organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­ammonium 5-carb­­oxy-2-(1-oxo-1λ5-pyridin-2-yl)-1H-imidazole-4-car­box­yl­ate

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 17 July 2012; accepted 25 July 2012; online 28 July 2012)

In the title salt, C2H8N+·C10H6N3O5, the imidazole­carboxyl­ate anion is essentially planar [maximum deviation from the least-squares plane = 0.046 (5) Å], with a dihedral angle between the rings of 2.7 (2)°. This conformation is maintained by the presence of both intra­molecular carb­oxy–carboxyl­ate O—H⋯O and imidazole–oxide N—H⋯O hydrogen bonds. Iin the crystal, cation–carboxyl­ate N—H⋯O and cation–imidazole N—H⋯N hydrogen bonds result in chains along the b axis.

Related literature

For the structures of compounds with similar ligands, see: Chen (2008[Chen, L.-Z. (2008). Acta Cryst. E64, m1286.]; Chen et al. (2011[Chen, L.-Z., Wang, F.-M. & Shu, H. (2011). J. Coord. Chem. 65, 439-452.]); Sun et al. (2005[Sun, Y. Q., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814-5817.]). For the synthesis of the ligand, see: Sun et al. (2006[Sun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751-o2752.]).

[Scheme 1]

Experimental

Crystal data
  • C2H8N+·C10H6N3O5

  • Mr = 294.27

  • Monoclinic, C c

  • a = 10.9690 (18) Å

  • b = 17.305 (3) Å

  • c = 8.0160 (13) Å

  • β = 120.901 (2)°

  • V = 1305.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.32 × 0.28 × 0.26 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.970

  • 3782 measured reflections

  • 1419 independent reflections

  • 1204 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.05

  • 1419 reflections

  • 193 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯N1i 0.90 2.49 3.166 (3) 132
N4—H4B⋯O1i 0.90 2.11 2.933 (3) 151
N4—H4A⋯O1ii 0.90 1.95 2.806 (3) 159
O3—H3⋯O2 0.82 1.64 2.455 (3) 170
N2—H2⋯O5 0.86 2.06 2.603 (3) 120
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole-4,5-dicarboxylic acid and its derivatives have a variety of coordination modes as ligands in the formation of metal complexes (Chen, 2008; Sun et al., 2005), which include those with the lanthanide metals (Chen et al., 2011). In the title salt, C2 H8N+ C10H6N3O5-, (Fig. 1), which consists of a dimethylammonium cation and a 5-carboxy-2-(2-pyridyl-N-oxide)-1H-imidazole-4-carboxylate anion, the anion is essentially planar [maximum deviation from the l.s. plane = 0.046 (5) Å], with the dihedral angle between the rings of 2.7 (2)Å. This conformation is maintained by the presence of both intramolecular carboxyl O—H···O and imidazole N—H···Ooxide hydrogen bonds while intermolecular cation N—H···Ocarboxyl and N—H···Nimidazole hydrogen bonds (Table 1) give a one-dimensional chain structure.

Related literature top

For the structures of compounds with the similar ligands, see: Chen (2008; Chen et al. (2011); Sun et al. (2005). For the synthesis of the ligand, see: Sun et al. (2006).

Experimental top

The ligand,(4,5-dicarboxy-1H-imidazol-2-yl)pyridine-1-oxide was prepared by the method reported in the literature (Sun et al., 2006). A diluted dimethylamine aqueous solution was added dropwise to an ethanolic solution of the ligand until the pH reached 7.4. Crystals of the title compound suitable for X-ray analysis were obtained after a few days of slow evaporation of the solvent.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H = 0.95–0.99 Å, N—H = 0.90 Å and O—H = 0.82 Å) and were treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C, N, O). In the absence of a suitable heavy atom, Friedel pairs were averaged in the refinement.

Structure description top

Imidazole-4,5-dicarboxylic acid and its derivatives have a variety of coordination modes as ligands in the formation of metal complexes (Chen, 2008; Sun et al., 2005), which include those with the lanthanide metals (Chen et al., 2011). In the title salt, C2 H8N+ C10H6N3O5-, (Fig. 1), which consists of a dimethylammonium cation and a 5-carboxy-2-(2-pyridyl-N-oxide)-1H-imidazole-4-carboxylate anion, the anion is essentially planar [maximum deviation from the l.s. plane = 0.046 (5) Å], with the dihedral angle between the rings of 2.7 (2)Å. This conformation is maintained by the presence of both intramolecular carboxyl O—H···O and imidazole N—H···Ooxide hydrogen bonds while intermolecular cation N—H···Ocarboxyl and N—H···Nimidazole hydrogen bonds (Table 1) give a one-dimensional chain structure.

For the structures of compounds with the similar ligands, see: Chen (2008; Chen et al. (2011); Sun et al. (2005). For the synthesis of the ligand, see: Sun et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom-numbering scheme for the title compound, with displacement ellipsoids drawn at the 50% probability level.
Dimethylammonium 5-carboxy-2-(1-oxo-1λ5-pyridin-2-yl)-1H-imidazole-4-carboxylate top
Crystal data top
C2H8N+·C10H6N3O5F(000) = 616
Mr = 294.27Dx = 1.497 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3600 reflections
a = 10.9690 (18) Åθ = 1.3–28.0°
b = 17.305 (3) ŵ = 0.12 mm1
c = 8.0160 (13) ÅT = 298 K
β = 120.901 (2)°Block, colourless
V = 1305.6 (4) Å30.32 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
1419 independent reflections
Radiation source: fine-focus sealed tube1204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1412
Tmin = 0.963, Tmax = 0.970k = 1921
3782 measured reflectionsl = 810
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0423P)2P]
where P = (Fo2 + 2Fc2)/3
1419 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.19 e Å3
Crystal data top
C2H8N+·C10H6N3O5V = 1305.6 (4) Å3
Mr = 294.27Z = 4
Monoclinic, CcMo Kα radiation
a = 10.9690 (18) ŵ = 0.12 mm1
b = 17.305 (3) ÅT = 298 K
c = 8.0160 (13) Å0.32 × 0.28 × 0.26 mm
β = 120.901 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
1419 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1204 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.970Rint = 0.025
3782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.05Δρmax = 0.14 e Å3
1419 reflectionsΔρmin = 0.19 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8048 (3)0.88560 (14)0.6235 (4)0.0435 (6)
C20.6875 (3)0.92371 (14)0.4485 (4)0.0399 (6)
C30.6630 (3)1.00178 (15)0.4067 (4)0.0405 (6)
C40.7352 (3)1.07430 (16)0.5114 (4)0.0462 (7)
C50.4999 (3)0.93154 (13)0.1662 (4)0.0392 (6)
C60.3776 (3)0.90945 (15)0.0207 (4)0.0408 (6)
C70.3453 (3)0.83297 (16)0.0743 (4)0.0504 (7)
H70.40410.79450.00950.060*
C80.2281 (4)0.81248 (17)0.2486 (5)0.0581 (8)
H80.20740.76070.28250.070*
C90.1414 (3)0.86974 (19)0.3729 (4)0.0578 (8)
H90.06100.85700.49100.069*
C100.1752 (4)0.94533 (19)0.3202 (5)0.0584 (8)
H100.11730.98380.40470.070*
C110.1058 (4)0.83037 (18)0.1270 (5)0.0663 (9)
H11A0.03570.86680.11500.099*
H11B0.16980.85540.09600.099*
H11C0.15800.81130.25800.099*
C120.0512 (4)0.71875 (19)0.0443 (6)0.0688 (9)
H12A0.00750.69840.17310.103*
H12B0.09290.67690.04640.103*
H12C0.12500.75010.03990.103*
N10.5853 (3)0.88073 (11)0.2989 (4)0.0414 (5)
N20.5433 (2)1.00487 (12)0.2268 (3)0.0418 (5)
H20.50241.04620.16290.050*
N30.2913 (2)0.96589 (13)0.1477 (3)0.0468 (6)
N40.0354 (3)0.76580 (12)0.0071 (4)0.0483 (5)
H4A0.02020.78460.12800.058*
H4B0.10190.73560.00800.058*
O10.8070 (2)0.81390 (9)0.6329 (3)0.0522 (5)
O20.8994 (2)0.92884 (11)0.7573 (3)0.0584 (6)
O30.8499 (2)1.06669 (12)0.6792 (3)0.0583 (6)
H30.87221.02090.69900.087*
O40.6859 (3)1.13664 (11)0.4385 (4)0.0669 (6)
O50.3198 (3)1.03909 (11)0.1066 (3)0.0666 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0445 (15)0.0422 (14)0.0441 (15)0.0006 (13)0.0229 (13)0.0027 (13)
C20.0444 (15)0.0369 (13)0.0429 (15)0.0007 (13)0.0256 (13)0.0014 (13)
C30.0437 (16)0.0379 (13)0.0433 (16)0.0040 (11)0.0249 (14)0.0003 (11)
C40.0520 (19)0.0372 (16)0.0480 (18)0.0081 (12)0.0248 (16)0.0012 (12)
C50.0427 (16)0.0351 (14)0.0415 (16)0.0004 (11)0.0227 (14)0.0032 (12)
C60.0405 (15)0.0405 (13)0.0404 (15)0.0010 (12)0.0199 (13)0.0046 (12)
C70.0578 (19)0.0426 (14)0.0482 (18)0.0033 (13)0.0253 (17)0.0002 (13)
C80.067 (2)0.0522 (18)0.0520 (18)0.0110 (16)0.0279 (17)0.0071 (15)
C90.053 (2)0.067 (2)0.0443 (18)0.0098 (16)0.0188 (16)0.0052 (15)
C100.0516 (19)0.065 (2)0.0466 (17)0.0030 (16)0.0167 (15)0.0110 (15)
C110.0513 (19)0.0587 (19)0.067 (2)0.0029 (15)0.0145 (17)0.0142 (17)
C120.057 (2)0.059 (2)0.078 (2)0.0050 (15)0.0259 (19)0.0192 (17)
N10.0419 (12)0.0355 (11)0.0410 (12)0.0004 (9)0.0170 (10)0.0029 (10)
N20.0450 (13)0.0328 (11)0.0447 (13)0.0004 (9)0.0211 (11)0.0060 (9)
N30.0454 (14)0.0442 (13)0.0453 (14)0.0005 (11)0.0194 (13)0.0065 (11)
N40.0450 (13)0.0410 (12)0.0476 (12)0.0066 (10)0.0157 (11)0.0004 (11)
O10.0579 (12)0.0383 (10)0.0505 (12)0.0056 (10)0.0208 (11)0.0057 (9)
O20.0515 (14)0.0500 (13)0.0542 (14)0.0042 (10)0.0131 (12)0.0017 (10)
O30.0610 (14)0.0452 (12)0.0562 (13)0.0110 (10)0.0212 (12)0.0028 (10)
O40.0746 (16)0.0372 (10)0.0702 (15)0.0051 (12)0.0238 (13)0.0021 (11)
O50.0696 (15)0.0361 (11)0.0670 (15)0.0016 (10)0.0157 (13)0.0075 (10)
Geometric parameters (Å, º) top
C1—O11.243 (3)C9—C101.366 (4)
C1—O21.282 (3)C9—H90.9300
C1—C21.485 (4)C10—N31.361 (4)
C2—N11.367 (4)C10—H100.9300
C2—C31.385 (4)C11—N41.465 (4)
C3—N21.364 (3)C11—H11A0.9600
C3—C41.491 (4)C11—H11B0.9600
C4—O41.214 (3)C11—H11C0.9600
C4—O31.293 (4)C12—N41.462 (4)
C5—N11.326 (3)C12—H12A0.9600
C5—N21.355 (3)C12—H12B0.9600
C5—C61.458 (4)C12—H12C0.9600
C6—N31.377 (3)N2—H20.8600
C6—C71.380 (4)N3—O51.306 (3)
C7—C81.373 (5)N4—H4A0.9000
C7—H70.9300N4—H4B0.9000
C8—C91.380 (4)O3—H30.8200
C8—H80.9300
O1—C1—O2123.4 (3)N3—C10—H10119.1
O1—C1—C2118.8 (3)C9—C10—H10119.1
O2—C1—C2117.9 (2)N4—C11—H11A109.5
N1—C2—C3110.4 (3)N4—C11—H11B109.5
N1—C2—C1120.7 (2)H11A—C11—H11B109.5
C3—C2—C1128.9 (3)N4—C11—H11C109.5
N2—C3—C2104.8 (2)H11A—C11—H11C109.5
N2—C3—C4120.4 (2)H11B—C11—H11C109.5
C2—C3—C4134.7 (3)N4—C12—H12A109.5
O4—C4—O3123.1 (3)N4—C12—H12B109.5
O4—C4—C3120.0 (3)H12A—C12—H12B109.5
O3—C4—C3116.8 (3)N4—C12—H12C109.5
N1—C5—N2111.1 (2)H12A—C12—H12C109.5
N1—C5—C6123.3 (2)H12B—C12—H12C109.5
N2—C5—C6125.6 (2)C5—N1—C2105.44 (19)
N3—C6—C7118.8 (3)C5—N2—C3108.2 (2)
N3—C6—C5119.6 (2)C5—N2—H2125.9
C7—C6—C5121.6 (3)C3—N2—H2125.9
C8—C7—C6121.4 (3)O5—N3—C10119.2 (2)
C8—C7—H7119.3O5—N3—C6121.1 (2)
C6—C7—H7119.3C10—N3—C6119.7 (2)
C7—C8—C9119.1 (3)C12—N4—C11113.1 (3)
C7—C8—H8120.4C12—N4—H4A109.0
C9—C8—H8120.4C11—N4—H4A109.0
C10—C9—C8119.2 (3)C12—N4—H4B109.0
C10—C9—H9120.4C11—N4—H4B109.0
C8—C9—H9120.4H4A—N4—H4B107.8
N3—C10—C9121.9 (3)C4—O3—H3109.5
O1—C1—C2—N11.3 (4)C6—C7—C8—C90.3 (4)
O2—C1—C2—N1178.4 (2)C7—C8—C9—C100.7 (5)
O1—C1—C2—C3179.8 (3)C8—C9—C10—N30.6 (5)
O2—C1—C2—C30.6 (4)N2—C5—N1—C20.6 (3)
N1—C2—C3—N20.3 (3)C6—C5—N1—C2178.4 (2)
C1—C2—C3—N2178.8 (2)C3—C2—N1—C50.6 (3)
N1—C2—C3—C4179.4 (3)C1—C2—N1—C5178.6 (2)
C1—C2—C3—C41.5 (5)N1—C5—N2—C30.5 (3)
N2—C3—C4—O41.6 (4)C6—C5—N2—C3178.6 (2)
C2—C3—C4—O4178.0 (3)C2—C3—N2—C50.1 (2)
N2—C3—C4—O3178.4 (2)C4—C3—N2—C5179.8 (2)
C2—C3—C4—O32.0 (4)C9—C10—N3—O5178.8 (3)
N1—C5—C6—N3177.7 (2)C9—C10—N3—C60.4 (4)
N2—C5—C6—N33.4 (4)C7—C6—N3—O5177.8 (2)
N1—C5—C6—C72.2 (4)C5—C6—N3—O52.3 (3)
N2—C5—C6—C7176.7 (3)C7—C6—N3—C101.4 (4)
N3—C6—C7—C81.4 (4)C5—C6—N3—C10178.5 (2)
C5—C6—C7—C8178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N1i0.902.493.166 (3)132
N4—H4B···O1i0.902.112.933 (3)151
N4—H4A···O1ii0.901.952.806 (3)159
O3—H3···O20.821.642.455 (3)170
N2—H2···O50.862.062.603 (3)120
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC2H8N+·C10H6N3O5
Mr294.27
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)10.9690 (18), 17.305 (3), 8.0160 (13)
β (°) 120.901 (2)
V3)1305.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.32 × 0.28 × 0.26
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
3782, 1419, 1204
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.05
No. of reflections1419
No. of parameters193
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N1i0.902.493.166 (3)132
N4—H4B···O1i0.902.112.933 (3)151
N4—H4A···O1ii0.901.952.806 (3)159
O3—H3···O20.821.642.455 (3)170
N2—H2···O50.862.062.603 (3)120
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x1, y, z1.
 

Acknowledgements

The work was supported by Zhongshan Polytechnic.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L.-Z. (2008). Acta Cryst. E64, m1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, L.-Z., Wang, F.-M. & Shu, H. (2011). J. Coord. Chem. 65, 439–452.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. Q., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751–o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds