organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-Oxo­tetra­hydro­furan-3-aminium bromide1

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 11 July 2012; accepted 17 July 2012; online 25 July 2012)

In the title HBr salt of (S)-homoserine lactone, C4H8NO2+·Br, the five-membered ring has an envelope conformation, with the –CH2– C atom adjacent to the N-substituted C atom at the flap position. The four-atom mean plane (r.m.s. deviation = 0.005 Å) of the envelope forms a dihedral angle of 32.12 (9)° with the three-atom flap plane. The distorted square-pyramidal coordination about the anion involves five surrounding cations, with the square base defined by three N—H⋯Br hydrogen bonds [Br⋯N = 3.3046 (10), 3.3407 (12) and 3.3644 (13) Å] and near-contact with an H atom attached to C [Br⋯C = 3.739 (1) Å]. Another Br⋯C contact of 3.427 (1) Å defines the apex. There is also an N—H⋯O hydrogen bond present linking the cations.

Related literature

For related crystal structures, see: Bocelli & Grenier-Loustalot (1981[Bocelli, G. & Grenier-Loustalot, M. F. (1981). Acta Cryst. B37, 2106-2108.]); Papaioannou et al. (1990[Papaioannou, D., Barlos, K., Francis, G. W., Brekke, T., Aksnes, D. W. & Maartmann-Moe, K. (1990). Acta Chem. Scand. 44, 189-1894.]). For the synthesis of the title compound, see: Armstrong (1948[Armstrong, M. D. (1948). J. Am. Chem. Soc. 70, 1756-1759.]); Cowell (1996[Cowell, S. M. (1996). PhD Dissertation, Louisiana State University, Baton Rouge, USA.]). For the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C4H8NO2+·Br

  • Mr = 182.02

  • Orthorhombic, P 21 21 21

  • a = 6.1425 (1) Å

  • b = 9.4196 (2) Å

  • c = 11.0394 (3) Å

  • V = 638.74 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.35 mm−1

  • T = 90 K

  • 0.25 × 0.25 × 0.22 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.300, Tmax = 0.336

  • 4072 measured reflections

  • 4072 independent reflections

  • 3915 reflections with I > 2σ(I)

  • Rint = 0

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.049

  • S = 1.07

  • 4072 reflections

  • 76 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.74 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) and Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]), with 1724 Friedel pairs

  • Flack parameter: 0.030 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.91 2.47 3.3407 (12) 161
N1—H1B⋯Br1ii 0.91 2.41 3.3046 (10) 168
N1—H1C⋯Br1iii 0.91 2.51 3.3644 (13) 157
N1—H1C⋯O1iii 0.91 2.5 3.0050 (14) 115
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: IDEAL (Gould et al., 1988[Gould, R. O., Moulden, N., Taylor, N. & Taylor, P. (1988). IDEAL. Department of Chemistry, University of Edinburgh, Scotland.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure of the racemate of title compound I was determined at 295 K by Bocelli & Grenier-Loustalot (1981; BAKHAW, Allen, 2002); the geometries of the cation in BAKHAW and I are similar, as characterized by least-squares fit of all non-hydrogen atoms in the cation (δr.m.s. = 0.025; Gould et al., 1988). In addition, the envelope flap angles are similar (31.0° versus 32.6°). The racemate at 295 K has a volume per formula unit of 162.3 Å3, whereas pure enantiomer I at 90 K has a volume per formula unit of 159.7 Å3, a decrease of about 1.6%.

The chloride analog of I (TADTAT; Papaioannou et al., 1990) crystallizes in the same space group as I and with similar lattice constants, but the geometries of the cation differ slightly (δr.m.s. = 0.094), and the envelope flap angles also differ: 17.58° versus 32.6°.

There are no intramolecular H-bonds in I. However, all three H-atoms of the ammonium group participate in intermolecular H-bonding to form a three-dimensional network. These H atoms bond to three different anions [N···Br = 3.3046 (10), 3.3407 (12) and 3.3644 (13) Å] and to an ether oxygen: N···O1 = 3.0050 (14) Å.

Related literature top

For related crystal structures, see: Bocelli & Grenier-Loustalot (1981); Papaioannou et al. (1990). For the synthesis of the title compound, see: Armstrong (1948); Cowell (1996). For the Cambridge Structural Database, see: Allen (2002).

Experimental top

The earliest preparation of racemic and enantiomerically pure homoserine lactones was reported by Armstrong (1948). Cowell recrystallized I from methanol and provided the crystal used for data collection (Cowell, 1996).

Refinement top

Absolute configuration was determined by analysis of 1724 Bijvoet pairs: Flack (Flack, 1983) parameter = 0.030 (7), Hooft (Hooft et al., 2008) parameter = 0.035 (5) and P2(true) = 1.00. All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 1.00 (C2) and 0.99 (C3, C4), and N—H distances 0.91 Å, with Uiso = 1.2Ueq for each C—H and Uiso = 1.5Ueq for each N—H, thereafter refined as riding. A torsional parameter for the ammonium group was also refined.

Structure description top

The structure of the racemate of title compound I was determined at 295 K by Bocelli & Grenier-Loustalot (1981; BAKHAW, Allen, 2002); the geometries of the cation in BAKHAW and I are similar, as characterized by least-squares fit of all non-hydrogen atoms in the cation (δr.m.s. = 0.025; Gould et al., 1988). In addition, the envelope flap angles are similar (31.0° versus 32.6°). The racemate at 295 K has a volume per formula unit of 162.3 Å3, whereas pure enantiomer I at 90 K has a volume per formula unit of 159.7 Å3, a decrease of about 1.6%.

The chloride analog of I (TADTAT; Papaioannou et al., 1990) crystallizes in the same space group as I and with similar lattice constants, but the geometries of the cation differ slightly (δr.m.s. = 0.094), and the envelope flap angles also differ: 17.58° versus 32.6°.

There are no intramolecular H-bonds in I. However, all three H-atoms of the ammonium group participate in intermolecular H-bonding to form a three-dimensional network. These H atoms bond to three different anions [N···Br = 3.3046 (10), 3.3407 (12) and 3.3644 (13) Å] and to an ether oxygen: N···O1 = 3.0050 (14) Å.

For related crystal structures, see: Bocelli & Grenier-Loustalot (1981); Papaioannou et al. (1990). For the synthesis of the title compound, see: Armstrong (1948); Cowell (1996). For the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: IDEAL (Gould et al., 1988) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound (50% probability displacement ellipsoids)
(S)-2-Oxotetrahydrofuran-3-aminium bromide top
Crystal data top
C4H8NO2+·BrDx = 1.893 Mg m3
Mr = 182.02Melting point: 514 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2320 reflections
a = 6.1425 (1) Åθ = 2.6–41.2°
b = 9.4196 (2) ŵ = 6.35 mm1
c = 11.0394 (3) ÅT = 90 K
V = 638.74 (2) Å3Prism, colourless
Z = 40.25 × 0.25 × 0.22 mm
F(000) = 360
Data collection top
Nonius KappaCCD
diffractometer
4072 independent reflections
Radiation source: sealed tube3915 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0
Detector resolution: 9 pixels mm-1θmax = 40.8°, θmin = 2.8°
CCD rotation images, thick slices scansh = 1111
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1617
Tmin = 0.300, Tmax = 0.336l = 2020
4072 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0124P)2 + 0.6239P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.68 e Å3
4072 reflectionsΔρmin = 0.74 e Å3
76 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0198 (9)
0 constraintsAbsolute structure: Flack (1983) and Hooft et al. (2008), with 1724 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.030 (7)
Secondary atom site location: difference Fourier map
Crystal data top
C4H8NO2+·BrV = 638.74 (2) Å3
Mr = 182.02Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1425 (1) ŵ = 6.35 mm1
b = 9.4196 (2) ÅT = 90 K
c = 11.0394 (3) Å0.25 × 0.25 × 0.22 mm
Data collection top
Nonius KappaCCD
diffractometer
4072 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3915 reflections with I > 2σ(I)
Tmin = 0.300, Tmax = 0.336Rint = 0
4072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.049Δρmax = 0.68 e Å3
S = 1.07Δρmin = 0.74 e Å3
4072 reflectionsAbsolute structure: Flack (1983) and Hooft et al. (2008), with 1724 Friedel pairs
76 parametersAbsolute structure parameter: 0.030 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.398524 (19)0.035758 (13)0.012904 (11)0.00918 (3)
C10.73144 (19)0.01395 (12)0.23546 (12)0.00862 (18)
C20.64286 (18)0.13091 (12)0.27008 (11)0.00776 (17)
H20.5050.14940.22460.009*
C30.8183 (2)0.23236 (13)0.22670 (12)0.01110 (19)
H3A0.93190.24680.28910.013*
H3B0.75640.32540.20320.013*
C40.9071 (3)0.15234 (14)0.11731 (11)0.01289 (19)
H4A0.82450.17720.04330.015*
H4B1.06260.17520.10420.015*
N10.5994 (2)0.13823 (11)0.40235 (9)0.00966 (14)
H1A0.47550.08920.41970.014*
H1B0.58280.23050.42490.014*
H1C0.71310.09940.44350.014*
O10.87958 (17)0.00107 (10)0.14696 (9)0.01107 (15)
O20.68198 (18)0.12734 (10)0.27816 (10)0.01255 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.00741 (4)0.00830 (4)0.01182 (4)0.00006 (4)0.00068 (3)0.00165 (3)
C10.0080 (4)0.0070 (5)0.0109 (4)0.0001 (3)0.0007 (3)0.0011 (3)
C20.0082 (4)0.0052 (4)0.0099 (4)0.0006 (3)0.0002 (3)0.0001 (3)
C30.0133 (5)0.0066 (4)0.0134 (5)0.0012 (4)0.0025 (4)0.0011 (3)
C40.0159 (5)0.0101 (4)0.0126 (4)0.0012 (5)0.0040 (5)0.0010 (3)
N10.0093 (3)0.0084 (3)0.0112 (4)0.0007 (4)0.0026 (4)0.0013 (3)
O10.0120 (4)0.0086 (3)0.0126 (3)0.0003 (3)0.0033 (3)0.0017 (3)
O20.0132 (4)0.0063 (3)0.0181 (4)0.0017 (3)0.0006 (3)0.0009 (3)
Geometric parameters (Å, º) top
C1—O21.2063 (15)C3—H3B0.99
C1—O11.3427 (16)C4—O11.4717 (16)
C1—C21.5179 (17)C4—H4A0.99
C2—N11.4861 (16)C4—H4B0.99
C2—C31.5178 (17)N1—H1A0.91
C2—H21N1—H1B0.91
C3—C41.5244 (18)N1—H1C0.91
C3—H3A0.99
O2—C1—O1123.25 (12)C4—C3—H3B111.6
O2—C1—C2127.40 (12)H3A—C3—H3B109.4
O1—C1—C2109.35 (10)O1—C4—C3105.16 (10)
O2—C1—Br196.27 (8)O1—C4—H4A110.7
O1—C1—Br180.12 (7)C3—C4—H4A110.7
C2—C1—Br192.37 (7)O1—C4—H4B110.7
N1—C2—C1110.70 (10)C3—C4—H4B110.7
N1—C2—C3114.11 (10)H4A—C4—H4B108.8
C1—C2—C3103.42 (10)C2—N1—H1A109.5
N1—C2—H2109.5C2—N1—H1B109.5
C1—C2—H2109.5H1A—N1—H1B109.5
C3—C2—H2109.5C2—N1—H1C109.5
C2—C3—C4101.11 (10)H1A—N1—H1C109.5
C2—C3—H3A111.6H1B—N1—H1C109.5
C4—C3—H3A111.6C1—O1—C4109.98 (10)
C2—C3—H3B111.6
O2—C1—C2—N135.80 (17)C1—C2—C3—C431.16 (13)
O1—C1—C2—N1144.09 (10)C2—C3—C4—O131.04 (14)
Br1—C1—C2—N1135.54 (8)O2—C1—O1—C4178.50 (13)
O2—C1—C2—C3158.41 (13)C2—C1—O1—C41.40 (14)
O1—C1—C2—C321.48 (13)Br1—C1—O1—C490.45 (9)
Br1—C1—C2—C3101.84 (8)C3—C4—O1—C119.30 (15)
N1—C2—C3—C4151.48 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.912.473.3407 (12)161
N1—H1B···Br1ii0.912.413.3046 (10)168
N1—H1C···Br1iii0.912.513.3644 (13)157
N1—H1C···O1iii0.912.53.0050 (14)115
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H8NO2+·Br
Mr182.02
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)6.1425 (1), 9.4196 (2), 11.0394 (3)
V3)638.74 (2)
Z4
Radiation typeMo Kα
µ (mm1)6.35
Crystal size (mm)0.25 × 0.25 × 0.22
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.300, 0.336
No. of measured, independent and
observed [I > 2σ(I)] reflections
4072, 4072, 3915
Rint0
(sin θ/λ)max1)0.918
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.049, 1.07
No. of reflections4072
No. of parameters76
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.74
Absolute structureFlack (1983) and Hooft et al. (2008), with 1724 Friedel pairs
Absolute structure parameter0.030 (7)

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), IDEAL (Gould et al., 1988) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.912.473.3407 (12)161
N1—H1B···Br1ii0.912.413.3046 (10)168
N1—H1C···Br1iii0.912.513.3644 (13)157.4
N1—H1C···O1iii0.912.53.0050 (14)115.1
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+3/2, y, z+1/2.
 

Footnotes

1CAS 15295-77-9.

Acknowledgements

The purchase of the diffractometer was made possible by Grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArmstrong, M. D. (1948). J. Am. Chem. Soc. 70, 1756–1759.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBocelli, G. & Grenier-Loustalot, M. F. (1981). Acta Cryst. B37, 2106–2108.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCowell, S. M. (1996). PhD Dissertation, Louisiana State University, Baton Rouge, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGould, R. O., Moulden, N., Taylor, N. & Taylor, P. (1988). IDEAL. Department of Chemistry, University of Edinburgh, Scotland.  Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPapaioannou, D., Barlos, K., Francis, G. W., Brekke, T., Aksnes, D. W. & Maartmann-Moe, K. (1990). Acta Chem. Scand. 44, 189–1894.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds