitored by TLC and then cooled to room temperature. The solid precipitate obtained was filtered and washed with aqueous ethanol to obtain a crude product (Yield 60 %; m. p. 222 (2) °C). Suitable crystals for X-ray analysis were grown from a mixture of ACN:THF (V/V;1:1) solvent by slow evaporation at room temperature.

Refinement top

All H atoms were positioned geometrically, C—H = 0.95 Å, 0.98 Å, 0.99 Å, 1.0 Å for aromatic, methyl, methylene and methine hydrogen respectively and N—H = 0.88 Å, and were refined using a riding model with Uiso(H)= 1.2 Ueq(C, N) for aromatic, methylene, methine and amine hydrogens, and 1.5 Ueq(C) for methyl H atoms respectively.

Structure description top

Piperidine iminocyclitols have shown significant pharmacological results against HIV and in cancer therapy. Two deoxynojirimycin derivatives have already found clinical applications in treatment of type-II diabetes and Gaucher's disease (Pearson et al., 2005). Alkaloids containing the piperidine nucleus exhibited a promising wide range of biological activities such as antimicrobial, antiparasitic, cytotoxicity, anti-inflammatory, pesticidal and anti-HIV-1 properties (Sakai et al., 1986; Mishra & Ghosh, 2011). We have been investigating conformational and packing features of on tetrahyropyrimidine derivatives of compound (Nayak et al., 2011). In the extension of our recent work, we have been focusing on the synthesis and biological properties of piperidine analogues. Here, we determined and analyzed the single-crystal structure of the title compound

In the title molecule, the tetrahydropyridine ring adopts a boat conformation. The Cremer & Pople (1975) parameters are Q = 0.603 (2)Å, θ = 98.16 (15)° and φ = 65.53 (15)° respectively. The carbonyl group is in a s-cis conformation with respect to the CC bond of the six-membered tetrahydropyridine ring. The molecular conformation is stabilized by intramolecular N—H···O, C—H···O and C—H···π [C27—H27···Cg1 (centroid of C29—C34)] interactions (Fig.1, Table 1). Bifurcated N—H···O hydrogen bond patterns are observed with both intra- and intermolecular interactions. Pairwise intermolecular N—H···O interactions lead to formation of centrosymmetric head to head dimers (Fig. 2a). Further, weak C—H···O and C—H···π [C13—H13B···Cg2 (centroid of C7—C12); C21—H21C···Cg3 (centroid of C22—C27)] interactions stabilize the 3-dimensional molecular assembly (Fig. 2b).

For background to the applications of piperidines, see: Pearson et al. (2005); Sakai et al. (1986); Nayak et al. (2011); Mishra & Ghosh (2011). For ring-puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. View of the molecular structure showing the atom labelling scheme with displacement ellipsoids for non-H atoms at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Dotted lines indicate intramolecular N—H···O, C—H···O, and C—H···π interactions.
[Figure 2] Fig. 2. (a) Bifurcated N—H···O hydrogen bonds with both intra- and intermolecular interactions, where the later interactions lead to formation of centrosymmetric head to head dimers, (b) Weak C—H···π and C—H···O interactions further stabilize the 3-dimensional molecular assembly.
Methyl 2,6-diphenyl-1-p-tolyl-4-(p-tolylamino)-1,2,5,6- tetrahydropyridine-3-carboxylate top
Crystal data top
C33H32N2O2F(000) = 1040
Mr = 488.61Dx = 1.236 Mg m3
Monoclinic, P21/cMelting point: 495(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.3701 (11) ÅCell parameters from 16734 reflections
b = 6.1744 (5) Åθ = 1.5–26.0°
c = 31.797 (2) ŵ = 0.08 mm1
β = 90.381 (2)°T = 173 K
V = 2624.8 (4) Å3Plate, yellow
Z = 40.29 × 0.13 × 0.05 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
5175 independent reflections
Radiation source: fine-focus sealed tube3513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
0.5° φ scans and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 1516
Tmin = 0.978, Tmax = 0.996k = 77
16243 measured reflectionsl = 3937
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.077P]
where P = (Fo2 + 2Fc2)/3
5175 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C33H32N2O2V = 2624.8 (4) Å3
Mr = 488.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3701 (11) ŵ = 0.08 mm1
b = 6.1744 (5) ÅT = 173 K
c = 31.797 (2) Å0.29 × 0.13 × 0.05 mm
β = 90.381 (2)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
5175 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
3513 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.996Rint = 0.041
16243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
5175 reflectionsΔρmin = 0.25 e Å3
337 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39224 (9)1.07628 (18)0.01596 (3)0.0325 (3)
O20.25859 (9)1.23990 (17)0.04498 (3)0.0329 (3)
N10.26268 (10)0.8892 (2)0.15100 (4)0.0282 (3)
N20.47196 (10)0.7370 (2)0.06014 (4)0.0300 (3)
H20.47710.80830.03630.036*
C20.23238 (12)0.9440 (3)0.10784 (5)0.0273 (4)
H2A0.21201.09980.10820.033*
C30.31945 (12)0.9271 (2)0.07746 (5)0.0263 (4)
C40.38851 (12)0.7657 (2)0.08314 (5)0.0266 (4)
C50.36664 (13)0.6094 (2)0.11802 (5)0.0290 (4)
H5A0.42560.51550.12290.035*
H5B0.30970.51590.10980.035*
C60.34127 (12)0.7301 (2)0.15878 (5)0.0272 (4)
H60.31530.62180.17940.033*
C70.21331 (12)0.9795 (3)0.18521 (5)0.0274 (4)
C80.14302 (14)1.1459 (3)0.18094 (5)0.0408 (4)
H80.12511.19470.15360.049*
C90.09902 (15)1.2410 (3)0.21542 (6)0.0479 (5)
H90.05311.35640.21110.057*
C100.11944 (14)1.1743 (3)0.25632 (5)0.0410 (4)
C110.18535 (14)1.0036 (3)0.26032 (5)0.0400 (4)
H110.19920.94870.28760.048*
C120.23208 (13)0.9092 (3)0.22634 (5)0.0360 (4)
H120.27800.79400.23100.043*
C130.07216 (17)1.2833 (4)0.29375 (6)0.0606 (6)
H13A0.08361.19510.31900.091*
H13B0.00011.29880.28880.091*
H13C0.10211.42670.29780.091*
C140.14036 (12)0.8157 (3)0.09319 (5)0.0299 (4)
C150.10575 (14)0.6362 (3)0.11428 (6)0.0430 (5)
H150.13830.59190.13950.052*
C160.02464 (16)0.5192 (3)0.09954 (7)0.0570 (6)
H160.00310.39440.11440.068*
C170.02498 (16)0.5812 (4)0.06370 (6)0.0561 (6)
H170.08100.50110.05370.067*
C180.00758 (16)0.7605 (4)0.04252 (7)0.0678 (7)
H180.02620.80570.01770.081*
C190.08925 (15)0.8762 (3)0.05708 (6)0.0541 (6)
H190.11081.00020.04190.065*
C200.32894 (12)1.0818 (2)0.04374 (5)0.0267 (4)
C210.26050 (14)1.3986 (3)0.01188 (5)0.0377 (4)
H21A0.32381.47860.01310.057*
H21B0.20461.49960.01540.057*
H21C0.25441.32580.01540.057*
C220.55320 (12)0.5962 (3)0.07236 (5)0.0275 (4)
C230.56248 (13)0.3923 (3)0.05468 (5)0.0316 (4)
H230.51480.34420.03440.038*
C240.64064 (13)0.2587 (3)0.06633 (5)0.0352 (4)
H240.64600.11930.05390.042*
C250.71143 (13)0.3237 (3)0.09577 (5)0.0348 (4)
C260.70173 (14)0.5291 (3)0.11301 (5)0.0378 (4)
H260.74970.57760.13310.045*
C270.62366 (13)0.6650 (3)0.10161 (5)0.0337 (4)
H270.61840.80490.11380.040*
C280.79502 (15)0.1731 (3)0.10946 (7)0.0528 (5)
H28A0.83580.24410.13120.079*
H28B0.83700.13830.08520.079*
H28C0.76640.03950.12090.079*
C290.43611 (12)0.8289 (3)0.17719 (5)0.0277 (4)
C300.46725 (13)1.0365 (3)0.16685 (5)0.0341 (4)
H300.42501.12710.15040.041*
C310.55940 (15)1.1125 (3)0.18032 (6)0.0474 (5)
H310.58041.25390.17260.057*
C320.62073 (16)0.9851 (4)0.20476 (6)0.0553 (6)
H320.68461.03670.21340.066*
C330.58895 (15)0.7814 (4)0.21667 (6)0.0534 (6)
H330.63000.69470.23440.064*
C340.49762 (14)0.7035 (3)0.20290 (5)0.0387 (4)
H340.47660.56270.21110.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (7)0.0414 (7)0.0238 (6)0.0024 (5)0.0044 (5)0.0027 (5)
O20.0369 (7)0.0333 (6)0.0287 (6)0.0033 (5)0.0057 (5)0.0072 (5)
N10.0286 (8)0.0339 (7)0.0220 (7)0.0044 (6)0.0020 (6)0.0012 (6)
N20.0305 (8)0.0362 (7)0.0234 (7)0.0005 (6)0.0046 (6)0.0017 (6)
C20.0296 (9)0.0290 (8)0.0232 (8)0.0006 (7)0.0018 (7)0.0027 (7)
C30.0269 (9)0.0295 (8)0.0226 (8)0.0039 (7)0.0014 (6)0.0016 (7)
C40.0297 (9)0.0281 (8)0.0218 (8)0.0054 (7)0.0006 (7)0.0035 (7)
C50.0315 (10)0.0259 (8)0.0299 (9)0.0030 (7)0.0044 (7)0.0007 (7)
C60.0319 (9)0.0251 (8)0.0245 (8)0.0011 (7)0.0045 (7)0.0042 (7)
C70.0243 (9)0.0328 (8)0.0252 (8)0.0034 (7)0.0028 (6)0.0015 (7)
C80.0444 (12)0.0486 (11)0.0295 (9)0.0122 (9)0.0045 (8)0.0043 (8)
C90.0477 (12)0.0536 (12)0.0424 (11)0.0182 (10)0.0075 (9)0.0021 (9)
C100.0340 (10)0.0565 (11)0.0325 (9)0.0013 (9)0.0060 (8)0.0097 (9)
C110.0349 (11)0.0594 (11)0.0258 (9)0.0009 (9)0.0020 (7)0.0012 (9)
C120.0351 (10)0.0446 (10)0.0284 (9)0.0073 (8)0.0025 (7)0.0010 (8)
C130.0560 (14)0.0836 (16)0.0422 (11)0.0148 (12)0.0087 (10)0.0185 (11)
C140.0268 (9)0.0357 (9)0.0273 (8)0.0029 (7)0.0027 (7)0.0051 (7)
C150.0372 (11)0.0499 (11)0.0416 (10)0.0104 (9)0.0085 (8)0.0179 (9)
C160.0508 (14)0.0558 (12)0.0640 (14)0.0208 (10)0.0177 (11)0.0249 (11)
C170.0398 (12)0.0696 (14)0.0586 (13)0.0189 (11)0.0161 (10)0.0163 (11)
C180.0499 (14)0.0917 (17)0.0614 (14)0.0244 (13)0.0290 (11)0.0386 (13)
C190.0430 (12)0.0645 (13)0.0547 (12)0.0165 (10)0.0146 (10)0.0326 (11)
C200.0259 (9)0.0311 (8)0.0230 (8)0.0055 (7)0.0022 (7)0.0028 (7)
C210.0422 (11)0.0378 (9)0.0330 (9)0.0016 (8)0.0017 (8)0.0115 (8)
C220.0271 (9)0.0309 (8)0.0245 (8)0.0020 (7)0.0051 (7)0.0014 (7)
C230.0358 (10)0.0322 (9)0.0269 (9)0.0057 (8)0.0019 (7)0.0018 (7)
C240.0416 (11)0.0285 (8)0.0356 (9)0.0011 (8)0.0065 (8)0.0003 (8)
C250.0309 (10)0.0366 (9)0.0369 (9)0.0015 (8)0.0056 (8)0.0093 (8)
C260.0352 (11)0.0418 (10)0.0365 (10)0.0067 (8)0.0057 (8)0.0005 (8)
C270.0384 (11)0.0323 (9)0.0305 (9)0.0025 (8)0.0007 (8)0.0057 (7)
C280.0395 (12)0.0491 (11)0.0697 (14)0.0027 (9)0.0011 (10)0.0114 (11)
C290.0301 (9)0.0328 (8)0.0204 (8)0.0037 (7)0.0043 (7)0.0019 (7)
C300.0369 (10)0.0326 (9)0.0330 (9)0.0000 (8)0.0053 (8)0.0043 (8)
C310.0419 (12)0.0509 (11)0.0495 (12)0.0120 (10)0.0110 (10)0.0199 (10)
C320.0337 (12)0.0867 (16)0.0457 (12)0.0020 (11)0.0016 (9)0.0338 (12)
C330.0404 (12)0.0858 (16)0.0339 (10)0.0226 (12)0.0071 (9)0.0114 (11)
C340.0423 (11)0.0455 (10)0.0282 (9)0.0132 (9)0.0058 (8)0.0018 (8)
Geometric parameters (Å, º) top
O1—C201.2277 (18)C15—H150.9500
O2—C201.3562 (19)C16—C171.369 (3)
O2—C211.4385 (18)C16—H160.9500
N1—C71.393 (2)C17—C181.368 (3)
N1—C61.458 (2)C17—H170.9500
N1—C21.4679 (19)C18—C191.382 (3)
N2—C41.3498 (19)C18—H180.9500
N2—C221.443 (2)C19—H190.9500
N2—H20.8800C21—H21A0.9800
C2—C31.521 (2)C21—H21B0.9800
C2—C141.533 (2)C21—H21C0.9800
C2—H2A1.0000C22—C231.384 (2)
C3—C41.370 (2)C22—C271.386 (2)
C3—C201.442 (2)C23—C241.380 (2)
C4—C51.500 (2)C23—H230.9500
C5—C61.535 (2)C24—C251.386 (2)
C5—H5A0.9900C24—H240.9500
C5—H5B0.9900C25—C261.388 (2)
C6—C291.521 (2)C25—C281.516 (2)
C6—H61.0000C26—C271.385 (2)
C7—C81.398 (2)C26—H260.9500
C7—C121.399 (2)C27—H270.9500
C8—C91.379 (2)C28—H28A0.9800
C8—H80.9500C28—H28B0.9800
C9—C101.389 (2)C28—H28C0.9800
C9—H90.9500C29—C301.388 (2)
C10—C111.379 (3)C29—C341.391 (2)
C10—C131.510 (2)C30—C311.384 (3)
C11—C121.381 (2)C30—H300.9500
C11—H110.9500C31—C321.373 (3)
C12—H120.9500C31—H310.9500
C13—H13A0.9800C32—C331.381 (3)
C13—H13B0.9800C32—H320.9500
C13—H13C0.9800C33—C341.381 (3)
C14—C151.377 (2)C33—H330.9500
C14—C191.384 (2)C34—H340.9500
C15—C161.382 (3)
C20—O2—C21116.96 (12)C17—C16—H16119.6
C7—N1—C6118.83 (12)C15—C16—H16119.6
C7—N1—C2120.57 (13)C18—C17—C16118.79 (19)
C6—N1—C2120.52 (12)C18—C17—H17120.6
C4—N2—C22123.83 (13)C16—C17—H17120.6
C4—N2—H2118.1C17—C18—C19120.44 (18)
C22—N2—H2118.1C17—C18—H18119.8
N1—C2—C3111.74 (13)C19—C18—H18119.8
N1—C2—C14112.39 (13)C18—C19—C14121.54 (18)
C3—C2—C14112.80 (13)C18—C19—H19119.2
N1—C2—H2A106.5C14—C19—H19119.2
C3—C2—H2A106.5O1—C20—O2121.50 (14)
C14—C2—H2A106.5O1—C20—C3125.50 (15)
C4—C3—C20121.17 (14)O2—C20—C3113.00 (13)
C4—C3—C2118.95 (13)O2—C21—H21A109.5
C20—C3—C2119.88 (14)O2—C21—H21B109.5
N2—C4—C3125.65 (14)H21A—C21—H21B109.5
N2—C4—C5118.82 (14)O2—C21—H21C109.5
C3—C4—C5115.53 (14)H21A—C21—H21C109.5
C4—C5—C6110.94 (12)H21B—C21—H21C109.5
C4—C5—H5A109.5C23—C22—C27119.24 (15)
C6—C5—H5A109.5C23—C22—N2120.53 (14)
C4—C5—H5B109.5C27—C22—N2120.23 (14)
C6—C5—H5B109.5C24—C23—C22120.29 (16)
H5A—C5—H5B108.0C24—C23—H23119.9
N1—C6—C29113.15 (13)C22—C23—H23119.9
N1—C6—C5110.29 (12)C23—C24—C25121.36 (16)
C29—C6—C5109.36 (13)C23—C24—H24119.3
N1—C6—H6108.0C25—C24—H24119.3
C29—C6—H6108.0C24—C25—C26117.78 (16)
C5—C6—H6108.0C24—C25—C28121.00 (16)
N1—C7—C8122.69 (14)C26—C25—C28121.20 (17)
N1—C7—C12121.50 (15)C27—C26—C25121.48 (16)
C8—C7—C12115.80 (15)C27—C26—H26119.3
C9—C8—C7121.71 (16)C25—C26—H26119.3
C9—C8—H8119.1C26—C27—C22119.84 (16)
C7—C8—H8119.1C26—C27—H27120.1
C8—C9—C10122.38 (18)C22—C27—H27120.1
C8—C9—H9118.8C25—C28—H28A109.5
C10—C9—H9118.8C25—C28—H28B109.5
C11—C10—C9115.75 (16)H28A—C28—H28B109.5
C11—C10—C13122.59 (17)C25—C28—H28C109.5
C9—C10—C13121.65 (18)H28A—C28—H28C109.5
C10—C11—C12122.88 (17)H28B—C28—H28C109.5
C10—C11—H11118.6C30—C29—C34118.43 (16)
C12—C11—H11118.6C30—C29—C6122.00 (14)
C11—C12—C7121.39 (16)C34—C29—C6119.41 (15)
C11—C12—H12119.3C31—C30—C29120.52 (17)
C7—C12—H12119.3C31—C30—H30119.7
C10—C13—H13A109.5C29—C30—H30119.7
C10—C13—H13B109.5C32—C31—C30120.53 (19)
H13A—C13—H13B109.5C32—C31—H31119.7
C10—C13—H13C109.5C30—C31—H31119.7
H13A—C13—H13C109.5C31—C32—C33119.53 (19)
H13B—C13—H13C109.5C31—C32—H32120.2
C15—C14—C19117.11 (16)C33—C32—H32120.2
C15—C14—C2122.64 (14)C34—C33—C32120.22 (19)
C19—C14—C2120.24 (15)C34—C33—H33119.9
C14—C15—C16121.39 (17)C32—C33—H33119.9
C14—C15—H15119.3C33—C34—C29120.68 (18)
C16—C15—H15119.3C33—C34—H34119.7
C17—C16—C15120.71 (18)C29—C34—H34119.7
C7—N1—C2—C3151.62 (14)C3—C2—C14—C1965.7 (2)
C6—N1—C2—C331.79 (19)C19—C14—C15—C161.2 (3)
C7—N1—C2—C1480.38 (18)C2—C14—C15—C16177.72 (19)
C6—N1—C2—C1496.20 (17)C14—C15—C16—C171.2 (3)
N1—C2—C3—C436.66 (19)C15—C16—C17—C180.4 (4)
C14—C2—C3—C491.11 (17)C16—C17—C18—C190.2 (4)
N1—C2—C3—C20142.40 (14)C17—C18—C19—C140.1 (4)
C14—C2—C3—C2089.83 (17)C15—C14—C19—C180.6 (3)
C22—N2—C4—C3166.10 (15)C2—C14—C19—C18178.4 (2)
C22—N2—C4—C514.4 (2)C21—O2—C20—O11.0 (2)
C20—C3—C4—N22.5 (2)C21—O2—C20—C3178.39 (13)
C2—C3—C4—N2176.52 (14)C4—C3—C20—O15.7 (2)
C20—C3—C4—C5176.98 (13)C2—C3—C20—O1175.28 (15)
C2—C3—C4—C54.0 (2)C4—C3—C20—O2174.94 (13)
N2—C4—C5—C6131.03 (15)C2—C3—C20—O24.1 (2)
C3—C4—C5—C649.43 (18)C4—N2—C22—C23100.73 (18)
C7—N1—C6—C2971.72 (18)C4—N2—C22—C2780.1 (2)
C2—N1—C6—C29111.64 (15)C27—C22—C23—C240.5 (2)
C7—N1—C6—C5165.43 (13)N2—C22—C23—C24179.67 (15)
C2—N1—C6—C511.21 (19)C22—C23—C24—C250.0 (2)
C4—C5—C6—N152.06 (17)C23—C24—C25—C260.5 (2)
C4—C5—C6—C2972.98 (16)C23—C24—C25—C28177.92 (16)
C6—N1—C7—C8174.53 (15)C24—C25—C26—C270.5 (3)
C2—N1—C7—C88.8 (2)C28—C25—C26—C27177.91 (17)
C6—N1—C7—C125.0 (2)C25—C26—C27—C220.0 (3)
C2—N1—C7—C12171.68 (15)C23—C22—C27—C260.5 (2)
N1—C7—C8—C9176.44 (17)N2—C22—C27—C26179.67 (15)
C12—C7—C8—C93.1 (3)N1—C6—C29—C3033.1 (2)
C7—C8—C9—C101.8 (3)C5—C6—C29—C3090.31 (17)
C8—C9—C10—C111.1 (3)N1—C6—C29—C34151.50 (14)
C8—C9—C10—C13178.74 (19)C5—C6—C29—C3485.13 (17)
C9—C10—C11—C122.7 (3)C34—C29—C30—C312.9 (2)
C13—C10—C11—C12177.19 (19)C6—C29—C30—C31172.61 (15)
C10—C11—C12—C71.3 (3)C29—C30—C31—C321.2 (3)
N1—C7—C12—C11177.96 (16)C30—C31—C32—C331.4 (3)
C8—C7—C12—C111.6 (3)C31—C32—C33—C342.2 (3)
N1—C2—C14—C1514.2 (2)C32—C33—C34—C290.5 (3)
C3—C2—C14—C15113.24 (18)C30—C29—C34—C332.1 (2)
N1—C2—C14—C19166.88 (16)C6—C29—C34—C33173.55 (15)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C29–C34, C7–C12 and C29–C34 rings, respectively. [Cg3 and Cg1 are the same ring (information taken from Comment section)?]
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.882.112.7343 (17)128
C19—H19···O20.952.473.213 (3)135
N2—H2···O1i0.882.523.2471 (17)140
C23—H23···O1ii0.952.403.236 (2)147
C24—H24···O1iii0.952.583.363 (2)140
C27—H27···Cg10.952.833.476 (2)126
C13—H13B···Cg2iv0.982.813.679 (2)148
C21—H21C···Cg3v0.982.973.487 (2)114
Symmetry codes: (i) x+1, y+2, z; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1, y+5/2, z+1/2; (v) x+1, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC33H32N2O2
Mr488.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.3701 (11), 6.1744 (5), 31.797 (2)
β (°) 90.381 (2)
V3)2624.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.29 × 0.13 × 0.05
Data collection
DiffractometerBruker Kappa DUO APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.978, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
16243, 5175, 3513
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.03
No. of reflections5175
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C29–C34, C7–C12 and C29–C34 rings, respectively. [Cg3 and Cg1 are the same ring (information taken from Comment section)?]
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.88002.11002.7343 (17)128.00
C19—H19···O20.95002.47003.213 (3)135.00
N2—H2···O1i0.88002.52003.2471 (17)140.00
C23—H23···O1ii0.95002.40003.236 (2)147.00
C24—H24···O1iii0.95002.58003.363 (2)140.00
C27—H27···Cg10.95002.833.476 (2)126.00
C13—H13B···Cg2iv0.98002.813.679 (2)148.00
C21—H21C···Cg3v0.98002.973.487 (2)114.00
Symmetry codes: (i) x+1, y+2, z; (ii) x, y1, z; (iii) x+1, y+1, z; (iv) x+1, y+5/2, z+1/2; (v) x+1, y+5/2, z+1/2.
 

Acknowledgements

The authors thank Durban University of Technology for facilities. KNV thanks NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship 2012.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMishra, S. & Ghosh, R. (2011). Tetrahedron Lett. 52, 2857–2861.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D. & Guru Row, T. N. (2011). CrystEngComm, 13, 591–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationPearson, M. S. M., Mathe-Allainmat, M., Fargeas, V. & Lebreton, J. (2005). Eur. J. Org. Chem. 36, 2159–2191.  Web of Science CrossRef Google Scholar
First citationSakai, R., Higa, T., Jefford, C. W., Bernardinelli, G. & Manzamine, A. (1986). J. Am. Chem. Soc. 108, 6404–6405.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds