organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5,6-Tri­methyl­thieno[2,3-d]pyrimidin-4(3H)-one

aA. Navoiy Samarkand State University. University Avenue 15, Samarkand, Uzbekistan, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev Str. 83, Tashkent 100125, Uzbekistan, and cS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, H. Abdullaev Str. 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: crystal_uz@rambler.ru

(Received 14 May 2012; accepted 10 August 2012; online 23 August 2012)

In the title compound, C9H10N2OS, the thienopyrimidine ring system is almost planar [greatest deviation from the mean plane = 0.0318 (13) Å for the S atom]. The crystal packing features C—H⋯O hydrogen bonds and ππ stacking inter­actions between inversion-related pairs of mol­ecules with a centroid–centroid distance of 3.530 (3) Å.

Related literature

For the synthesis, properties and biological activity of pyrim­idinone derivatives, see: Litvinov (2004[Litvinov, V. P. (2004). Russ. Chem. Bull. 53, 487-516.]); Al-Taisan et al. (2010[Al-Taisan Kh, M., Al-Hazimi, H. M. A. & Al-Shihry, Sh. S. (2010). Molecules, 15, 3932-3957.]). For the crystal and mol­ecular structures of related compounds, see: Tashkhodzhaev et al. (2002[Tashkhodzhaev, B., Turgunov, K. K., Usmanova, B., Grintselev-Knyazev, G. V., Antipin, M. Yu. & Shakhidoyatov, Kh. M. (2002). J. Struct. Chem. 43, 872-875.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2OS

  • Mr = 194.25

  • Monoclinic, P 21 /c

  • a = 8.027 (3) Å

  • b = 10.706 (5) Å

  • c = 10.907 (3) Å

  • β = 97.333 (3)°

  • V = 929.7 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.77 mm−1

  • T = 293 K

  • 0.42 × 0.36 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.324, Tmax = 1.000

  • 2983 measured reflections

  • 1588 independent reflections

  • 1208 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.151

  • S = 1.05

  • 1588 reflections

  • 122 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.32 3.250 (4) 173
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The derivatives of thienopyrimidine are of interest because of their interesting pharmacological and biological activities (Litvinov, 2004). The title compound, C9H10N2OS, may be used for obtaining bioactive molecules. The asymmetric unit of the title compound consists of a single molecule (Fig.1). The thienopyrimidine ring system (N1/C2/N3/C4/C5/C6/C7/C8/S1) is ideal planar with greatest deviation from mean plane 0.0318 (12) Å for the S1). The crystal packing is stabilized by intermolecular hydrogen bonds (Table 1) and π-π stacking interactions between inversion-related pair of molecules with a centroid-centroid (N1/C2/N3/C4/C5/C6/C7/C8/S1) distance of 3.530 (3) Å.

Related literature top

For the synthesis, properties and biological activity of pyrimidinone derivatives, see: Litvinov (2004); Al-Taisan et al. (2010). For the crystal and molecular structures of related compounds, see: Tashkhodzhaev et al. (2002).

Experimental top

To a suspension of 5,6-trimethylthieno(2,3 - d)pyrimidin-4-one (181 mg, 0.1 mmol) in 50 ml e thanol sodium hydride (24 mg, 1 mmol) was added. The mixture was stirred at room temperature for 30 min. Then a solution of methyl iodide(142 mg, 1 mmol) in ethanol was added drop wise. The solution was stirred at 353–363 K for 4 h, then the solution was evaporated under reduced pressure and the residue was treated by distilled water. The precipitate was filtered and dried. Yield of 84% (174 mg). Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from chloroform at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.96 (methyl) and C—H 0.93 Å (phenyl) and treated as riding on their parent atoms, with U(H) set to 1.2 to 1.5U(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom numbering scheme.

A packing diagram for title compound. C—H···O hydrogen bonds are shown as dashed lines.
3,5,6-Trimethylthieno[2,3-d]pyrimidin-4(3H)-one top
Crystal data top
C9H10N2OSF(000) = 408
Mr = 194.25Dx = 1.388 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 185 reflections
a = 8.027 (3) Åθ = 4.1–43.7°
b = 10.706 (5) ŵ = 2.77 mm1
c = 10.907 (3) ÅT = 293 K
β = 97.333 (3)°Block, colourless
V = 929.7 (6) Å30.42 × 0.36 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
1588 independent reflections
Radiation source: fine-focus sealed tube1208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.2576 pixels mm-1θmax = 67.2°, θmin = 5.6°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.324, Tmax = 1.000l = 1311
2983 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.1022P)2 + 0.0132P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1588 reflectionsΔρmax = 0.27 e Å3
122 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0070 (14)
Crystal data top
C9H10N2OSV = 929.7 (6) Å3
Mr = 194.25Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.027 (3) ŵ = 2.77 mm1
b = 10.706 (5) ÅT = 293 K
c = 10.907 (3) Å0.42 × 0.36 × 0.28 mm
β = 97.333 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
1588 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1208 reflections with I > 2σ(I)
Tmin = 0.324, Tmax = 1.000Rint = 0.029
2983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
1588 reflectionsΔρmin = 0.22 e Å3
122 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3074 (3)0.1156 (2)0.4761 (3)0.0448 (7)
C20.4524 (4)0.1684 (3)0.6555 (3)0.0559 (8)
H20.51980.22390.70520.067*
C30.3198 (3)0.0372 (3)0.6401 (2)0.0467 (7)
C40.2664 (3)0.0020 (2)0.5153 (2)0.0396 (6)
C50.1683 (3)0.0728 (2)0.4196 (2)0.0446 (7)
C60.1362 (4)0.0066 (3)0.3125 (2)0.0498 (7)
C70.4735 (4)0.0352 (4)0.8380 (3)0.0693 (10)
H7A0.38080.00840.87910.104*
H7B0.51950.11090.87540.104*
H7C0.55840.02850.84540.104*
C80.1125 (4)0.2045 (3)0.4345 (3)0.0615 (8)
H8A0.02630.20620.48790.092*
H8B0.20620.25390.46990.092*
H8C0.06900.23790.35510.092*
C90.0413 (4)0.0454 (4)0.1917 (3)0.0694 (9)
H9A0.06900.00910.18310.104*
H9B0.03190.13480.18900.104*
H9C0.09980.01730.12540.104*
N10.4025 (3)0.2028 (2)0.5443 (2)0.0537 (6)
N20.4153 (3)0.0576 (2)0.7075 (2)0.0505 (6)
O10.2922 (3)0.13487 (19)0.69116 (18)0.0595 (6)
S10.22443 (10)0.14187 (7)0.32561 (6)0.0543 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0458 (16)0.0418 (14)0.0482 (15)0.0049 (11)0.0116 (12)0.0006 (11)
C20.0553 (19)0.0501 (17)0.062 (2)0.0007 (13)0.0055 (14)0.0163 (14)
C30.0443 (16)0.0495 (16)0.0468 (15)0.0075 (12)0.0074 (12)0.0022 (12)
C40.0368 (14)0.0398 (14)0.0430 (14)0.0064 (10)0.0081 (11)0.0000 (10)
C50.0427 (16)0.0448 (15)0.0470 (15)0.0027 (11)0.0083 (12)0.0010 (11)
C60.0476 (17)0.0553 (17)0.0458 (15)0.0063 (13)0.0036 (12)0.0013 (12)
C70.073 (2)0.088 (3)0.0436 (17)0.0157 (18)0.0037 (15)0.0115 (15)
C80.067 (2)0.0505 (17)0.067 (2)0.0105 (14)0.0080 (16)0.0035 (14)
C90.072 (2)0.083 (2)0.0512 (18)0.0023 (18)0.0023 (15)0.0075 (16)
N10.0568 (15)0.0428 (13)0.0613 (16)0.0001 (11)0.0071 (12)0.0060 (11)
N20.0519 (14)0.0564 (15)0.0419 (13)0.0091 (11)0.0006 (10)0.0089 (10)
O10.0688 (15)0.0553 (13)0.0531 (12)0.0013 (10)0.0025 (10)0.0164 (9)
S10.0631 (6)0.0502 (5)0.0493 (5)0.0040 (3)0.0068 (3)0.0099 (3)
Geometric parameters (Å, º) top
C1—N11.365 (4)C6—C91.494 (4)
C1—C41.382 (4)C6—S11.739 (3)
C1—S11.714 (3)C7—N21.461 (4)
C2—N11.282 (4)C7—H7A0.9600
C2—N21.364 (4)C7—H7B0.9600
C2—H20.9300C7—H7C0.9600
C3—O11.218 (3)C8—H8A0.9600
C3—N21.419 (4)C8—H8B0.9600
C3—C41.424 (4)C8—H8C0.9600
C4—C51.441 (3)C9—H9A0.9600
C5—C61.362 (4)C9—H9B0.9600
C5—C81.495 (4)C9—H9C0.9600
N1—C1—C4126.3 (3)N2—C7—H7C109.5
N1—C1—S1122.1 (2)H7A—C7—H7C109.5
C4—C1—S1111.6 (2)H7B—C7—H7C109.5
N1—C2—N2125.8 (3)C5—C8—H8A109.5
N1—C2—H2117.1C5—C8—H8B109.5
N2—C2—H2117.1H8A—C8—H8B109.5
O1—C3—N2119.6 (3)C5—C8—H8C109.5
O1—C3—C4127.9 (3)H8A—C8—H8C109.5
N2—C3—C4112.4 (2)H8B—C8—H8C109.5
C1—C4—C3118.9 (2)C6—C9—H9A109.5
C1—C4—C5112.6 (2)C6—C9—H9B109.5
C3—C4—C5128.5 (2)H9A—C9—H9B109.5
C6—C5—C4112.0 (2)C6—C9—H9C109.5
C6—C5—C8123.8 (3)H9A—C9—H9C109.5
C4—C5—C8124.2 (2)H9B—C9—H9C109.5
C5—C6—C9129.1 (3)C2—N1—C1113.8 (3)
C5—C6—S1112.0 (2)C2—N2—C3122.6 (2)
C9—C6—S1118.9 (2)C2—N2—C7119.2 (3)
N2—C7—H7A109.5C3—N2—C7118.2 (3)
N2—C7—H7B109.5C1—S1—C691.90 (13)
H7A—C7—H7B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.323.250 (4)173
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H10N2OS
Mr194.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.027 (3), 10.706 (5), 10.907 (3)
β (°) 97.333 (3)
V3)929.7 (6)
Z4
Radiation typeCu Kα
µ (mm1)2.77
Crystal size (mm)0.42 × 0.36 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.324, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2983, 1588, 1208
Rint0.029
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.151, 1.05
No. of reflections1588
No. of parameters122
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.323.250 (4)172.9
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grants FA–F3–T045 and FA–F3–T047)

References

First citationAl-Taisan Kh, M., Al-Hazimi, H. M. A. & Al-Shihry, Sh. S. (2010). Molecules, 15, 3932–3957.  Web of Science PubMed Google Scholar
First citationLitvinov, V. P. (2004). Russ. Chem. Bull. 53, 487–516.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTashkhodzhaev, B., Turgunov, K. K., Usmanova, B., Grintselev-Knyazev, G. V., Antipin, M. Yu. & Shakhidoyatov, Kh. M. (2002). J. Struct. Chem. 43, 872–875.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds