organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(RP)-5-Methyl-2-(propan-2-yl)cyclo­hexyl phen­yl{phen­yl[(1-phenyl­eth­yl)amino]­meth­yl}phosphinate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: literabc@hotmail.com

(Received 3 May 2012; accepted 21 June 2012; online 4 July 2012)

In the title compound, C31H40NO2P, the P atom has a distorted tetra­hedral stereochemistry [bond-angle range about P = 103.33 (6)–115.24 (15)°] and has RP chirality, which was confirmed crystallographically. The dihedral angles between the P-bonded phenyl ring and the other two phenyl rings are 40.4 (3) and 12.2 (2)°. In the crystal, a C—H⋯O inter­action links mol­ecules into chains which extend along [100].

Related literature

For general background on chiral phospho­rus compounds, see: Perlikowska et al. (2004[Perlikowska, W., Gouygou, M., Mikolajczyk, M. & Daran, J.-C. (2004). Tetrahedron Asymmetry, 15, 3519-3529.]). For the structures of similar compounds, see: Meng et al. (2010[Meng, F.-J., Xu, H., Liu, L.-J., Wang, D. & Zhao, C.-Q. (2010). Acta Cryst. E66, o2352.]); Liu et al. (2011[Liu, L.-J., Meng, F.-J., Xu, H., Wang, D. & Zhao, C.-Q. (2011). Acta Cryst. E67, o1244.]).

[Scheme 1]

Experimental

Crystal data
  • C31H40NO2P

  • Mr = 489.61

  • Orthorhombic, P 21 21 21

  • a = 5.8944 (4) Å

  • b = 11.4875 (11) Å

  • c = 43.795 (3) Å

  • V = 2965.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.48 × 0.18 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 0.987

  • 14971 measured reflections

  • 5217 independent reflections

  • 2787 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.133

  • S = 0.91

  • 5217 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2164 Friedel pairs

  • Flack parameter: −0.06 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.98 2.50 3.454 (5) 164
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chiral phosphorus compounds have been widely used in both chemistry and biology (Perlikowska et al., 2004). The P-chiral title compound, C31H40NO2P, was synthesized using (RP)-O-(-)-menthyl phenylphosphinate in a reaction with the imine N-benzylidene-1-phenylethanamine and the structure is reported here. The structures of a number of the O-menthyl substituted phosphinates are known (Meng et al., 2010; Liu et al., 2011).

In this compound (Fig. 1) the P atom has a distorted tetrahedral stereochemistry [bond angle range about P1, 103.33 (6)–115.24 (15)°] and has RP chirality, confirmed in the determination with the invoked absolute configuration for L-(-)-menthol [C1(R), C2(S), C5(R)] (equivalent to C30, C25, C28 respectively using the present atom numbering scheme). This also confirmed the configuration at the other two chiral centres as C7(R) and C9(S). The dihedral angles between the P-bonded phenyl ring (C16–C21) and the other two phenyl rings [C1–C6 and C10–C15] are 40.4 (3) and 12.2 (2)°, respectively.

In the crystal structure, there are no reasonable acceptors for the H-atom on N1 and only a single weak intermolecular methine C9—H···O(phosphinate) hydrogen-bonding interaction (Table 1) linking the molecules into chains extending along the a axial direction (Fig. 2). There are also 73 Å3 potential solvent accessible voids present in the unit cell.

Related literature top

For general background on chiral phosphorus compounds, see: Perlikowska et al. (2004). For the structures of similar compounds, see: Meng et al. (2010); Liu et al. (2011).

Experimental top

(RP)-O-Menthyl phenylphosphinate (280 mg, 1 mmol) was added to (N)-benzylidene-1-phenylethanamine (209 mg, 1 mmol) in a flask and the mixture was stirred for 3 h at 80 °C. After washing with petroleum ether, the resulting solid was dried and recrystallized from diethyl ether to afford the pure title product.

Refinement top

All H atoms were positioned with idealized geometry with C—H = 0.93–0.98 Å or N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(N and C aromatic, methylene or methine) or 1.5Ueq(C methyl). The absolute configuration for L-(-)-menthol [C1(R), C2(S), C5(R)] was invoked (equivalent to C30, C25, C28, respectively using the present naming scheme), giving the configuration for the other three chiral centres as P1(R), C7(R), C9(S). The Flack parameter was -0.06 (15) for 2164 Friedel pairs.

Structure description top

Chiral phosphorus compounds have been widely used in both chemistry and biology (Perlikowska et al., 2004). The P-chiral title compound, C31H40NO2P, was synthesized using (RP)-O-(-)-menthyl phenylphosphinate in a reaction with the imine N-benzylidene-1-phenylethanamine and the structure is reported here. The structures of a number of the O-menthyl substituted phosphinates are known (Meng et al., 2010; Liu et al., 2011).

In this compound (Fig. 1) the P atom has a distorted tetrahedral stereochemistry [bond angle range about P1, 103.33 (6)–115.24 (15)°] and has RP chirality, confirmed in the determination with the invoked absolute configuration for L-(-)-menthol [C1(R), C2(S), C5(R)] (equivalent to C30, C25, C28 respectively using the present atom numbering scheme). This also confirmed the configuration at the other two chiral centres as C7(R) and C9(S). The dihedral angles between the P-bonded phenyl ring (C16–C21) and the other two phenyl rings [C1–C6 and C10–C15] are 40.4 (3) and 12.2 (2)°, respectively.

In the crystal structure, there are no reasonable acceptors for the H-atom on N1 and only a single weak intermolecular methine C9—H···O(phosphinate) hydrogen-bonding interaction (Table 1) linking the molecules into chains extending along the a axial direction (Fig. 2). There are also 73 Å3 potential solvent accessible voids present in the unit cell.

For general background on chiral phosphorus compounds, see: Perlikowska et al. (2004). For the structures of similar compounds, see: Meng et al. (2010); Liu et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom numbering scheme for the title compound showing 30% probability displacement ellipsoids. H atoms have been omitted.
[Figure 2] Fig. 2. The one-dimensional hydrogen-bonded chain structure extending along a
(RP)-5-Methyl-2-(propan-2-yl)cyclohexyl phenyl{phenyl[(1-phenylethyl)amino]methyl}phosphinate top
Crystal data top
C31H40NO2PF(000) = 1056
Mr = 489.61Dx = 1.097 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1847 reflections
a = 5.8944 (4) Åθ = 2.6–26.2°
b = 11.4875 (11) ŵ = 0.12 mm1
c = 43.795 (3) ÅT = 298 K
V = 2965.5 (4) Å3Needle, colorless
Z = 40.48 × 0.18 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5217 independent reflections
Radiation source: fine-focus sealed tube2787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
φ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.945, Tmax = 0.987k = 1213
14971 measured reflectionsl = 4552
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
5217 reflectionsΔρmax = 0.17 e Å3
320 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 2164 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (15)
Crystal data top
C31H40NO2PV = 2965.5 (4) Å3
Mr = 489.61Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.8944 (4) ŵ = 0.12 mm1
b = 11.4875 (11) ÅT = 298 K
c = 43.795 (3) Å0.48 × 0.18 × 0.11 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5217 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2787 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.987Rint = 0.093
14971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.133Δρmax = 0.17 e Å3
S = 0.91Δρmin = 0.18 e Å3
5217 reflectionsAbsolute structure: Flack (1983), 2164 Friedel pairs
320 parametersAbsolute structure parameter: 0.06 (15)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.5520 (2)0.76657 (8)0.88670 (2)0.0460 (3)
O10.3082 (4)0.8007 (2)0.88595 (5)0.0517 (7)
O20.6330 (5)0.6838 (2)0.85959 (5)0.0512 (8)
C160.6336 (7)0.6944 (3)0.92173 (8)0.0456 (10)
C90.7490 (7)0.8903 (3)0.88450 (8)0.0448 (10)
H90.90200.86200.88920.054*
N10.6732 (6)0.9656 (3)0.90980 (6)0.0484 (9)
H10.54920.95340.91960.058*
C10.6882 (8)1.1516 (4)0.93517 (9)0.0565 (12)
C100.7547 (7)0.9499 (3)0.85307 (8)0.0444 (10)
C110.5780 (8)1.0195 (3)0.84330 (8)0.0595 (12)
H110.45051.02800.85560.071*
C60.5898 (8)1.1229 (4)0.96267 (10)0.0662 (13)
H60.61121.04890.97080.079*
C50.4582 (9)1.2039 (4)0.97855 (10)0.0735 (14)
H50.39301.18330.99710.088*
C120.5873 (11)1.0776 (4)0.81516 (10)0.0725 (14)
H120.46591.12300.80870.087*
C290.3980 (9)0.5066 (4)0.86151 (10)0.0726 (14)
H29A0.33270.53120.88080.087*
H29B0.53280.46110.86590.087*
C300.4635 (8)0.6132 (3)0.84289 (9)0.0553 (11)
H300.32740.66070.83970.066*
C150.9441 (9)0.9389 (3)0.83448 (9)0.0647 (12)
H151.06500.89250.84070.078*
C70.8250 (8)1.0628 (4)0.91695 (9)0.0622 (13)
H70.87291.09900.89780.075*
C250.5629 (9)0.5816 (4)0.81157 (9)0.0661 (13)
H250.69760.53360.81530.079*
C220.6407 (9)0.6881 (5)0.79321 (10)0.0801 (16)
H220.74770.73110.80610.096*
C170.4904 (9)0.7036 (3)0.94717 (9)0.0659 (14)
H170.35230.74220.94550.079*
C40.4242 (10)1.3132 (4)0.96705 (12)0.0832 (15)
H40.33341.36640.97740.100*
C190.7526 (14)0.5994 (5)0.97769 (13)0.099 (2)
H190.79510.56920.99650.119*
C130.7780 (11)1.0666 (4)0.79723 (11)0.0797 (16)
H130.78761.10630.77880.096*
C210.8352 (10)0.6366 (4)0.92483 (11)0.0832 (16)
H210.93310.63050.90830.100*
C230.4468 (12)0.7729 (4)0.78504 (10)0.1058 (19)
H23A0.33580.73320.77290.159*
H23B0.50700.83750.77370.159*
H23C0.37700.80080.80340.159*
C140.9541 (10)0.9969 (4)0.80666 (10)0.0852 (15)
H141.08130.98840.79430.102*
C280.2269 (11)0.4310 (4)0.84434 (14)0.103 (2)
H280.08870.47680.84110.124*
C180.5555 (13)0.6546 (4)0.97495 (10)0.0934 (18)
H180.45980.66060.99180.112*
C260.3911 (11)0.5050 (4)0.79464 (11)0.0977 (19)
H26A0.25650.55050.79010.117*
H26B0.45620.47990.77540.117*
C270.3236 (12)0.3980 (5)0.81329 (13)0.110 (2)
H27A0.21130.35360.80200.132*
H27B0.45560.34880.81620.132*
C81.0347 (10)1.0229 (5)0.93405 (13)0.123 (2)
H8A0.99020.97880.95170.184*
H8B1.12081.08960.94040.184*
H8C1.12600.97520.92090.184*
C240.7718 (11)0.6516 (6)0.76396 (10)0.131 (2)
H24A0.66660.62230.74910.196*
H24B0.87960.59190.76900.196*
H24C0.85000.71780.75570.196*
C30.5261 (12)1.3428 (4)0.94010 (13)0.107 (2)
H30.51151.41780.93240.128*
C20.6501 (10)1.2608 (4)0.92445 (10)0.0914 (18)
H20.71101.28120.90560.110*
C310.1640 (14)0.3211 (5)0.86320 (14)0.156 (3)
H31A0.28660.26610.86230.234*
H31B0.02940.28630.85490.234*
H31C0.13720.34290.88410.234*
C200.8951 (11)0.5864 (5)0.95296 (14)0.1029 (19)
H201.02970.54470.95490.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0425 (7)0.0519 (6)0.0434 (5)0.0031 (6)0.0007 (6)0.0033 (5)
O10.0402 (19)0.0605 (16)0.0545 (15)0.0038 (13)0.0022 (15)0.0031 (14)
O20.049 (2)0.0575 (15)0.0469 (15)0.0018 (14)0.0050 (14)0.0043 (13)
C160.042 (3)0.043 (2)0.052 (2)0.000 (2)0.001 (2)0.0006 (18)
C90.045 (3)0.053 (2)0.037 (2)0.0080 (19)0.002 (2)0.0014 (19)
N10.049 (2)0.061 (2)0.0361 (17)0.0130 (19)0.0178 (17)0.0120 (16)
C10.061 (3)0.052 (3)0.056 (3)0.019 (3)0.007 (2)0.014 (2)
C100.043 (3)0.047 (2)0.044 (2)0.003 (2)0.001 (2)0.0008 (18)
C110.062 (3)0.066 (3)0.051 (2)0.013 (3)0.004 (3)0.006 (2)
C60.066 (4)0.064 (3)0.068 (3)0.002 (3)0.010 (3)0.005 (2)
C50.077 (4)0.078 (3)0.065 (3)0.004 (3)0.016 (3)0.013 (3)
C120.077 (4)0.071 (3)0.070 (3)0.002 (3)0.020 (3)0.018 (2)
C290.083 (4)0.066 (3)0.069 (3)0.014 (3)0.001 (3)0.004 (2)
C300.041 (3)0.061 (2)0.064 (3)0.003 (2)0.008 (2)0.019 (2)
C150.058 (3)0.083 (3)0.053 (3)0.006 (3)0.001 (3)0.007 (2)
C70.054 (3)0.072 (3)0.061 (3)0.011 (3)0.003 (2)0.019 (2)
C250.067 (3)0.073 (3)0.059 (3)0.021 (3)0.006 (3)0.023 (2)
C220.071 (4)0.115 (4)0.055 (3)0.018 (4)0.005 (3)0.022 (3)
C170.077 (4)0.069 (3)0.052 (3)0.011 (3)0.008 (2)0.007 (2)
C40.092 (4)0.074 (3)0.083 (4)0.013 (3)0.016 (3)0.022 (3)
C190.126 (6)0.098 (4)0.073 (4)0.001 (4)0.025 (4)0.021 (3)
C130.085 (5)0.097 (4)0.057 (3)0.009 (4)0.011 (3)0.034 (3)
C210.079 (4)0.096 (3)0.075 (3)0.023 (3)0.003 (3)0.033 (3)
C230.145 (6)0.093 (3)0.080 (3)0.007 (5)0.001 (4)0.001 (3)
C140.068 (4)0.123 (4)0.065 (3)0.002 (4)0.015 (3)0.018 (3)
C280.113 (5)0.080 (4)0.118 (5)0.025 (4)0.014 (4)0.009 (4)
C180.138 (6)0.088 (4)0.054 (3)0.012 (4)0.016 (4)0.012 (3)
C260.123 (6)0.085 (4)0.085 (3)0.019 (4)0.021 (4)0.029 (3)
C270.135 (6)0.081 (4)0.115 (5)0.014 (4)0.025 (4)0.038 (4)
C80.062 (4)0.165 (5)0.142 (5)0.019 (4)0.039 (4)0.091 (4)
C240.112 (6)0.220 (7)0.059 (3)0.004 (5)0.016 (3)0.011 (4)
C30.152 (7)0.067 (3)0.101 (4)0.012 (4)0.015 (5)0.007 (3)
C20.127 (5)0.072 (3)0.075 (3)0.003 (4)0.038 (3)0.006 (3)
C310.197 (9)0.107 (5)0.164 (6)0.086 (5)0.008 (6)0.002 (5)
C200.079 (5)0.123 (4)0.107 (4)0.016 (4)0.021 (4)0.041 (4)
Geometric parameters (Å, º) top
P1—O11.490 (3)C22—C241.554 (6)
P1—O21.594 (3)C22—H220.9800
P1—C161.809 (4)C17—C181.395 (6)
P1—C91.837 (4)C17—H170.9300
O2—C301.481 (4)C4—C31.367 (6)
C16—C211.368 (6)C4—H40.9300
C16—C171.401 (5)C19—C181.329 (8)
C9—N11.475 (4)C19—C201.379 (8)
C9—C101.538 (5)C19—H190.9300
C9—H90.9800C13—C141.375 (7)
N1—C71.464 (5)C13—H130.9300
N1—H10.8600C21—C201.405 (6)
C1—C21.358 (6)C21—H210.9300
C1—C61.376 (5)C23—H23A0.9600
C1—C71.525 (6)C23—H23B0.9600
C10—C111.381 (5)C23—H23C0.9600
C10—C151.387 (6)C14—H140.9300
C11—C121.402 (5)C28—C271.522 (7)
C11—H110.9300C28—C311.554 (7)
C6—C51.397 (6)C28—H280.9800
C6—H60.9300C18—H180.9300
C5—C41.367 (6)C26—C271.528 (6)
C5—H50.9300C26—H26A0.9700
C12—C131.377 (7)C26—H26B0.9700
C12—H120.9300C27—H27A0.9700
C29—C301.521 (5)C27—H27B0.9700
C29—C281.529 (6)C8—H8A0.9600
C29—H29A0.9700C8—H8B0.9600
C29—H29B0.9700C8—H8C0.9600
C30—C251.535 (5)C24—H24A0.9600
C30—H300.9800C24—H24B0.9600
C15—C141.390 (6)C24—H24C0.9600
C15—H150.9300C3—C21.375 (6)
C7—C81.516 (6)C3—H30.9300
C7—H70.9800C2—H20.9300
C25—C261.533 (6)C31—H31A0.9600
C25—C221.535 (6)C31—H31B0.9600
C25—H250.9800C31—H31C0.9600
C22—C231.544 (7)C20—H200.9300
O1—P1—O2115.43 (15)C18—C17—H17120.1
O1—P1—C16113.32 (19)C16—C17—H17120.1
O2—P1—C16106.18 (15)C5—C4—C3118.8 (5)
O1—P1—C9113.88 (18)C5—C4—H4120.6
O2—P1—C9103.45 (16)C3—C4—H4120.6
C16—P1—C9103.35 (18)C18—C19—C20120.9 (5)
C30—O2—P1119.5 (2)C18—C19—H19119.5
C21—C16—C17118.7 (4)C20—C19—H19119.5
C21—C16—P1122.5 (3)C14—C13—C12119.9 (4)
C17—C16—P1118.6 (3)C14—C13—H13120.1
N1—C9—C10114.7 (3)C12—C13—H13120.1
N1—C9—P1102.9 (2)C16—C21—C20120.3 (5)
C10—C9—P1113.9 (3)C16—C21—H21119.9
N1—C9—H9108.4C20—C21—H21119.9
C10—C9—H9108.4C22—C23—H23A109.5
P1—C9—H9108.4C22—C23—H23B109.5
C7—N1—C9115.0 (3)H23A—C23—H23B109.5
C7—N1—H1122.5C22—C23—H23C109.5
C9—N1—H1122.5H23A—C23—H23C109.5
C2—C1—C6117.0 (4)H23B—C23—H23C109.5
C2—C1—C7121.6 (4)C13—C14—C15120.7 (5)
C6—C1—C7121.4 (4)C13—C14—H14119.7
C11—C10—C15118.5 (4)C15—C14—H14119.7
C11—C10—C9121.2 (4)C27—C28—C29109.5 (5)
C15—C10—C9120.2 (4)C27—C28—C31111.2 (5)
C10—C11—C12121.2 (5)C29—C28—C31110.9 (5)
C10—C11—H11119.4C27—C28—H28108.4
C12—C11—H11119.4C29—C28—H28108.4
C1—C6—C5120.7 (4)C31—C28—H28108.4
C1—C6—H6119.7C19—C18—C17120.8 (5)
C5—C6—H6119.7C19—C18—H18119.6
C4—C5—C6120.6 (4)C17—C18—H18119.6
C4—C5—H5119.7C27—C26—C25112.0 (4)
C6—C5—H5119.7C27—C26—H26A109.2
C13—C12—C11119.3 (5)C25—C26—H26A109.2
C13—C12—H12120.3C27—C26—H26B109.2
C11—C12—H12120.3C25—C26—H26B109.2
C30—C29—C28111.2 (4)H26A—C26—H26B107.9
C30—C29—H29A109.4C28—C27—C26112.0 (4)
C28—C29—H29A109.4C28—C27—H27A109.2
C30—C29—H29B109.4C26—C27—H27A109.2
C28—C29—H29B109.4C28—C27—H27B109.2
H29A—C29—H29B108.0C26—C27—H27B109.2
O2—C30—C29110.3 (3)H27A—C27—H27B107.9
O2—C30—C25108.3 (4)C7—C8—H8A109.5
C29—C30—C25112.7 (3)C7—C8—H8B109.5
O2—C30—H30108.5H8A—C8—H8B109.5
C29—C30—H30108.5C7—C8—H8C109.5
C25—C30—H30108.5H8A—C8—H8C109.5
C10—C15—C14120.3 (4)H8B—C8—H8C109.5
C10—C15—H15119.8C22—C24—H24A109.5
C14—C15—H15119.8C22—C24—H24B109.5
N1—C7—C8112.0 (4)H24A—C24—H24B109.5
N1—C7—C1107.4 (4)C22—C24—H24C109.5
C8—C7—C1112.0 (4)H24A—C24—H24C109.5
N1—C7—H7108.5H24B—C24—H24C109.5
C8—C7—H7108.5C4—C3—C2119.6 (5)
C1—C7—H7108.5C4—C3—H3120.2
C26—C25—C22113.7 (4)C2—C3—H3120.2
C26—C25—C30108.4 (4)C1—C2—C3123.2 (5)
C22—C25—C30113.2 (3)C1—C2—H2118.4
C26—C25—H25107.1C3—C2—H2118.4
C22—C25—H25107.1C28—C31—H31A109.5
C30—C25—H25107.1C28—C31—H31B109.5
C25—C22—C23113.8 (4)H31A—C31—H31B109.5
C25—C22—C24111.4 (4)C28—C31—H31C109.5
C23—C22—C24110.3 (4)H31A—C31—H31C109.5
C25—C22—H22107.0H31B—C31—H31C109.5
C23—C22—H22107.0C19—C20—C21119.4 (6)
C24—C22—H22107.0C19—C20—H20120.3
C18—C17—C16119.8 (5)C21—C20—H20120.3
O1—P1—O2—C3021.9 (3)C2—C1—C7—N1117.3 (5)
C16—P1—O2—C30104.5 (3)C6—C1—C7—N160.0 (5)
C9—P1—O2—C30147.0 (3)C2—C1—C7—C8119.4 (5)
O1—P1—C16—C21167.2 (4)C6—C1—C7—C863.3 (6)
O2—P1—C16—C2139.4 (4)O2—C30—C25—C26178.1 (3)
C9—P1—C16—C2169.1 (4)C29—C30—C25—C2655.8 (5)
O1—P1—C16—C1716.5 (4)O2—C30—C25—C2254.8 (5)
O2—P1—C16—C17144.2 (3)C29—C30—C25—C22177.1 (4)
C9—P1—C16—C17107.2 (3)C26—C25—C22—C2361.4 (5)
O1—P1—C9—N154.3 (3)C30—C25—C22—C2362.9 (5)
O2—P1—C9—N1179.6 (2)C26—C25—C22—C2464.1 (6)
C16—P1—C9—N169.1 (3)C30—C25—C22—C24171.6 (4)
O1—P1—C9—C1070.4 (3)C21—C16—C17—C180.2 (6)
O2—P1—C9—C1055.6 (3)P1—C16—C17—C18176.2 (3)
C16—P1—C9—C10166.2 (3)C6—C5—C4—C31.6 (8)
C10—C9—N1—C765.7 (4)C11—C12—C13—C141.6 (7)
P1—C9—N1—C7170.0 (3)C17—C16—C21—C200.8 (7)
N1—C9—C10—C1144.7 (5)P1—C16—C21—C20177.1 (4)
P1—C9—C10—C1173.4 (4)C12—C13—C14—C151.3 (8)
N1—C9—C10—C15132.2 (4)C10—C15—C14—C130.5 (7)
P1—C9—C10—C15109.6 (4)C30—C29—C28—C2755.8 (6)
C15—C10—C11—C120.4 (6)C30—C29—C28—C31179.0 (5)
C9—C10—C11—C12177.4 (4)C20—C19—C18—C171.8 (9)
C2—C1—C6—C50.2 (7)C16—C17—C18—C190.3 (8)
C7—C1—C6—C5177.7 (4)C22—C25—C26—C27178.2 (5)
C1—C6—C5—C40.1 (8)C30—C25—C26—C2755.0 (6)
C10—C11—C12—C131.2 (6)C29—C28—C27—C2655.8 (7)
P1—O2—C30—C2978.2 (4)C31—C28—C27—C26178.8 (5)
P1—O2—C30—C25158.1 (3)C25—C26—C27—C2857.0 (7)
C28—C29—C30—O2178.7 (4)C5—C4—C3—C23.3 (9)
C28—C29—C30—C2557.6 (5)C6—C1—C2—C32.0 (8)
C11—C10—C15—C140.1 (6)C7—C1—C2—C3179.4 (5)
C9—C10—C15—C14177.1 (4)C4—C3—C2—C13.6 (10)
C9—N1—C7—C875.4 (4)C18—C19—C20—C212.8 (9)
C9—N1—C7—C1161.2 (3)C16—C21—C20—C192.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.982.503.454 (5)164
C22—H22···O20.982.502.908 (5)105
C30—H30···O10.982.593.006 (4)106
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC31H40NO2P
Mr489.61
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.8944 (4), 11.4875 (11), 43.795 (3)
V3)2965.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.48 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.945, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
14971, 5217, 2787
Rint0.093
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.133, 0.91
No. of reflections5217
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18
Absolute structureFlack (1983), 2164 Friedel pairs
Absolute structure parameter0.06 (15)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.982.503.454 (5)164
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge the financial support of the Natural Science Foundation of China (grant No. 20772055).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, L.-J., Meng, F.-J., Xu, H., Wang, D. & Zhao, C.-Q. (2011). Acta Cryst. E67, o1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, F.-J., Xu, H., Liu, L.-J., Wang, D. & Zhao, C.-Q. (2010). Acta Cryst. E66, o2352.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerlikowska, W., Gouygou, M., Mikolajczyk, M. & Daran, J.-C. (2004). Tetrahedron Asymmetry, 15, 3519–3529.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds