organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis[(3,5-di­phenyl-1H-pyrazol-1-yl)meth­yl]benzene

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, and bDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 5 July 2012; accepted 19 July 2012; online 28 July 2012)

The title compound, C38H30N4, a potentially mono- and bidentate ligand, does not seem to form palladium complexes similar to other poly(pyrazol-1-ylmeth­yl)benzenes due to the large steric size of the phenyl substituents on the pyrazole rings. The pyrazole rings have a 21.09 (5)° angle between their mean planes and exhibit a trans-like geometry in which the in-plane lone pairs of electrons on the 2-N nitrogen atoms point in opposite directions.

Related literature

For information about poly(pyrazol-1-ylmeth­yl)benzenes and the metal complexes they form, see: Hartshorn & Steel (1995[Hartshorn, M. C. & Steel, P. J. (1995). Aust. J. Chem. 48, 1587-1599.], 1997[Hartshorn, M. C. & Steel, P. J. (1997). Chem. Commun. pp. 541-542.], 1998[Hartshorn, M. C. & Steel, P. J. (1998). Organometallics, 17, 3487-3496.]); Motsoane et al. (2007[Motsoane, N. M., Guzei, I. A. & Darkwa, J. (2007). Z. Naturforsch. Teil B, 60, 323-330.]). For information on the related compounds 1,2-bis­[(3-(2,2′-bipyridin-6-yl)pyrazol-1-yl)meth­yl]benzene and 2,3-bis­[(3-(2-pyrid­yl)pyrazol-1-yl)meth­yl]naphthalene, see: Al-Rasbi et al. (2007[Al-Rasbi, N. K., Adams, H., Harding, L. P. & Ward, M. D. (2007). Eur. J. Inorg. Chem. pp. 4770-4780.]); Paul et al. (2003[Paul, R. L., Bell, Z. R., Jeffery, J. C., Harding, L. P., McCleverty, J. A. & Ward, M. D. (2003). Polyhedron, 22, 781-787.]). Geometrical parameters were checked with Mogul (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • C38H30N4

  • Mr = 542.66

  • Monoclinic, P 21 /c

  • a = 14.5338 (2) Å

  • b = 13.6779 (2) Å

  • c = 15.0051 (2) Å

  • β = 110.102 (1)°

  • V = 2801.18 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 100 K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.891, Tmax = 0.943

  • 44869 measured reflections

  • 5337 independent reflections

  • 4496 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.00

  • 5337 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter and ModiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and ModiCIFer (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter and ModiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

Poly(pyrazol-1-ylmethyl)benzenes were first reported by Hartshorn & Steel (1995) and have subsequently been used to prepare metal complexes with interesting coordination structures (Hartshorn & Steel, 1997; Hartshorn & Steel, 1998; Motsoane et al., 2007). The reactivity of these ligands depends on the steric size of substituents on the pyrazolyl ring. The phenyl substituents on the pyrazole rings of 1,2-bis(3,5-diphenylpyrazol -1-ylmethyl)benzene, compound (I), render the ligand sterically demanding and make it unable to ligate palladium complexes similarly to palladium complexes reported for less sterically crowded ligands where two ligands each bind to palladium in a monodentate fashion in a trans configuration (Motsoane et al., 2007).

The bond distances and angles in (I) are unremarkable as confirmed by a Mogul structural check (Bruno et al., 2002). The least squares planes defined by the pyrazole rings form a 21.09 (5)° angle between them. The lone pairs of electrons on N1 and N4 have a trans-like geometry and point in opposite directions of the disubstituted benzene ring with the N1—N2—N3—N4 torsion angle spanning 156.34 (10)°. The least squares planes of the two pyrazole rings form angles of 77.12 (4)° and 85.77 (4)° to the least squares plane of the central benzene ring (C17—C22). These angles and trans-like geometry are similar to those for the related compounds 1,2-bis((3-(2,2'-bipyridin-6-yl)pyrazol-1-yl)methyl)benzene with angles of 22.53°, 83.66°, and 85.34° and 2,3-bis((3-(2-pyridyl)pyrazol-1-yl)methyl)naphthalene with angles of 24.91°, 82.56°, and 82.56° (Al-Rasbi et al., 2007; Paul et al., 2003). The planes of the phenyl rings C1—C6 and C10—C15 form angles of 15.96 (6)° and 48.48 (4)° with the plane of the N1 pyrazole ring, and the planes of phenyl rings C24—C29 and C33—C38 form angles of 17.62 (6)° and 44.13 (3)° with the plane of the N3 pyrazole ring.

Related literature top

For information about poly(pyrazol-1-ylmethyl)benzenes and the metal complexes they form, see: Hartshorn & Steel (1995, 1997, 1998); Motsoane et al. (2007). For information on the related compounds 1,2-bis[(3-(2,2'-bipyridin-6-yl)pyrazol-1-yl)methyl]benzene and 2,3-bis[(3-(2-pyridyl)pyrazol-1-yl)methyl]naphthalene, see: Al-Rasbi et al. (2007); Paul et al.(2003). Geometrical parameters were checked with Mogul (Bruno et al., 2002).

Experimental top

To a mixture of 1,2-bis(bromomethyl)benzene (1.50 g; 3.78 mmol) and 3,5-diphenylpyrazole (0.83 g; 3.78 mmol) in benzene (40 ml) was added 40% aqueous NaOH (12 ml) and 40% aqueous tetrabutylammonium bromide (10 drops). The mixture was then refluxed for 18 h. The crude product was washed with water (3 × 30 ml). The organic layer was separated, dried over anhydrous MgSO4 and evaporated in vacuo to afford the product as a white solid. Yield = 1.80 g (88%). 1H NMR (CDCl3): d7.38 (m, 20H,Ph-pz); 7.14 (dd, 2H, 3J = 3.33 Hz, 4J = 1.8 Hz), 6.90 (dd, 2H, 3J = 3.33 Hz, 4J = 1.8 Hz), 6.65 (s, 2H, H4-pz).

Refinement top

All H-atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uĩso(H) = 1.2 times Ueq(bearing atom).

Default effective X—H distances for T = -173.0° C, C(sp2)–H=0.95, C(sp3)-2H=0.99.

Structure description top

Poly(pyrazol-1-ylmethyl)benzenes were first reported by Hartshorn & Steel (1995) and have subsequently been used to prepare metal complexes with interesting coordination structures (Hartshorn & Steel, 1997; Hartshorn & Steel, 1998; Motsoane et al., 2007). The reactivity of these ligands depends on the steric size of substituents on the pyrazolyl ring. The phenyl substituents on the pyrazole rings of 1,2-bis(3,5-diphenylpyrazol -1-ylmethyl)benzene, compound (I), render the ligand sterically demanding and make it unable to ligate palladium complexes similarly to palladium complexes reported for less sterically crowded ligands where two ligands each bind to palladium in a monodentate fashion in a trans configuration (Motsoane et al., 2007).

The bond distances and angles in (I) are unremarkable as confirmed by a Mogul structural check (Bruno et al., 2002). The least squares planes defined by the pyrazole rings form a 21.09 (5)° angle between them. The lone pairs of electrons on N1 and N4 have a trans-like geometry and point in opposite directions of the disubstituted benzene ring with the N1—N2—N3—N4 torsion angle spanning 156.34 (10)°. The least squares planes of the two pyrazole rings form angles of 77.12 (4)° and 85.77 (4)° to the least squares plane of the central benzene ring (C17—C22). These angles and trans-like geometry are similar to those for the related compounds 1,2-bis((3-(2,2'-bipyridin-6-yl)pyrazol-1-yl)methyl)benzene with angles of 22.53°, 83.66°, and 85.34° and 2,3-bis((3-(2-pyridyl)pyrazol-1-yl)methyl)naphthalene with angles of 24.91°, 82.56°, and 82.56° (Al-Rasbi et al., 2007; Paul et al., 2003). The planes of the phenyl rings C1—C6 and C10—C15 form angles of 15.96 (6)° and 48.48 (4)° with the plane of the N1 pyrazole ring, and the planes of phenyl rings C24—C29 and C33—C38 form angles of 17.62 (6)° and 44.13 (3)° with the plane of the N3 pyrazole ring.

For information about poly(pyrazol-1-ylmethyl)benzenes and the metal complexes they form, see: Hartshorn & Steel (1995, 1997, 1998); Motsoane et al. (2007). For information on the related compounds 1,2-bis[(3-(2,2'-bipyridin-6-yl)pyrazol-1-yl)methyl]benzene and 2,3-bis[(3-(2-pyridyl)pyrazol-1-yl)methyl]naphthalene, see: Al-Rasbi et al. (2007); Paul et al.(2003). Geometrical parameters were checked with Mogul (Bruno et al., 2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and ModiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) (Brandenburg, 1999). The thermal ellipsoids are shown at 50% probability level.
1,2-Bis[(3,5-diphenyl-1H-pyrazol-1-yl)methyl]benzene top
Crystal data top
C38H30N4F(000) = 1144
Mr = 542.66Dx = 1.287 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9916 reflections
a = 14.5338 (2) Åθ = 3.2–71.0°
b = 13.6779 (2) ŵ = 0.59 mm1
c = 15.0051 (2) ÅT = 100 K
β = 110.102 (1)°Block, colourless
V = 2801.18 (7) Å30.25 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5337 independent reflections
Radiation source: fine-focus sealed tube4496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
0.50° ω and 0.5 ° φ scansθmax = 71.8°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1717
Tmin = 0.891, Tmax = 0.943k = 1513
44869 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.8417P]
where P = (Fo2 + 2Fc2)/3
5337 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C38H30N4V = 2801.18 (7) Å3
Mr = 542.66Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.5338 (2) ŵ = 0.59 mm1
b = 13.6779 (2) ÅT = 100 K
c = 15.0051 (2) Å0.25 × 0.18 × 0.15 mm
β = 110.102 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5337 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4496 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.943Rint = 0.033
44869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
5337 reflectionsΔρmin = 0.21 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.07757 (7)0.35031 (8)0.18839 (7)0.0210 (2)
N21.07756 (7)0.25395 (8)0.20801 (7)0.0200 (2)
N30.73795 (7)0.03173 (8)0.00734 (7)0.0195 (2)
N40.74360 (7)0.06579 (8)0.01815 (7)0.0206 (2)
C11.19616 (9)0.48327 (9)0.23079 (9)0.0208 (3)
C21.28360 (9)0.51980 (10)0.29529 (9)0.0234 (3)
H21.32900.47630.33740.028*
C31.30470 (10)0.61878 (10)0.29848 (10)0.0283 (3)
H31.36440.64260.34260.034*
C41.23906 (11)0.68315 (10)0.23750 (10)0.0306 (3)
H41.25270.75120.24100.037*
C51.15329 (10)0.64754 (10)0.17133 (10)0.0302 (3)
H51.10890.69130.12840.036*
C61.13216 (10)0.54873 (10)0.16752 (10)0.0263 (3)
H61.07360.52500.12150.032*
C71.17025 (9)0.37968 (9)0.23249 (8)0.0198 (3)
C81.22945 (9)0.30099 (9)0.27897 (9)0.0209 (3)
H81.29760.30270.31460.025*
C91.16853 (9)0.22083 (9)0.26232 (8)0.0195 (3)
C101.19094 (9)0.11972 (9)0.29629 (8)0.0218 (3)
C111.13456 (10)0.07016 (10)0.34088 (9)0.0264 (3)
H111.08000.10180.34940.032*
C121.15790 (11)0.02499 (11)0.37277 (9)0.0324 (3)
H121.11850.05880.40180.039*
C131.23857 (12)0.07065 (11)0.36219 (10)0.0352 (4)
H131.25400.13610.38320.042*
C141.29684 (11)0.02087 (11)0.32089 (10)0.0339 (3)
H141.35320.05170.31540.041*
C151.27311 (10)0.07339 (10)0.28767 (9)0.0265 (3)
H151.31290.10680.25880.032*
C160.98932 (9)0.19824 (10)0.15939 (9)0.0217 (3)
H16A0.93160.23810.15680.026*
H16B0.98890.13890.19700.026*
C170.97927 (8)0.16768 (9)0.05909 (8)0.0187 (3)
C181.04919 (9)0.19193 (9)0.01894 (9)0.0206 (3)
H181.10450.22980.05410.025*
C191.03906 (9)0.16123 (10)0.07241 (9)0.0220 (3)
H191.08730.17820.09930.026*
C200.95880 (9)0.10598 (10)0.12399 (9)0.0230 (3)
H200.95160.08520.18640.028*
C210.88850 (9)0.08090 (10)0.08410 (9)0.0227 (3)
H210.83350.04270.11960.027*
C220.89784 (8)0.11112 (9)0.00696 (8)0.0187 (3)
C230.82463 (9)0.08275 (10)0.05394 (8)0.0208 (3)
H23A0.85810.04050.10920.025*
H23B0.80330.14270.07830.025*
C240.61658 (9)0.17018 (9)0.05221 (8)0.0197 (3)
C250.67272 (9)0.24614 (10)0.06940 (8)0.0215 (3)
H250.73380.23190.07660.026*
C260.64017 (9)0.34167 (10)0.07600 (9)0.0241 (3)
H260.67870.39250.08840.029*
C270.55158 (10)0.36397 (10)0.06469 (9)0.0256 (3)
H270.52950.42980.06890.031*
C280.49552 (9)0.28889 (10)0.04705 (9)0.0254 (3)
H280.43510.30360.03870.030*
C290.52705 (9)0.19336 (10)0.04154 (9)0.0224 (3)
H290.48770.14270.03040.027*
C300.64550 (9)0.06727 (9)0.05206 (8)0.0190 (3)
C310.58937 (9)0.01247 (9)0.09492 (8)0.0203 (3)
H310.52160.01270.13180.024*
C320.65325 (9)0.09332 (9)0.07265 (8)0.0191 (3)
C330.63314 (9)0.19631 (9)0.10079 (9)0.0194 (3)
C340.54958 (9)0.22212 (9)0.17678 (9)0.0216 (3)
H340.50570.17260.21080.026*
C350.52984 (10)0.31886 (10)0.20309 (9)0.0249 (3)
H350.47200.33550.25410.030*
C360.59422 (10)0.39170 (10)0.15529 (9)0.0247 (3)
H360.58120.45800.17410.030*
C370.67799 (9)0.36720 (10)0.07963 (9)0.0240 (3)
H370.72220.41690.04670.029*
C380.69709 (9)0.27049 (10)0.05219 (9)0.0214 (3)
H380.75410.25440.00000.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0204 (5)0.0217 (6)0.0207 (5)0.0014 (4)0.0069 (4)0.0012 (4)
N20.0181 (5)0.0224 (6)0.0187 (5)0.0024 (4)0.0053 (4)0.0012 (4)
N30.0158 (5)0.0204 (6)0.0216 (5)0.0019 (4)0.0053 (4)0.0002 (4)
N40.0184 (5)0.0201 (6)0.0231 (5)0.0017 (4)0.0067 (4)0.0000 (4)
C10.0209 (6)0.0227 (7)0.0223 (6)0.0005 (5)0.0121 (5)0.0029 (5)
C20.0226 (6)0.0275 (8)0.0218 (6)0.0020 (5)0.0099 (5)0.0024 (5)
C30.0329 (7)0.0309 (8)0.0256 (7)0.0100 (6)0.0157 (6)0.0079 (6)
C40.0437 (8)0.0217 (8)0.0353 (8)0.0055 (6)0.0251 (7)0.0043 (6)
C50.0347 (8)0.0246 (8)0.0367 (8)0.0049 (6)0.0193 (6)0.0054 (6)
C60.0236 (6)0.0275 (8)0.0288 (7)0.0008 (5)0.0102 (5)0.0011 (5)
C70.0177 (6)0.0243 (7)0.0178 (6)0.0000 (5)0.0068 (5)0.0023 (5)
C80.0165 (6)0.0255 (7)0.0194 (6)0.0011 (5)0.0044 (5)0.0017 (5)
C90.0174 (6)0.0248 (7)0.0164 (6)0.0005 (5)0.0057 (5)0.0012 (5)
C100.0230 (6)0.0226 (7)0.0159 (6)0.0035 (5)0.0016 (5)0.0028 (5)
C110.0268 (7)0.0278 (8)0.0210 (6)0.0064 (5)0.0037 (5)0.0009 (5)
C120.0394 (8)0.0288 (8)0.0220 (7)0.0123 (6)0.0016 (6)0.0018 (5)
C130.0486 (9)0.0211 (8)0.0236 (7)0.0018 (6)0.0033 (6)0.0001 (5)
C140.0356 (8)0.0307 (9)0.0283 (7)0.0070 (6)0.0018 (6)0.0042 (6)
C150.0260 (7)0.0275 (8)0.0236 (7)0.0002 (5)0.0052 (5)0.0022 (5)
C160.0161 (6)0.0271 (7)0.0205 (6)0.0050 (5)0.0046 (5)0.0022 (5)
C170.0167 (6)0.0181 (6)0.0196 (6)0.0021 (4)0.0042 (5)0.0020 (5)
C180.0154 (6)0.0225 (7)0.0219 (6)0.0009 (5)0.0040 (5)0.0001 (5)
C190.0184 (6)0.0254 (7)0.0234 (6)0.0024 (5)0.0089 (5)0.0039 (5)
C200.0246 (6)0.0256 (7)0.0178 (6)0.0023 (5)0.0060 (5)0.0010 (5)
C210.0197 (6)0.0238 (7)0.0217 (6)0.0022 (5)0.0035 (5)0.0022 (5)
C220.0157 (6)0.0191 (7)0.0198 (6)0.0015 (4)0.0041 (5)0.0021 (5)
C230.0168 (6)0.0238 (7)0.0195 (6)0.0034 (5)0.0034 (5)0.0012 (5)
C240.0189 (6)0.0235 (7)0.0150 (5)0.0023 (5)0.0036 (5)0.0006 (5)
C250.0193 (6)0.0243 (7)0.0210 (6)0.0027 (5)0.0070 (5)0.0011 (5)
C260.0270 (7)0.0219 (7)0.0237 (6)0.0047 (5)0.0089 (5)0.0007 (5)
C270.0301 (7)0.0231 (7)0.0236 (6)0.0023 (5)0.0092 (5)0.0004 (5)
C280.0229 (6)0.0309 (8)0.0240 (6)0.0024 (5)0.0104 (5)0.0010 (5)
C290.0207 (6)0.0251 (7)0.0215 (6)0.0021 (5)0.0073 (5)0.0020 (5)
C300.0163 (6)0.0232 (7)0.0179 (6)0.0016 (5)0.0064 (5)0.0023 (5)
C310.0156 (6)0.0233 (7)0.0206 (6)0.0021 (5)0.0043 (5)0.0019 (5)
C320.0165 (6)0.0232 (7)0.0182 (6)0.0020 (5)0.0067 (5)0.0018 (5)
C330.0183 (6)0.0221 (7)0.0206 (6)0.0014 (5)0.0101 (5)0.0015 (5)
C340.0205 (6)0.0236 (7)0.0202 (6)0.0004 (5)0.0063 (5)0.0025 (5)
C350.0243 (6)0.0285 (8)0.0202 (6)0.0048 (5)0.0057 (5)0.0023 (5)
C360.0300 (7)0.0209 (7)0.0257 (6)0.0031 (5)0.0128 (5)0.0032 (5)
C370.0238 (6)0.0230 (7)0.0270 (7)0.0031 (5)0.0111 (5)0.0031 (5)
C380.0175 (6)0.0253 (7)0.0219 (6)0.0015 (5)0.0074 (5)0.0010 (5)
Geometric parameters (Å, º) top
N1—C71.3420 (15)C17—C221.4052 (17)
N1—N21.3505 (15)C18—C191.3921 (18)
N2—C91.3700 (15)C18—H180.9500
N2—C161.4541 (15)C19—C201.3821 (18)
N3—N41.3495 (15)C19—H190.9500
N3—C301.3683 (15)C20—C211.3929 (18)
N3—C231.4571 (15)C20—H200.9500
N4—C321.3405 (15)C21—C221.3888 (17)
C1—C21.3986 (17)C21—H210.9500
C1—C61.4004 (18)C22—C231.5151 (16)
C1—C71.4686 (18)C23—H23A0.9900
C2—C31.385 (2)C23—H23B0.9900
C2—H20.9500C24—C251.3988 (17)
C3—C41.386 (2)C24—C291.4009 (17)
C3—H30.9500C24—C301.4688 (18)
C4—C51.388 (2)C25—C261.3815 (19)
C4—H40.9500C25—H250.9500
C5—C61.383 (2)C26—C271.3892 (19)
C5—H50.9500C26—H260.9500
C6—H60.9500C27—C281.3917 (19)
C7—C81.4045 (17)C27—H270.9500
C8—C91.3770 (17)C28—C291.3777 (19)
C8—H80.9500C28—H280.9500
C9—C101.4713 (18)C29—H290.9500
C10—C151.3967 (19)C30—C311.3814 (17)
C10—C111.3984 (18)C31—C321.4083 (17)
C11—C121.388 (2)C31—H310.9500
C11—H110.9500C32—C331.4708 (18)
C12—C131.385 (2)C33—C341.3956 (17)
C12—H120.9500C33—C381.3997 (17)
C13—C141.388 (2)C34—C351.3825 (19)
C13—H130.9500C34—H340.9500
C14—C151.383 (2)C35—C361.3861 (19)
C14—H140.9500C35—H350.9500
C15—H150.9500C36—C371.3904 (18)
C16—C171.5200 (17)C36—H360.9500
C16—H16A0.9900C37—C381.3848 (19)
C16—H16B0.9900C37—H370.9500
C17—C181.3880 (17)C38—H380.9500
C7—N1—N2105.07 (10)C19—C18—H18119.7
N1—N2—C9112.33 (10)C20—C19—C18119.97 (11)
N1—N2—C16117.92 (10)C20—C19—H19120.0
C9—N2—C16129.02 (11)C18—C19—H19120.0
N4—N3—C30112.48 (10)C19—C20—C21119.77 (11)
N4—N3—C23118.30 (10)C19—C20—H20120.1
C30—N3—C23129.01 (11)C21—C20—H20120.1
C32—N4—N3105.29 (10)C22—C21—C20120.75 (12)
C2—C1—C6118.33 (12)C22—C21—H21119.6
C2—C1—C7120.67 (12)C20—C21—H21119.6
C6—C1—C7120.93 (11)C21—C22—C17119.37 (11)
C3—C2—C1120.72 (13)C21—C22—C23122.32 (11)
C3—C2—H2119.6C17—C22—C23118.29 (10)
C1—C2—H2119.6N3—C23—C22114.98 (10)
C2—C3—C4120.26 (13)N3—C23—H23A108.5
C2—C3—H3119.9C22—C23—H23A108.5
C4—C3—H3119.9N3—C23—H23B108.5
C3—C4—C5119.63 (13)C22—C23—H23B108.5
C3—C4—H4120.2H23A—C23—H23B107.5
C5—C4—H4120.2C25—C24—C29118.47 (12)
C6—C5—C4120.31 (13)C25—C24—C30121.83 (11)
C6—C5—H5119.8C29—C24—C30119.55 (11)
C4—C5—H5119.8C26—C25—C24120.57 (12)
C5—C6—C1120.70 (13)C26—C25—H25119.7
C5—C6—H6119.7C24—C25—H25119.7
C1—C6—H6119.7C25—C26—C27120.52 (12)
N1—C7—C8110.81 (11)C25—C26—H26119.7
N1—C7—C1120.01 (11)C27—C26—H26119.7
C8—C7—C1129.12 (11)C26—C27—C28119.27 (13)
C9—C8—C7105.91 (11)C26—C27—H27120.4
C9—C8—H8127.0C28—C27—H27120.4
C7—C8—H8127.0C29—C28—C27120.45 (12)
N2—C9—C8105.88 (11)C29—C28—H28119.8
N2—C9—C10124.78 (11)C27—C28—H28119.8
C8—C9—C10129.32 (11)C28—C29—C24120.71 (12)
C15—C10—C11119.00 (13)C28—C29—H29119.6
C15—C10—C9119.26 (12)C24—C29—H29119.6
C11—C10—C9121.68 (12)N3—C30—C31105.72 (11)
C12—C11—C10120.37 (13)N3—C30—C24125.00 (11)
C12—C11—H11119.8C31—C30—C24129.28 (11)
C10—C11—H11119.8C30—C31—C32105.90 (10)
C11—C12—C13119.97 (14)C30—C31—H31127.1
C11—C12—H12120.0C32—C31—H31127.1
C13—C12—H12120.0N4—C32—C31110.60 (11)
C12—C13—C14120.04 (14)N4—C32—C33120.04 (11)
C12—C13—H13120.0C31—C32—C33129.36 (11)
C14—C13—H13120.0C34—C33—C38118.54 (12)
C15—C14—C13120.25 (14)C34—C33—C32120.53 (11)
C15—C14—H14119.9C38—C33—C32120.92 (11)
C13—C14—H14119.9C35—C34—C33120.82 (12)
C14—C15—C10120.32 (13)C35—C34—H34119.6
C14—C15—H15119.8C33—C34—H34119.6
C10—C15—H15119.8C34—C35—C36120.22 (12)
N2—C16—C17114.13 (10)C34—C35—H35119.9
N2—C16—H16A108.7C36—C35—H35119.9
C17—C16—H16A108.7C35—C36—C37119.68 (12)
N2—C16—H16B108.7C35—C36—H36120.2
C17—C16—H16B108.7C37—C36—H36120.2
H16A—C16—H16B107.6C38—C37—C36120.18 (12)
C18—C17—C22119.48 (11)C38—C37—H37119.9
C18—C17—C16121.91 (11)C36—C37—H37119.9
C22—C17—C16118.59 (10)C37—C38—C33120.54 (12)
C17—C18—C19120.65 (11)C37—C38—H38119.7
C17—C18—H18119.7C33—C38—H38119.7
C7—N1—N2—C91.03 (13)C19—C20—C21—C220.26 (19)
C7—N1—N2—C16172.16 (10)C20—C21—C22—C170.05 (19)
C30—N3—N4—C321.25 (13)C20—C21—C22—C23178.07 (12)
C23—N3—N4—C32176.48 (10)C18—C17—C22—C210.34 (18)
C6—C1—C2—C32.09 (18)C16—C17—C22—C21178.73 (11)
C7—C1—C2—C3175.13 (11)C18—C17—C22—C23177.85 (11)
C1—C2—C3—C40.03 (19)C16—C17—C22—C230.54 (17)
C2—C3—C4—C51.84 (19)N4—N3—C23—C2283.93 (13)
C3—C4—C5—C61.5 (2)C30—N3—C23—C22101.75 (14)
C4—C5—C6—C10.7 (2)C21—C22—C23—N37.11 (18)
C2—C1—C6—C52.44 (18)C17—C22—C23—N3174.76 (11)
C7—C1—C6—C5174.77 (12)C29—C24—C25—C260.24 (18)
N2—N1—C7—C80.96 (13)C30—C24—C25—C26175.24 (11)
N2—N1—C7—C1176.53 (10)C24—C25—C26—C270.67 (19)
C2—C1—C7—N1163.03 (11)C25—C26—C27—C280.32 (19)
C6—C1—C7—N114.11 (17)C26—C27—C28—C290.48 (19)
C2—C1—C7—C813.94 (19)C27—C28—C29—C240.92 (19)
C6—C1—C7—C8168.91 (12)C25—C24—C29—C280.55 (18)
N1—C7—C8—C90.56 (14)C30—C24—C29—C28176.14 (11)
C1—C7—C8—C9176.64 (12)N4—N3—C30—C310.82 (13)
N1—N2—C9—C80.70 (13)C23—N3—C30—C31175.41 (11)
C16—N2—C9—C8170.59 (11)N4—N3—C30—C24179.45 (11)
N1—N2—C9—C10178.87 (11)C23—N3—C30—C244.86 (19)
C16—N2—C9—C1011.24 (19)C25—C24—C30—N345.84 (17)
C7—C8—C9—N20.08 (13)C29—C24—C30—N3138.73 (12)
C7—C8—C9—C10178.13 (12)C25—C24—C30—C31133.82 (13)
N2—C9—C10—C15133.94 (13)C29—C24—C30—C3141.61 (18)
C8—C9—C10—C1548.33 (18)N3—C30—C31—C320.06 (13)
N2—C9—C10—C1148.95 (17)C24—C30—C31—C32179.77 (12)
C8—C9—C10—C11128.77 (14)N3—N4—C32—C311.19 (13)
C15—C10—C11—C122.44 (18)N3—N4—C32—C33178.62 (10)
C9—C10—C11—C12179.55 (11)C30—C31—C32—N40.72 (14)
C10—C11—C12—C131.29 (19)C30—C31—C32—C33179.07 (12)
C11—C12—C13—C140.9 (2)N4—C32—C33—C34162.24 (11)
C12—C13—C14—C151.9 (2)C31—C32—C33—C3417.52 (19)
C13—C14—C15—C100.7 (2)N4—C32—C33—C3817.77 (17)
C11—C10—C15—C141.45 (19)C31—C32—C33—C38162.47 (12)
C9—C10—C15—C14178.63 (11)C38—C33—C34—C350.53 (18)
N1—N2—C16—C1780.61 (14)C32—C33—C34—C35179.46 (11)
C9—N2—C16—C1788.81 (15)C33—C34—C35—C361.34 (19)
N2—C16—C17—C180.12 (17)C34—C35—C36—C371.10 (19)
N2—C16—C17—C22178.22 (11)C35—C36—C37—C380.05 (19)
C22—C17—C18—C190.35 (19)C36—C37—C38—C330.76 (18)
C16—C17—C18—C19178.68 (12)C34—C33—C38—C370.52 (18)
C17—C18—C19—C200.05 (19)C32—C33—C38—C37179.49 (11)
C18—C19—C20—C210.25 (19)

Experimental details

Crystal data
Chemical formulaC38H30N4
Mr542.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.5338 (2), 13.6779 (2), 15.0051 (2)
β (°) 110.102 (1)
V3)2801.18 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.891, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
44869, 5337, 4496
Rint0.033
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.00
No. of reflections5337
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and ModiCIFer (Guzei, 2007).

Selected geometric parameters (Å, º) top
N1—C71.3420 (15)N3—N41.3495 (15)
N1—N21.3505 (15)N3—C301.3683 (15)
N2—C91.3700 (15)N3—C231.4571 (15)
N2—C161.4541 (15)N4—C321.3405 (15)
C7—N1—N2105.07 (10)N4—N3—C30112.48 (10)
N1—N2—C9112.33 (10)N4—N3—C23118.30 (10)
N1—N2—C16117.92 (10)C30—N3—C23129.01 (11)
C9—N2—C16129.02 (11)C32—N4—N3105.29 (10)
 

Acknowledgements

The authors would like to thank the University of Johannesburg for support.

References

First citationAl-Rasbi, N. K., Adams, H., Harding, L. P. & Ward, M. D. (2007). Eur. J. Inorg. Chem. pp. 4770–4780.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter and ModiCIFer. Molecular Structure Laboratory, University of Wisconsin–Madison, Madison, Wisconsin, USA.  Google Scholar
First citationHartshorn, M. C. & Steel, P. J. (1995). Aust. J. Chem. 48, 1587–1599.  CSD CrossRef CAS Web of Science Google Scholar
First citationHartshorn, M. C. & Steel, P. J. (1997). Chem. Commun. pp. 541–542.  CSD CrossRef Web of Science Google Scholar
First citationHartshorn, M. C. & Steel, P. J. (1998). Organometallics, 17, 3487–3496.  Web of Science CSD CrossRef CAS Google Scholar
First citationMotsoane, N. M., Guzei, I. A. & Darkwa, J. (2007). Z. Naturforsch. Teil B, 60, 323-330.  Google Scholar
First citationPaul, R. L., Bell, Z. R., Jeffery, J. C., Harding, L. P., McCleverty, J. A. & Ward, M. D. (2003). Polyhedron, 22, 781–787.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds