organic compounds
(S)-2-Oxotetrahydrofuran-3-aminium bromide1
aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu
In the title HBr salt of (S)-homoserine lactone, C4H8NO2+·Br−, the five-membered ring has an with the –CH2– C atom adjacent to the N-substituted C atom at the flap position. The four-atom mean plane (r.m.s. deviation = 0.005 Å) of the envelope forms a dihedral angle of 32.12 (9)° with the three-atom flap plane. The distorted square-pyramidal coordination about the anion involves five surrounding cations, with the square base defined by three N—H⋯Br hydrogen bonds [Br⋯N = 3.3046 (10), 3.3407 (12) and 3.3644 (13) Å] and near-contact with an H atom attached to C [Br⋯C = 3.739 (1) Å]. Another Br⋯C contact of 3.427 (1) Å defines the apex. There is also an N—H⋯O hydrogen bond present linking the cations.
Related literature
For related crystal structures, see: Bocelli & Grenier-Loustalot (1981); Papaioannou et al. (1990). For the synthesis of the title compound, see: Armstrong (1948); Cowell (1996). For the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: IDEAL (Gould et al., 1988) and WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812032552/zq2176sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812032552/zq2176Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812032552/zq2176Isup3.cml
The earliest preparation of racemic and
homoserine was reported by Armstrong (1948). Cowell recrystallized I from methanol and provided the crystal used for data collection (Cowell, 1996).Absolute configuration was determined by analysis of 1724 Bijvoet pairs: Flack (Flack, 1983) parameter = 0.030 (7), Hooft (Hooft et al., 2008) parameter = 0.035 (5) and P2(true) = 1.00. All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 1.00 (C2) and 0.99 (C3, C4), and N—H distances 0.91 Å, with Uiso = 1.2Ueq for each C—H and Uiso = 1.5Ueq for each N—H, thereafter refined as riding. A torsional parameter for the ammonium group was also refined.
The structure of the racemate of title compound I was determined at 295 K by Bocelli & Grenier-Loustalot (1981; BAKHAW, Allen, 2002); the geometries of the cation in BAKHAW and I are similar, as characterized by least-squares fit of all non-hydrogen atoms in the cation (δr.m.s. = 0.025; Gould et al., 1988). In addition, the envelope flap angles are similar (31.0° versus 32.6°). The racemate at 295 K has a volume per formula unit of 162.3 Å3, whereas pure I at 90 K has a volume per formula unit of 159.7 Å3, a decrease of about 1.6%.
The chloride analog of I (TADTAT; Papaioannou et al., 1990) crystallizes in the same δr.m.s. = 0.094), and the envelope flap angles also differ: 17.58° versus 32.6°.
as I and with similar lattice constants, but the geometries of the cation differ slightly (There are no intramolecular H-bonds in I. However, all three H-atoms of the ammonium group participate in intermolecular H-bonding to form a three-dimensional network. These H atoms bond to three different anions [N···Br = 3.3046 (10), 3.3407 (12) and 3.3644 (13) Å] and to an ether oxygen: N···O1 = 3.0050 (14) Å.
For related crystal structures, see: Bocelli & Grenier-Loustalot (1981); Papaioannou et al. (1990). For the synthesis of the title compound, see: Armstrong (1948); Cowell (1996). For the Cambridge Structural Database, see: Allen (2002).
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: IDEAL (Gould et al., 1988) and WinGX (Farrugia, 1999).C4H8NO2+·Br− | Dx = 1.893 Mg m−3 |
Mr = 182.02 | Melting point: 514 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2320 reflections |
a = 6.1425 (1) Å | θ = 2.6–41.2° |
b = 9.4196 (2) Å | µ = 6.35 mm−1 |
c = 11.0394 (3) Å | T = 90 K |
V = 638.74 (2) Å3 | Prism, colourless |
Z = 4 | 0.25 × 0.25 × 0.22 mm |
F(000) = 360 |
Nonius KappaCCD diffractometer | 4072 independent reflections |
Radiation source: sealed tube | 3915 reflections with I > 2σ(I) |
Horizonally mounted graphite crystal monochromator | Rint = 0 |
Detector resolution: 9 pixels mm-1 | θmax = 40.8°, θmin = 2.8° |
CCD rotation images, thick slices scans | h = −11→11 |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | k = −16→17 |
Tmin = 0.300, Tmax = 0.336 | l = −20→20 |
4072 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0124P)2 + 0.6239P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.049 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.68 e Å−3 |
4072 reflections | Δρmin = −0.74 e Å−3 |
76 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0198 (9) |
0 constraints | Absolute structure: Flack (1983) and Hooft et al. (2008), with 1724 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.030 (7) |
Secondary atom site location: difference Fourier map |
C4H8NO2+·Br− | V = 638.74 (2) Å3 |
Mr = 182.02 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.1425 (1) Å | µ = 6.35 mm−1 |
b = 9.4196 (2) Å | T = 90 K |
c = 11.0394 (3) Å | 0.25 × 0.25 × 0.22 mm |
Nonius KappaCCD diffractometer | 4072 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | 3915 reflections with I > 2σ(I) |
Tmin = 0.300, Tmax = 0.336 | Rint = 0 |
4072 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
wR(F2) = 0.049 | Δρmax = 0.68 e Å−3 |
S = 1.07 | Δρmin = −0.74 e Å−3 |
4072 reflections | Absolute structure: Flack (1983) and Hooft et al. (2008), with 1724 Friedel pairs |
76 parameters | Absolute structure parameter: 0.030 (7) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.398524 (19) | −0.035758 (13) | −0.012904 (11) | 0.00918 (3) | |
C1 | 0.73144 (19) | −0.01395 (12) | 0.23546 (12) | 0.00862 (18) | |
C2 | 0.64286 (18) | 0.13091 (12) | 0.27008 (11) | 0.00776 (17) | |
H2 | 0.505 | 0.1494 | 0.2246 | 0.009* | |
C3 | 0.8183 (2) | 0.23236 (13) | 0.22670 (12) | 0.01110 (19) | |
H3A | 0.9319 | 0.2468 | 0.2891 | 0.013* | |
H3B | 0.7564 | 0.3254 | 0.2032 | 0.013* | |
C4 | 0.9071 (3) | 0.15234 (14) | 0.11731 (11) | 0.01289 (19) | |
H4A | 0.8245 | 0.1772 | 0.0433 | 0.015* | |
H4B | 1.0626 | 0.1752 | 0.1042 | 0.015* | |
N1 | 0.5994 (2) | 0.13823 (11) | 0.40235 (9) | 0.00966 (14) | |
H1A | 0.4755 | 0.0892 | 0.4197 | 0.014* | |
H1B | 0.5828 | 0.2305 | 0.4249 | 0.014* | |
H1C | 0.7131 | 0.0994 | 0.4435 | 0.014* | |
O1 | 0.87958 (17) | 0.00107 (10) | 0.14696 (9) | 0.01107 (15) | |
O2 | 0.68198 (18) | −0.12734 (10) | 0.27816 (10) | 0.01255 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.00741 (4) | 0.00830 (4) | 0.01182 (4) | −0.00006 (4) | −0.00068 (3) | 0.00165 (3) |
C1 | 0.0080 (4) | 0.0070 (5) | 0.0109 (4) | −0.0001 (3) | −0.0007 (3) | −0.0011 (3) |
C2 | 0.0082 (4) | 0.0052 (4) | 0.0099 (4) | 0.0006 (3) | 0.0002 (3) | −0.0001 (3) |
C3 | 0.0133 (5) | 0.0066 (4) | 0.0134 (5) | −0.0012 (4) | 0.0025 (4) | 0.0011 (3) |
C4 | 0.0159 (5) | 0.0101 (4) | 0.0126 (4) | −0.0012 (5) | 0.0040 (5) | 0.0010 (3) |
N1 | 0.0093 (3) | 0.0084 (3) | 0.0112 (4) | −0.0007 (4) | 0.0026 (4) | −0.0013 (3) |
O1 | 0.0120 (4) | 0.0086 (3) | 0.0126 (3) | 0.0003 (3) | 0.0033 (3) | −0.0017 (3) |
O2 | 0.0132 (4) | 0.0063 (3) | 0.0181 (4) | −0.0017 (3) | −0.0006 (3) | 0.0009 (3) |
C1—O2 | 1.2063 (15) | C3—H3B | 0.99 |
C1—O1 | 1.3427 (16) | C4—O1 | 1.4717 (16) |
C1—C2 | 1.5179 (17) | C4—H4A | 0.99 |
C2—N1 | 1.4861 (16) | C4—H4B | 0.99 |
C2—C3 | 1.5178 (17) | N1—H1A | 0.91 |
C2—H2 | 1 | N1—H1B | 0.91 |
C3—C4 | 1.5244 (18) | N1—H1C | 0.91 |
C3—H3A | 0.99 | ||
O2—C1—O1 | 123.25 (12) | C4—C3—H3B | 111.6 |
O2—C1—C2 | 127.40 (12) | H3A—C3—H3B | 109.4 |
O1—C1—C2 | 109.35 (10) | O1—C4—C3 | 105.16 (10) |
O2—C1—Br1 | 96.27 (8) | O1—C4—H4A | 110.7 |
O1—C1—Br1 | 80.12 (7) | C3—C4—H4A | 110.7 |
C2—C1—Br1 | 92.37 (7) | O1—C4—H4B | 110.7 |
N1—C2—C1 | 110.70 (10) | C3—C4—H4B | 110.7 |
N1—C2—C3 | 114.11 (10) | H4A—C4—H4B | 108.8 |
C1—C2—C3 | 103.42 (10) | C2—N1—H1A | 109.5 |
N1—C2—H2 | 109.5 | C2—N1—H1B | 109.5 |
C1—C2—H2 | 109.5 | H1A—N1—H1B | 109.5 |
C3—C2—H2 | 109.5 | C2—N1—H1C | 109.5 |
C2—C3—C4 | 101.11 (10) | H1A—N1—H1C | 109.5 |
C2—C3—H3A | 111.6 | H1B—N1—H1C | 109.5 |
C4—C3—H3A | 111.6 | C1—O1—C4 | 109.98 (10) |
C2—C3—H3B | 111.6 | ||
O2—C1—C2—N1 | 35.80 (17) | C1—C2—C3—C4 | 31.16 (13) |
O1—C1—C2—N1 | −144.09 (10) | C2—C3—C4—O1 | −31.04 (14) |
Br1—C1—C2—N1 | 135.54 (8) | O2—C1—O1—C4 | −178.50 (13) |
O2—C1—C2—C3 | 158.41 (13) | C2—C1—O1—C4 | 1.40 (14) |
O1—C1—C2—C3 | −21.48 (13) | Br1—C1—O1—C4 | 90.45 (9) |
Br1—C1—C2—C3 | −101.84 (8) | C3—C4—O1—C1 | 19.30 (15) |
N1—C2—C3—C4 | 151.48 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Br1i | 0.91 | 2.47 | 3.3407 (12) | 161 |
N1—H1B···Br1ii | 0.91 | 2.41 | 3.3046 (10) | 168 |
N1—H1C···Br1iii | 0.91 | 2.51 | 3.3644 (13) | 157 |
N1—H1C···O1iii | 0.91 | 2.5 | 3.0050 (14) | 115 |
Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+3/2, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C4H8NO2+·Br− |
Mr | 182.02 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 90 |
a, b, c (Å) | 6.1425 (1), 9.4196 (2), 11.0394 (3) |
V (Å3) | 638.74 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.35 |
Crystal size (mm) | 0.25 × 0.25 × 0.22 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.300, 0.336 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4072, 4072, 3915 |
Rint | 0 |
(sin θ/λ)max (Å−1) | 0.918 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.049, 1.07 |
No. of reflections | 4072 |
No. of parameters | 76 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −0.74 |
Absolute structure | Flack (1983) and Hooft et al. (2008), with 1724 Friedel pairs |
Absolute structure parameter | 0.030 (7) |
Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), IDEAL (Gould et al., 1988) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Br1i | 0.91 | 2.47 | 3.3407 (12) | 161 |
N1—H1B···Br1ii | 0.91 | 2.41 | 3.3046 (10) | 168 |
N1—H1C···Br1iii | 0.91 | 2.51 | 3.3644 (13) | 157.4 |
N1—H1C···O1iii | 0.91 | 2.5 | 3.0050 (14) | 115.1 |
Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+3/2, −y, z+1/2. |
Footnotes
1CAS 15295-77-9.
Acknowledgements
The purchase of the diffractometer was made possible by Grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Armstrong, M. D. (1948). J. Am. Chem. Soc. 70, 1756–1759. CrossRef PubMed CAS Web of Science Google Scholar
Bocelli, G. & Grenier-Loustalot, M. F. (1981). Acta Cryst. B37, 2106–2108. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Cowell, S. M. (1996). PhD Dissertation, Louisiana State University, Baton Rouge, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gould, R. O., Moulden, N., Taylor, N. & Taylor, P. (1988). IDEAL. Department of Chemistry, University of Edinburgh, Scotland. Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Papaioannou, D., Barlos, K., Francis, G. W., Brekke, T., Aksnes, D. W. & Maartmann-Moe, K. (1990). Acta Chem. Scand. 44, 189–1894. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure of the racemate of title compound I was determined at 295 K by Bocelli & Grenier-Loustalot (1981; BAKHAW, Allen, 2002); the geometries of the cation in BAKHAW and I are similar, as characterized by least-squares fit of all non-hydrogen atoms in the cation (δr.m.s. = 0.025; Gould et al., 1988). In addition, the envelope flap angles are similar (31.0° versus 32.6°). The racemate at 295 K has a volume per formula unit of 162.3 Å3, whereas pure enantiomer I at 90 K has a volume per formula unit of 159.7 Å3, a decrease of about 1.6%.
The chloride analog of I (TADTAT; Papaioannou et al., 1990) crystallizes in the same space group as I and with similar lattice constants, but the geometries of the cation differ slightly (δr.m.s. = 0.094), and the envelope flap angles also differ: 17.58° versus 32.6°.
There are no intramolecular H-bonds in I. However, all three H-atoms of the ammonium group participate in intermolecular H-bonding to form a three-dimensional network. These H atoms bond to three different anions [N···Br = 3.3046 (10), 3.3407 (12) and 3.3644 (13) Å] and to an ether oxygen: N···O1 = 3.0050 (14) Å.