metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,2-di­methoxyethane)-1κ2O,O′;3κ2O,O′-tetra­kis­(μ-1,1,1,3,3,3-hexa­fluoro-2-methyl­propan-2-olato)-1:2κ4O:O;2:3κ4O:O-1,3-dilithium-2-magnesium

aInstitut für Allgemeine und Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 82, A-6020 Innsbruck, Austria, and bLehrstuhl für Makromolekulare Stoffe und Faserchemie, Institut für Polymerchemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
*Correspondence e-mail: michael.buchmeiser@ipoc.uni-stuttgart.de

(Received 16 July 2012; accepted 18 July 2012; online 25 July 2012)

The title compound, [Li2Mg(C4H3F6O)4(C4H10O2)2], forms as a white crystalline powder by-product of the reaction of lithium 1,1,1,3,3,3-hexa­fluoro-2-methyl-2-propoxide with Mo(N-2,6-Me2—C6H3)(CHCMe2Ph)(O3SCF3)2·2DME (DME is 1,2-dimethoxyethane) contaminated with MgCl2. The crystal structure of this compound contains half a mol­ecule in the asymmetric unit, with a twofold rotation axis through the central Mg2+ cation. The four 1,1,1,3,3,3-hexa­fluoro-2-methyl­propan-2-olate ligands serve as bridging ligands connecting the Li+ and Mg2+ cations. The Li+ cation is additionally stabilized by a DME ligand. This results in a distorted tetra­hedral ligand field around both the Mg2+ and Li+ cations.

Related literature

For general background on the properties and synthesis of Schrock-type catalysts, see: Oskam et al. (1993[Oskam, J. H., Fox, H. H., Yap, K. B., McConville, D. H., O'Dell, R., Lichtenstein, B. J. & Schrock, R. R. (1993). J. Organomet. Chem. 459, 185-197.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2Mg(C4H3F6O)4(C4H10O2)2]

  • Mr = 942.69

  • Monoclinic, C 2/c

  • a = 23.8629 (4) Å

  • b = 9.5396 (6) Å

  • c = 18.3700 (7) Å

  • β = 109.041 (2)°

  • V = 3953.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 233 K

  • 0.41 × 0.25 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 10600 measured reflections

  • 3490 independent reflections

  • 2603 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.127

  • S = 1.06

  • 3490 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mg1—O1 1.9526 (14)
Mg1—O2 1.9551 (14)
Li1—O1 1.961 (4)
Li1—O2 1.942 (4)
Li1—O3 1.988 (4)
Li1—O4 2.019 (5)
Mg1⋯Li1 2.818 (4)
O1—Mg1—O1i 126.14 (10)
O1—Mg1—O2 87.54 (6)
O1—Mg1—O2i 119.89 (6)
O2—Mg1—O2i 119.61 (10)
O1—Li1—O2 87.69 (16)
O1—Li1—O3 125.3 (2)
O1—Li1—O4 122.7 (2)
O2—Li1—O3 120.0 (2)
O2—Li1—O4 125.3 (2)
O3—Li1—O4 80.86 (17)
Li1⋯Mg1⋯Li1i 174.14 (18)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis of molybdenum-based Schrock-type catalysts involves the reaction of the catalyst progenitor, a Mo–trifluoromethanesulfonate compound such as Mo(N-2,6-Me2—C6H3)(CHCMe2Ph)(OTf)2.2DME (OTf = CF3SO3-), with a lithium alkoxide (Oskam et al., 1993), e.g. LiOC(CF3)2CH3, to yield the corresponding Schrock catalyst Mo(N-2,6-Me22-C6H3)(CHCMe2Ph)(OC(CF3)2CH3)2. This reaction step requires high-purity educts in which case the target compounds can be prepared in high yields. However, occasionally, lower yields are observed and could not be explained so far. Here we report on the X-ray structure of a trinuclear Li–Mg compound that forms virtually quantitatively in case the progenitor compound Mo(N-2,6-Me2—C6H3)(CHCMe2Ph)(OTf)2.2DME is contaminated with MgCl2, which is a by-product of the synthesis of this progenitor.

The structure is shown to be a trinuclear complex containing two Li cations and one central Mg cation. Selected geometry parameters are given in Table 1. The two halves of the title compound are related by a twofold axis, which passes through the central magnesium. The Mg atom is coordinated by four η2-bridging Li–1,1,1,3,3,3-hexafluoro-2-methylpropionate ligands that are themselves coordinated to the two Li ions. The latter have each with one 1,2-dimethoxyethane (DME) ligand a distorted tetrahedral ligand sphere. The same distorted tetrahedral ligand sphere exists for the central Mg cation.

In the crystal structure no strong intermolecular hydrogen bonds are present, only F—H distances over 2.47 Å could be observed. Therefore the displacement parameters of the CF3 groups and the DME ligands are comparatively large, showing a higher mobility of these atoms. An attempt to refine all non-hydrogen atoms of DME with a disordering model by splitting of the positions leads to a better R value, but was rejected because of too short C—O bond lengths. The distances between these split positions were only in the range of 0.28 to 0.46 Å.

Related literature top

For general background on the properties and synthesis of Schrock-type catalysts, see: Oskam et al. (1993).

Experimental top

All reactions were carried out in an MBraun glove box system (Garching, Germany) using carefully dried and deoxygenated solvents. Mo(N-2,6-Me2—C6H3)(CHCMe2Ph)(OTf)2.2DME (1) was prepared according to the literature (Oskam et al., 1993). Briefly, ethereal solutions of 1 (1.21 g, contaminated with MgCl2) and LiOC(CF3)2CH3 (0.62 g, 3.3 mmol) were combined at -36°C and the reaction mixture was allowed to warm to room temperature. Filtration through a pad of Celite and crystallization at -36°C yielded the title complex in 10% yield.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters and hydrogen atoms attached to carbon atoms were placed in calculated positions with C—H distances of 0.97 or 0.98 Å and refined with isotropic displacement parameters 1.2 or 1.5 times higher than the value of their carbon atoms.

Structure description top

The synthesis of molybdenum-based Schrock-type catalysts involves the reaction of the catalyst progenitor, a Mo–trifluoromethanesulfonate compound such as Mo(N-2,6-Me2—C6H3)(CHCMe2Ph)(OTf)2.2DME (OTf = CF3SO3-), with a lithium alkoxide (Oskam et al., 1993), e.g. LiOC(CF3)2CH3, to yield the corresponding Schrock catalyst Mo(N-2,6-Me22-C6H3)(CHCMe2Ph)(OC(CF3)2CH3)2. This reaction step requires high-purity educts in which case the target compounds can be prepared in high yields. However, occasionally, lower yields are observed and could not be explained so far. Here we report on the X-ray structure of a trinuclear Li–Mg compound that forms virtually quantitatively in case the progenitor compound Mo(N-2,6-Me2—C6H3)(CHCMe2Ph)(OTf)2.2DME is contaminated with MgCl2, which is a by-product of the synthesis of this progenitor.

The structure is shown to be a trinuclear complex containing two Li cations and one central Mg cation. Selected geometry parameters are given in Table 1. The two halves of the title compound are related by a twofold axis, which passes through the central magnesium. The Mg atom is coordinated by four η2-bridging Li–1,1,1,3,3,3-hexafluoro-2-methylpropionate ligands that are themselves coordinated to the two Li ions. The latter have each with one 1,2-dimethoxyethane (DME) ligand a distorted tetrahedral ligand sphere. The same distorted tetrahedral ligand sphere exists for the central Mg cation.

In the crystal structure no strong intermolecular hydrogen bonds are present, only F—H distances over 2.47 Å could be observed. Therefore the displacement parameters of the CF3 groups and the DME ligands are comparatively large, showing a higher mobility of these atoms. An attempt to refine all non-hydrogen atoms of DME with a disordering model by splitting of the positions leads to a better R value, but was rejected because of too short C—O bond lengths. The distances between these split positions were only in the range of 0.28 to 0.46 Å.

For general background on the properties and synthesis of Schrock-type catalysts, see: Oskam et al. (1993).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure and labeling scheme of the title compound. Ellipsoids are drawn at the 30% probability level. Symmetry code (A): 1 - x, y, 3/2 - z.
Bis(1,2-dimethoxyethane)-1κ2O,O';3κ2O,O'- tetrakis(µ-1,1,1,3,3,3-hexafluoro-2-methylpropan-2-olato)- 1:2κ4O:O;2:3κ4O:O-1,3-dilithium-2-magnesium top
Crystal data top
[Li2Mg(C4H3F6O)4(C4H10O2)2]F(000) = 1896
Mr = 942.69Dx = 1.584 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10988 reflections
a = 23.8629 (4) Åθ = 1.0–25.0°
b = 9.5396 (6) ŵ = 0.20 mm1
c = 18.3700 (7) ÅT = 233 K
β = 109.041 (2)°Plate, colourless
V = 3953.0 (3) Å30.41 × 0.25 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2603 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
Detector resolution: 9.1 pixels mm-1h = 028
φ and ω scansk = 1111
10600 measured reflectionsl = 2120
3490 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0561P)2 + 3.6053P]
where P = (Fo2 + 2Fc2)/3
3490 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.32 e Å3
0 constraints
Crystal data top
[Li2Mg(C4H3F6O)4(C4H10O2)2]V = 3953.0 (3) Å3
Mr = 942.69Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.8629 (4) ŵ = 0.20 mm1
b = 9.5396 (6) ÅT = 233 K
c = 18.3700 (7) Å0.41 × 0.25 × 0.07 mm
β = 109.041 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2603 reflections with I > 2σ(I)
10600 measured reflectionsRint = 0.031
3490 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
3490 reflectionsΔρmin = 0.32 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00000.21820 (10)0.75000.0304 (2)
Li10.12432 (17)0.2031 (5)0.8154 (2)0.0488 (10)
O10.06054 (6)0.31089 (15)0.83443 (8)0.0376 (4)
O20.06414 (6)0.11513 (16)0.72966 (8)0.0380 (4)
O30.19633 (10)0.2846 (3)0.80007 (14)0.0967 (8)
O40.18689 (8)0.1002 (3)0.89956 (13)0.0788 (6)
C10.06148 (11)0.4201 (2)0.88423 (13)0.0452 (6)
C20.00224 (14)0.4955 (3)0.86486 (17)0.0737 (9)
H2A0.00600.54390.81600.111*
H2B0.00380.56290.90500.111*
H2C0.02890.42780.86120.111*
C30.10945 (15)0.5255 (3)0.88057 (17)0.0667 (8)
C40.07842 (12)0.3634 (3)0.96686 (13)0.0534 (7)
C50.06465 (10)0.0184 (3)0.67423 (12)0.0421 (6)
C60.00260 (11)0.0155 (3)0.61935 (14)0.0542 (7)
H6A0.00540.08570.58250.081*
H6B0.01530.06890.59220.081*
H6C0.02160.05120.64860.081*
C70.10204 (12)0.0747 (3)0.62675 (15)0.0596 (7)
C80.09244 (12)0.1182 (3)0.71356 (15)0.0555 (7)
C90.24947 (14)0.2386 (5)0.8556 (3)0.1029 (13)
H9A0.26520.31390.89290.124*
H9B0.27880.21900.83000.124*
C100.24142 (16)0.1150 (7)0.8958 (3)0.1183 (16)
H10A0.25080.03260.87000.142*
H10B0.26970.11750.94830.142*
C110.2021 (2)0.3924 (5)0.7506 (3)0.1287 (17)
H11A0.16340.41510.71440.193*
H11B0.22800.36140.72260.193*
H11C0.21890.47490.78070.193*
C120.17925 (17)0.0164 (4)0.9429 (2)0.0917 (11)
H12A0.13820.02160.94090.138*
H12B0.20450.00590.99600.138*
H12C0.18980.10150.92160.138*
F10.10808 (12)0.6453 (2)0.91690 (13)0.1145 (8)
F20.16449 (8)0.4746 (2)0.91064 (10)0.0845 (6)
F30.10296 (9)0.55831 (18)0.80778 (10)0.0865 (6)
F40.12382 (7)0.27533 (18)0.98428 (8)0.0694 (5)
F50.03358 (8)0.2936 (2)0.97813 (9)0.0771 (5)
F60.09337 (9)0.4647 (2)1.02026 (9)0.0849 (6)
F70.08268 (9)0.1986 (2)0.59720 (12)0.0964 (7)
F80.10134 (10)0.0077 (3)0.56813 (11)0.1073 (8)
F90.15870 (7)0.0932 (2)0.66710 (11)0.0895 (6)
F100.05962 (9)0.17323 (19)0.75248 (12)0.0885 (6)
F110.14670 (8)0.10129 (19)0.76398 (10)0.0828 (6)
F120.09778 (8)0.21737 (18)0.66513 (11)0.0857 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0262 (5)0.0337 (5)0.0298 (5)0.0000.0072 (4)0.000
Li10.033 (2)0.062 (3)0.048 (2)0.0033 (18)0.0095 (17)0.0061 (19)
O10.0339 (8)0.0390 (9)0.0359 (8)0.0013 (6)0.0058 (6)0.0057 (6)
O20.0297 (8)0.0446 (9)0.0388 (8)0.0019 (6)0.0099 (6)0.0085 (7)
O30.0595 (15)0.147 (2)0.0865 (16)0.0383 (14)0.0279 (12)0.0027 (15)
O40.0418 (12)0.0969 (17)0.0879 (15)0.0052 (10)0.0077 (10)0.0001 (13)
C10.0489 (14)0.0404 (13)0.0406 (12)0.0023 (11)0.0066 (10)0.0092 (11)
C20.073 (2)0.075 (2)0.0640 (18)0.0296 (16)0.0095 (15)0.0161 (15)
C30.089 (2)0.0455 (17)0.0557 (17)0.0132 (15)0.0098 (15)0.0078 (13)
C40.0565 (17)0.0617 (17)0.0384 (13)0.0034 (14)0.0103 (11)0.0119 (12)
C50.0365 (13)0.0509 (14)0.0392 (12)0.0032 (10)0.0129 (9)0.0094 (11)
C60.0432 (15)0.0642 (17)0.0494 (14)0.0004 (12)0.0071 (11)0.0146 (13)
C70.0499 (17)0.082 (2)0.0506 (15)0.0043 (14)0.0218 (12)0.0077 (15)
C80.0495 (16)0.0560 (17)0.0580 (16)0.0131 (12)0.0132 (13)0.0126 (13)
C90.0324 (18)0.139 (4)0.130 (3)0.018 (2)0.0162 (19)0.029 (3)
C100.046 (2)0.188 (5)0.113 (3)0.004 (3)0.015 (2)0.012 (3)
C110.125 (4)0.147 (4)0.132 (4)0.052 (3)0.067 (3)0.006 (3)
C120.092 (3)0.098 (3)0.074 (2)0.017 (2)0.0123 (19)0.013 (2)
F10.169 (2)0.0519 (11)0.1148 (16)0.0323 (13)0.0355 (15)0.0310 (11)
F20.0605 (12)0.1003 (14)0.0786 (11)0.0306 (10)0.0034 (9)0.0063 (10)
F30.1160 (16)0.0649 (11)0.0704 (11)0.0227 (10)0.0192 (10)0.0165 (9)
F40.0675 (11)0.0814 (11)0.0496 (9)0.0126 (9)0.0058 (7)0.0119 (8)
F50.0748 (12)0.1057 (14)0.0553 (9)0.0207 (10)0.0273 (8)0.0062 (9)
F60.1072 (15)0.0909 (13)0.0485 (9)0.0129 (11)0.0143 (9)0.0317 (9)
F70.0931 (14)0.1067 (16)0.1117 (15)0.0178 (12)0.0638 (12)0.0447 (13)
F80.1226 (17)0.1462 (19)0.0784 (13)0.0195 (14)0.0674 (13)0.0434 (13)
F90.0449 (10)0.1405 (18)0.0897 (13)0.0109 (10)0.0310 (9)0.0069 (12)
F100.0994 (14)0.0670 (11)0.1148 (15)0.0272 (10)0.0566 (12)0.0320 (10)
F110.0639 (11)0.0816 (12)0.0795 (11)0.0237 (9)0.0085 (9)0.0071 (9)
F120.0897 (13)0.0682 (11)0.0926 (13)0.0250 (9)0.0208 (10)0.0300 (10)
Geometric parameters (Å, º) top
Mg1—O11.9526 (14)C4—F41.325 (3)
Mg1—O1i1.9526 (14)C4—F51.333 (3)
Mg1—O21.9551 (14)C4—F61.340 (3)
Mg1—O2i1.9551 (14)C5—C61.530 (3)
Mg1—Li12.818 (4)C5—C81.532 (4)
Mg1—Li1i2.818 (4)C5—C71.534 (4)
Li1—O11.961 (4)C6—H6A0.9700
Li1—O21.942 (4)C6—H6B0.9700
Li1—O31.988 (4)C6—H6C0.9700
Li1—O42.019 (5)C7—F71.319 (3)
Mg1—Li12.818 (4)C7—F91.325 (3)
O1—C11.382 (3)C7—F81.329 (3)
O2—C51.377 (3)C8—F101.329 (3)
O3—C111.409 (5)C8—F121.333 (3)
O3—C91.413 (5)C8—F111.333 (3)
O4—C101.333 (4)C9—C101.437 (7)
O4—C121.414 (4)C9—H9A0.9800
C1—C21.522 (4)C9—H9B0.9800
C1—C41.536 (3)C10—H10A0.9800
C1—C31.541 (4)C10—H10B0.9800
C2—H2A0.9700C11—H11A0.9700
C2—H2B0.9700C11—H11B0.9700
C2—H2C0.9700C11—H11C0.9700
C3—F11.329 (3)C12—H12A0.9700
C3—F31.332 (3)C12—H12B0.9700
C3—F21.339 (4)C12—H12C0.9700
O1—Mg1—O1i126.14 (10)F4—C4—F5106.2 (2)
O1—Mg1—O287.54 (6)F4—C4—F6106.2 (2)
O1i—Mg1—O2119.89 (6)F5—C4—F6106.4 (2)
O1—Mg1—O2i119.89 (6)F4—C4—C1113.1 (2)
O1i—Mg1—O2i87.54 (6)F5—C4—C1111.3 (2)
O2—Mg1—O2i119.61 (10)F6—C4—C1113.0 (2)
O1—Mg1—Li144.06 (9)O2—C5—C6112.89 (18)
O1i—Mg1—Li1139.90 (10)O2—C5—C8109.16 (18)
O2—Mg1—Li143.50 (9)C6—C5—C8107.9 (2)
O2i—Mg1—Li1132.37 (10)O2—C5—C7109.4 (2)
O1—Mg1—Li1i139.90 (10)C6—C5—C7108.5 (2)
O1i—Mg1—Li1i44.06 (9)C8—C5—C7108.9 (2)
O2—Mg1—Li1i132.37 (10)C5—C6—H6A109.5
O2i—Mg1—Li1i43.50 (9)C5—C6—H6B109.5
O1—Li1—O287.69 (16)H6A—C6—H6B109.5
O1—Li1—O3125.3 (2)C5—C6—H6C109.5
O1—Li1—O4122.7 (2)H6A—C6—H6C109.5
O2—Li1—O3120.0 (2)H6B—C6—H6C109.5
O2—Li1—O4125.3 (2)F7—C7—F9105.5 (3)
O3—Li1—O480.86 (17)F7—C7—F8106.6 (2)
Li1—Mg1—Li1i174.14 (18)F9—C7—F8105.8 (2)
O2—Li1—Mg143.88 (9)F7—C7—C5110.9 (2)
O1—Li1—Mg143.83 (9)F9—C7—C5113.9 (2)
O3—Li1—Mg1139.3 (2)F8—C7—C5113.4 (2)
O4—Li1—Mg1139.8 (2)F10—C8—F12106.3 (2)
C1—O1—Mg1135.67 (14)F10—C8—F11106.5 (2)
C1—O1—Li1131.90 (18)F12—C8—F11105.5 (2)
Mg1—O1—Li192.11 (13)F10—C8—C5110.5 (2)
C5—O2—Li1134.95 (17)F12—C8—C5114.2 (2)
C5—O2—Mg1132.43 (13)F11—C8—C5113.4 (2)
Li1—O2—Mg192.62 (13)O3—C9—C10112.7 (3)
C11—O3—C9116.0 (3)O3—C9—H9A109.0
C11—O3—Li1130.4 (3)C10—C9—H9A109.0
C9—O3—Li1113.0 (3)O3—C9—H9B109.0
C10—O4—C12114.8 (3)C10—C9—H9B109.0
C10—O4—Li1113.5 (3)H9A—C9—H9B107.8
C12—O4—Li1127.9 (2)O4—C10—C9114.2 (4)
O1—C1—C2112.9 (2)O4—C10—H10A108.7
O1—C1—C4109.35 (19)C9—C10—H10A108.7
C2—C1—C4108.8 (2)O4—C10—H10B108.7
O1—C1—C3108.3 (2)C9—C10—H10B108.7
C2—C1—C3109.1 (2)H10A—C10—H10B107.6
C4—C1—C3108.2 (2)O3—C11—H11A109.5
C1—C2—H2A109.5O3—C11—H11B109.5
C1—C2—H2B109.5H11A—C11—H11B109.5
H2A—C2—H2B109.5O3—C11—H11C109.5
C1—C2—H2C109.5H11A—C11—H11C109.5
H2A—C2—H2C109.5H11B—C11—H11C109.5
H2B—C2—H2C109.5O4—C12—H12A109.5
F1—C3—F3106.7 (2)O4—C12—H12B109.5
F1—C3—F2106.6 (2)H12A—C12—H12B109.5
F3—C3—F2106.1 (3)O4—C12—H12C109.5
F1—C3—C1113.5 (3)H12A—C12—H12C109.5
F3—C3—C1110.6 (2)H12B—C12—H12C109.5
F2—C3—C1112.8 (2)
O1—Mg1—Li1—O2177.8 (2)O2—Li1—O4—C1247.5 (4)
O1i—Mg1—Li1—O282.68 (18)O1—Li1—O4—C1265.9 (4)
O2i—Mg1—Li1—O290.60 (17)O3—Li1—O4—C12167.8 (3)
O1i—Mg1—Li1—O195.15 (18)Mg1—Li1—O4—C1210.5 (5)
O2—Mg1—Li1—O1177.8 (2)Mg1—O1—C1—C26.4 (3)
O2i—Mg1—Li1—O191.57 (15)Li1—O1—C1—C2165.2 (2)
O1—Mg1—Li1—O393.8 (3)Mg1—O1—C1—C4114.8 (2)
O1i—Mg1—Li1—O31.3 (4)Li1—O1—C1—C473.6 (3)
O2—Mg1—Li1—O384.0 (3)Mg1—O1—C1—C3127.4 (2)
O2i—Mg1—Li1—O3174.6 (2)Li1—O1—C1—C344.2 (3)
O1—Mg1—Li1—O488.7 (3)O1—C1—C3—F1170.0 (2)
O1i—Mg1—Li1—O4176.1 (2)C2—C1—C3—F146.8 (3)
O2—Mg1—Li1—O493.5 (3)C4—C1—C3—F171.5 (3)
O2i—Mg1—Li1—O42.9 (4)O1—C1—C3—F350.1 (3)
O1i—Mg1—O1—C146.36 (19)C2—C1—C3—F373.1 (3)
O2—Mg1—O1—C1172.3 (2)C4—C1—C3—F3168.6 (2)
O2i—Mg1—O1—C164.7 (2)O1—C1—C3—F268.5 (3)
Li1—Mg1—O1—C1173.8 (3)C2—C1—C3—F2168.2 (2)
Li1i—Mg1—O1—C112.7 (3)C4—C1—C3—F250.0 (3)
O1i—Mg1—O1—Li1127.40 (14)O1—C1—C4—F445.1 (3)
O2—Mg1—O1—Li11.49 (14)C2—C1—C4—F4168.8 (2)
O2i—Mg1—O1—Li1121.59 (14)C3—C1—C4—F472.8 (3)
Li1i—Mg1—O1—Li1173.5 (2)O1—C1—C4—F574.5 (3)
O2—Li1—O1—C1172.63 (19)C2—C1—C4—F549.2 (3)
O3—Li1—O1—C146.9 (4)C3—C1—C4—F5167.7 (2)
O4—Li1—O1—C156.0 (4)O1—C1—C4—F6165.8 (2)
Mg1—Li1—O1—C1174.1 (2)C2—C1—C4—F670.5 (3)
O2—Li1—O1—Mg11.51 (14)C3—C1—C4—F648.0 (3)
O3—Li1—O1—Mg1127.2 (2)Li1—O2—C5—C6179.6 (2)
O4—Li1—O1—Mg1129.9 (2)Mg1—O2—C5—C61.2 (3)
O1—Li1—O2—C5177.9 (2)Li1—O2—C5—C859.6 (3)
O3—Li1—O2—C547.8 (4)Mg1—O2—C5—C8121.24 (19)
O4—Li1—O2—C552.7 (4)Li1—O2—C5—C759.5 (3)
Mg1—Li1—O2—C5179.4 (3)Mg1—O2—C5—C7119.70 (19)
O1—Li1—O2—Mg11.50 (14)O2—C5—C7—F755.3 (3)
O3—Li1—O2—Mg1131.6 (2)C6—C5—C7—F768.2 (3)
O4—Li1—O2—Mg1127.9 (2)C8—C5—C7—F7174.6 (2)
O1—Mg1—O2—C5177.90 (19)O2—C5—C7—F963.5 (3)
O1i—Mg1—O2—C546.9 (2)C6—C5—C7—F9172.9 (2)
O2i—Mg1—O2—C558.78 (18)C8—C5—C7—F955.7 (3)
Li1—Mg1—O2—C5179.4 (3)O2—C5—C7—F8175.3 (2)
Li1i—Mg1—O2—C56.4 (2)C6—C5—C7—F851.7 (3)
O1—Mg1—O2—Li11.51 (14)C8—C5—C7—F865.5 (3)
O1i—Mg1—O2—Li1132.53 (14)O2—C5—C8—F1063.4 (3)
O2i—Mg1—O2—Li1121.82 (14)C6—C5—C8—F1059.7 (3)
Li1i—Mg1—O2—Li1174.16 (18)C7—C5—C8—F10177.2 (2)
O2—Li1—O3—C1160.1 (5)O2—C5—C8—F12176.9 (2)
O1—Li1—O3—C1150.4 (5)C6—C5—C8—F1260.0 (3)
O4—Li1—O3—C11174.3 (4)C7—C5—C8—F1257.5 (3)
Mg1—Li1—O3—C117.4 (5)O2—C5—C8—F1156.0 (3)
O2—Li1—O3—C9129.6 (3)C6—C5—C8—F11179.1 (2)
O1—Li1—O3—C9119.9 (3)C7—C5—C8—F1163.4 (3)
O4—Li1—O3—C94.0 (3)C11—O3—C9—C10171.0 (4)
Mg1—Li1—O3—C9177.7 (3)Li1—O3—C9—C1017.2 (5)
O2—Li1—O4—C10109.4 (4)C12—O4—C10—C9176.4 (4)
O1—Li1—O4—C10137.2 (3)Li1—O4—C10—C923.6 (5)
O3—Li1—O4—C1010.9 (3)O3—C9—C10—O427.0 (6)
Mg1—Li1—O4—C10167.4 (4)
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Li2Mg(C4H3F6O)4(C4H10O2)2]
Mr942.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)233
a, b, c (Å)23.8629 (4), 9.5396 (6), 18.3700 (7)
β (°) 109.041 (2)
V3)3953.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.41 × 0.25 × 0.07
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10600, 3490, 2603
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.127, 1.06
No. of reflections3490
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.32

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Mg1—O11.9526 (14)Li1—O31.988 (4)
Mg1—O21.9551 (14)Li1—O42.019 (5)
Li1—O11.961 (4)Mg1—Li12.818 (4)
Li1—O21.942 (4)
O1—Mg1—O1i126.14 (10)O1—Li1—O4122.7 (2)
O1—Mg1—O287.54 (6)O2—Li1—O3120.0 (2)
O1—Mg1—O2i119.89 (6)O2—Li1—O4125.3 (2)
O2—Mg1—O2i119.61 (10)O3—Li1—O480.86 (17)
O1—Li1—O287.69 (16)Li1—Mg1—Li1i174.14 (18)
O1—Li1—O3125.3 (2)
Symmetry code: (i) x, y, z+3/2.
 

Acknowledgements

Financial support provided by the DFG (BU 2174/8-1) is gratefully acknowledged. The authors thank S. P. Westrip and the IUCr for the development of publCIF.

References

First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOskam, J. H., Fox, H. H., Yap, K. B., McConville, D. H., O'Dell, R., Lichtenstein, B. J. & Schrock, R. R. (1993). J. Organomet. Chem. 459, 185–197.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds