organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2601-o2602

N-Acetyl-3,5-di­bromo-L-tyrosine hemihydrate

aMahidol University International College, Mahidol University, Salaya Campus, Nakorn Pathom 73170, Thailand, bDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604-0484, USA, and cIstituto Chimica Biomolecolare CNR, P.le Aldo Moro 5, 00185, Rome, Italy
*Correspondence e-mail: icpakorn@mahidol.ac.th

(Received 22 June 2012; accepted 20 July 2012; online 1 August 2012)

The title compound, C11H11Br2NO4·0.5H2O, was prepared by an electrophilic bromination of N-acetyl-L-tyrosine in acetonitrile at room temperature. The two independent mol­ecules do not differ substanti­ally and a mol­ecule of water completes the asymmetric unit. The synthesis of the title compound does not modify the stereochemical center, as shown by the absolute configuration found in this crystal structure. Comparison with the non-bromo starting material differs mainly by rotation features. For instance the H(methine)—C(chiral center)—C(methyl­ene)—C(ipso) is 173.0 (2)° torsion angle in one mol­ecule and 177.3 (2)° in the other, indicating a trans arrangement. This is in contrast with approximately 50° in the starting material. A short inter­molecular Br⋯Br separation is observed [3.2938 (3) Å]. The molecules in the crystal are connected via a network of hydrogen bonds through an N—H⋯O hydrogen bond between the hydroxy group of the phenol of the tyrosine and the N—H of the amide of the other molecule and an O—H⋯O hydrogen bond between the hydroxy group of the carboxylic acid and the oxygen of the carbonyl of the amide.

Related literature

N-Acetyl-3,5-dibromo-L-tyrosine is a substrate of biological inter­est, for instance it is involved in the synthesis of isodityrosine unit, which has been found in numerous biologically active natural products that include K-13, OF4949 and vancomycin family of glycopeptide anti­biotics. For the synthesis and specific optical activity of the title compound, see: Bovonsombat et al. (2008[Bovonsombat, P., Khanthapura, P., Krause, M. M. & Leykajarakul, J. (2008). Tetrahedron Lett. 49, 7008-7011.]); Dewitt & Ingersoll (1951[Dewitt, H. D. & Ingersoll, A. W. (1951). J. Am. Chem. Soc. 73, 5782-5783.]). For the synthesis of isodityrosine, see: Guo et al. (1997[Guo, Z. W., Salamonczyk, G. M., Han, K., Machiya, K. & Sih, C. J. (1997). J. Org. Chem. 62, 6700-6701.]). For the structure of Bastadin 6, see: Kazlauskas et al. (1980[Kazlauskas, R., Lidgard, R. O., Murphy, P. T. & Well, R. J. (1980). Tetrahedron Lett. 23, 2277-2281.], 1981[Kazlauskas, R., Lidgard, R. O., Murphy, P. T., Well, R. J. & Blount, J. F. (1981). Aust. J. Chem. 34, 765-786.]). For the structure of the starting material, N-acetyl-L-tyrosine, see: Koszelak & van der Helm (1981[Koszelak, S. N. & van der Helm, D. (1981). Acta Cryst. B37, 1122-1124.]). For structures with similarly short Br⋯Br contacts, see Quast et al. (1995[Quast, H., Witzel, M., Peters, E. M., Peters, K. & von Schnering, H. G. (1995). Liebigs Ann. pp. 725-738.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11Br2NO4·0.5H2O

  • Mr = 390.02

  • Monoclinic, P 21

  • a = 7.1095 (3) Å

  • b = 22.5186 (9) Å

  • c = 8.6486 (4) Å

  • β = 105.946 (1)°

  • V = 1331.3 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.10 mm−1

  • T = 125 K

  • 0.23 × 0.17 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.334, Tmax = 0.750

  • 18331 measured reflections

  • 7067 independent reflections

  • 6449 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.048

  • S = 0.92

  • 7067 reflections

  • 361 parameters

  • 17 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3399 Friedel pairs

  • Flack parameter: 0.005 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.85 (1) 2.11 (1) 2.945 (3) 169 (3)
O7—H7O⋯O1Wii 0.83 (1) 1.78 (1) 2.607 (3) 171 (3)
O1W—H1W⋯O4iii 0.84 (1) 2.11 (2) 2.814 (3) 142 (3)
O1W—H2W⋯O2iv 0.83 (1) 2.01 (1) 2.836 (3) 172 (4)
N1—H1N⋯O5v 0.85 (1) 2.31 (1) 3.152 (3) 170 (2)
O3—H3O⋯O8iv 0.83 (1) 1.76 (1) 2.573 (2) 165 (3)
O5—H5O⋯Br4 0.83 (1) 2.73 (3) 3.1096 (16) 110 (2)
O5—H5O⋯O4vi 0.83 (1) 1.96 (1) 2.732 (2) 156 (3)
O1—H1O⋯O6vii 0.83 (1) 2.06 (2) 2.750 (2) 141 (3)
O1—H1O⋯Br3 0.83 (1) 2.61 (3) 3.0777 (17) 117 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x, y, z-1; (v) [-x, y-{\script{1\over 2}}, -z+1]; (vi) [-x, y+{\script{1\over 2}}, -z+1]; (vii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We report here the structure of the title compound (I). The 3,5-dibromo-L-tyrosine moiety is an integral part of Bastadin 6, a secondary metabolite possessing antibacterial activity against Gram-positve bacteria, extracted from Verongrid sponge Ianthella basta. Geometrical parameters of both independent molecules do not differ substantially. Comparison with the non-bromo starting material differs mainly by rotation features. For instance the torsion angle H(methine)-C(chiral center)-C(methylene)-C(ipso) is 173.0 (2)° in one molecule, 177.3 (2)° in the other, indicating a trans arrangement. This is in contrast with 49.5 Å in the starting material (Koszelak & van der Helm, 1981). The intermolecular Br1—Br2 separation of 3.2938 (3) Å is markedly shorter than the corresponding van der Waals Br—Br separation. A similar Br–Br short separation (Br—Br = 3.295 (2) Å)) is found in exo-4,exo-8-dibromo-3,7-bis(phenylsulfonyl)bicyclo(3.3.1)nona-2,6-diene (Quast et al. (1995)). A related exploration in the CSD displays 2948 hits shorter than 3.70?Å. In about 200 hits, related Br—Br separations shorter than 3.30?Å are found, and many of them include isolated Br atoms.

Related literature top

N-Acetyl-3,5-dibromo-L-tyrosine is a substrate of biological interest, for instance it is involved in the synthesis of isodityrosine unit, which has been found in numerous biologically active natural products that include K-13, OF4949 and vancomycin family of glycopeptide antibiotics. For the synthesis and specific optical activity of the title compound, see: Bovonsombat et al. (2008); Dewitt & Ingersoll (1951). For the synthesis of isodityrosine, see: Guo et al. (1997). For the structure of Bastadin 6, see: Kazlauskas et al. (1980, 1981). For the structure of the starting material, N-acetyl-L-tyrosine, see: Koszelak & van der Helm (1981). For structures with similarly short Br···Br contacts, see Quast et al. (1995).

Experimental top

To a stirring solution of N-acetyl-L-tyrosine (1 mmol) in 20 ml of solvent, 2 mmol (2.0 equivalents) of N-bromosuccinimide were added in one portion. The reaction was left to stir at room temperature for 18 h. For the work up, the organic solution was diluted with 80 ml of ethyl acetate and washed three times (20 ml aliquots) with a 5% aqueous solution of Na2S2O3, followed by three washes with water (20 ml aliquots) and lastly with brine. After evaporation of the solvents under vacuum, the solid was subjected to silica gel chromatography (EtOAc/hexanes/CH3OH (6:3:1) and 0.1% acetic acid). The product was recrystallized from water. NMR data are consistent with those reported in the literature, Bovonsombat et al. (2008). For the crystal structure experiment, the crystals were obtained from a partially dried solution of the title compound dissolved in methanol (10 mg in 2 ml of methanol).

Refinement top

All the H atoms were clearly seen in a difference Fourier but they were treated differently in refinement: C—H's were re-positioned at their expected locations, and allowed to ride both in coordinates (C—H = 0.93/0.98 Å), as well as in isotropic displacement factors [Uiso(H) = 1.2-1.5× Ueq(host)]; those attached to N and O were refined with restrained distance ( N—H = O—H: 0.85 (1)Å) and free Uiso(H).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
N-Acetyl-3,5-dibromo-L-tyrosine hemihydrate top
Crystal data top
C11H11Br2NO4·0.5H2OF(000) = 764
Mr = 390.02Dx = 1.946 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9469 reflections
a = 7.1095 (3) Åθ = 2.5–30.2°
b = 22.5186 (9) ŵ = 6.10 mm1
c = 8.6486 (4) ÅT = 125 K
β = 105.946 (1)°Plate, colourless
V = 1331.3 (1) Å30.23 × 0.17 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
7067 independent reflections
Radiation source: fine-focus sealed tube6449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
phi and ω scansθmax = 29.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker 2007)
h = 99
Tmin = 0.334, Tmax = 0.750k = 3030
18331 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048 w = 1/[σ2(Fo2)]
S = 0.92(Δ/σ)max = 0.003
7067 reflectionsΔρmax = 0.41 e Å3
361 parametersΔρmin = 0.34 e Å3
17 restraintsAbsolute structure: Flack (1983), 3399 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (5)
Crystal data top
C11H11Br2NO4·0.5H2OV = 1331.3 (1) Å3
Mr = 390.02Z = 4
Monoclinic, P21Mo Kα radiation
a = 7.1095 (3) ŵ = 6.10 mm1
b = 22.5186 (9) ÅT = 125 K
c = 8.6486 (4) Å0.23 × 0.17 × 0.05 mm
β = 105.946 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7067 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2007)
6449 reflections with I > 2σ(I)
Tmin = 0.334, Tmax = 0.750Rint = 0.030
18331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.048Δρmax = 0.41 e Å3
S = 0.92Δρmin = 0.34 e Å3
7067 reflectionsAbsolute structure: Flack (1983), 3399 Friedel pairs
361 parametersAbsolute structure parameter: 0.005 (5)
17 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52379 (3)0.027010 (11)0.09624 (3)0.02171 (6)
Br20.20768 (3)0.529982 (10)0.26246 (3)0.02077 (6)
Br30.70806 (4)0.044388 (11)0.74402 (3)0.02526 (7)
Br40.01205 (4)0.612664 (12)0.90382 (3)0.02911 (7)
C10.6076 (3)0.00179 (10)0.4288 (3)0.0144 (4)
C20.6679 (3)0.01750 (11)0.5896 (3)0.0170 (5)
C30.7095 (3)0.07588 (11)0.6382 (3)0.0181 (5)
H30.74750.08500.74730.022*
C40.6948 (3)0.12065 (11)0.5257 (3)0.0160 (4)
C50.6346 (3)0.10533 (11)0.3629 (3)0.0176 (5)
H50.62290.13460.28500.021*
C70.7528 (3)0.18382 (10)0.5762 (3)0.0186 (5)
H7B0.82050.20030.50280.022*
H7A0.84460.18310.68240.022*
C80.5815 (3)0.22554 (10)0.5802 (3)0.0168 (5)
H80.63780.26340.62680.020*
C90.5205 (4)0.20950 (11)0.8411 (3)0.0217 (5)
C100.3882 (4)0.18128 (12)0.9301 (3)0.0320 (7)
H10C0.28060.16220.85460.048*
H10A0.33920.21130.98760.048*
H10B0.46060.15241.00470.048*
C120.1141 (3)0.56247 (11)0.5916 (3)0.0168 (5)
C130.0614 (3)0.54956 (12)0.7546 (3)0.0202 (5)
C170.1403 (3)0.51408 (11)0.4856 (3)0.0163 (5)
C160.1215 (3)0.45657 (12)0.5400 (3)0.0184 (5)
H160.14060.42560.46610.022*
C140.0419 (3)0.49135 (12)0.8107 (3)0.0202 (5)
H140.00680.48430.92090.024*
C110.4499 (3)0.23828 (10)0.4122 (3)0.0156 (5)
C150.0741 (3)0.44352 (11)0.7047 (3)0.0179 (5)
C200.1074 (4)0.33012 (10)0.5784 (3)0.0199 (5)
C190.1059 (3)0.34237 (10)0.7516 (3)0.0195 (5)
H190.09270.30380.80020.023*
C210.3886 (3)0.34854 (10)0.9878 (3)0.0169 (5)
C220.5904 (4)0.37301 (11)1.0570 (3)0.0205 (5)
H22C0.60550.40871.00090.031*
H22B0.68530.34431.04540.031*
H22A0.60970.38171.16890.031*
C180.0683 (4)0.38071 (11)0.7657 (3)0.0224 (5)
H18B0.18810.36100.70750.027*
H18A0.06720.38210.87810.027*
C60.5923 (3)0.04698 (11)0.3168 (3)0.0161 (5)
N10.4654 (3)0.20206 (9)0.6814 (2)0.0177 (4)
H1N0.371 (3)0.1796 (10)0.634 (3)0.021*
N20.2930 (3)0.36671 (9)0.8409 (2)0.0189 (4)
H2N0.334 (4)0.3930 (9)0.788 (3)0.023*
O10.5651 (2)0.05488 (7)0.3754 (2)0.0185 (4)
H1O0.611 (4)0.0801 (9)0.445 (2)0.022*
O20.6678 (3)0.23827 (9)0.9097 (2)0.0316 (4)
O30.5303 (3)0.27618 (9)0.3358 (2)0.0269 (4)
H3O0.446 (3)0.2834 (13)0.2502 (19)0.032*
O40.2913 (2)0.21517 (7)0.35608 (19)0.0187 (3)
O50.1397 (2)0.61836 (8)0.53021 (19)0.0206 (4)
H5O0.166 (4)0.6438 (9)0.590 (3)0.025*
O60.2455 (3)0.33961 (8)0.5251 (2)0.0257 (4)
O70.0617 (3)0.30763 (9)0.4961 (2)0.0284 (4)
H7O0.051 (4)0.2962 (13)0.4076 (19)0.034*
O80.3140 (2)0.31234 (8)1.0623 (2)0.0234 (4)
O1W0.9302 (3)0.26971 (13)0.2095 (3)0.0520 (7)
H1W1.038 (3)0.2551 (16)0.207 (4)0.062*
H2W0.847 (4)0.2589 (17)0.127 (3)0.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02863 (13)0.02049 (12)0.01247 (12)0.00333 (11)0.00033 (10)0.00168 (10)
Br20.02392 (13)0.02328 (14)0.01258 (12)0.00015 (11)0.00074 (10)0.00066 (10)
Br30.03634 (16)0.02193 (14)0.01756 (13)0.00037 (11)0.00752 (11)0.00566 (10)
Br40.04323 (17)0.02575 (14)0.01522 (13)0.01038 (12)0.00278 (11)0.00298 (10)
C10.0122 (10)0.0121 (11)0.0188 (11)0.0018 (9)0.0038 (9)0.0018 (9)
C20.0181 (11)0.0186 (13)0.0149 (10)0.0020 (9)0.0054 (9)0.0034 (9)
C30.0175 (11)0.0231 (13)0.0131 (11)0.0023 (10)0.0029 (9)0.0034 (9)
C40.0124 (10)0.0150 (11)0.0197 (11)0.0008 (9)0.0027 (9)0.0009 (9)
C50.0165 (11)0.0185 (12)0.0167 (11)0.0022 (9)0.0027 (9)0.0045 (9)
C70.0151 (11)0.0160 (11)0.0217 (12)0.0017 (9)0.0002 (9)0.0001 (9)
C80.0202 (11)0.0128 (11)0.0148 (11)0.0025 (9)0.0006 (9)0.0012 (8)
C90.0361 (15)0.0121 (11)0.0131 (11)0.0057 (10)0.0004 (10)0.0008 (9)
C100.059 (2)0.0202 (14)0.0182 (13)0.0014 (13)0.0134 (13)0.0011 (11)
C120.0135 (11)0.0204 (13)0.0163 (12)0.0031 (9)0.0039 (9)0.0021 (10)
C130.0166 (12)0.0259 (13)0.0174 (12)0.0025 (10)0.0033 (10)0.0054 (10)
C170.0133 (10)0.0229 (14)0.0111 (10)0.0001 (9)0.0006 (8)0.0010 (9)
C160.0143 (11)0.0225 (12)0.0167 (11)0.0016 (10)0.0015 (9)0.0029 (10)
C140.0178 (11)0.0289 (14)0.0127 (11)0.0020 (10)0.0020 (9)0.0031 (10)
C110.0188 (12)0.0109 (10)0.0171 (11)0.0014 (9)0.0046 (9)0.0015 (9)
C150.0123 (10)0.0222 (13)0.0181 (11)0.0014 (9)0.0024 (9)0.0055 (9)
C200.0236 (13)0.0103 (11)0.0202 (12)0.0010 (9)0.0031 (10)0.0023 (9)
C190.0230 (12)0.0146 (11)0.0176 (12)0.0054 (9)0.0000 (10)0.0043 (9)
C210.0220 (12)0.0115 (11)0.0163 (11)0.0044 (9)0.0039 (9)0.0015 (9)
C220.0220 (12)0.0194 (13)0.0174 (11)0.0022 (10)0.0007 (9)0.0013 (10)
C180.0221 (12)0.0233 (13)0.0210 (12)0.0035 (10)0.0046 (10)0.0047 (10)
C60.0158 (11)0.0209 (12)0.0099 (11)0.0023 (9)0.0010 (9)0.0034 (9)
N10.0236 (11)0.0166 (10)0.0116 (9)0.0030 (8)0.0024 (8)0.0016 (8)
N20.0218 (10)0.0149 (10)0.0169 (10)0.0059 (8)0.0002 (8)0.0027 (8)
O10.0217 (9)0.0142 (9)0.0180 (9)0.0010 (7)0.0026 (7)0.0005 (7)
O20.0394 (12)0.0297 (11)0.0183 (9)0.0018 (9)0.0047 (8)0.0065 (8)
O30.0218 (9)0.0353 (11)0.0198 (9)0.0082 (8)0.0008 (7)0.0117 (8)
O40.0178 (8)0.0163 (8)0.0192 (8)0.0024 (7)0.0007 (7)0.0020 (7)
O50.0273 (9)0.0184 (9)0.0156 (9)0.0072 (8)0.0050 (7)0.0001 (7)
O60.0281 (10)0.0221 (10)0.0257 (10)0.0043 (8)0.0053 (8)0.0087 (8)
O70.0292 (10)0.0302 (11)0.0203 (9)0.0120 (8)0.0024 (8)0.0030 (8)
O80.0240 (9)0.0275 (10)0.0171 (8)0.0023 (7)0.0032 (7)0.0057 (7)
O1W0.0294 (12)0.0756 (18)0.0375 (13)0.0269 (12)0.0135 (10)0.0321 (12)
Geometric parameters (Å, º) top
Br1—C61.889 (2)C17—C161.372 (4)
Br2—C171.890 (2)C16—C151.402 (3)
Br3—C21.897 (2)C16—H160.9300
Br4—C131.887 (3)C14—C151.392 (4)
C1—O11.362 (3)C14—H140.9300
C1—C21.384 (3)C11—O41.215 (3)
C1—C61.388 (3)C11—O31.304 (3)
C2—C31.387 (3)C15—C181.506 (3)
C3—C41.385 (3)C20—O61.213 (3)
C3—H30.9300C20—O71.318 (3)
C4—C51.398 (3)C20—C191.526 (3)
C4—C71.512 (3)C19—N21.450 (3)
C5—C61.382 (3)C19—C181.542 (3)
C5—H50.9300C19—H190.9800
C7—C81.546 (3)C21—O81.245 (3)
C7—H7B0.9700C21—N21.330 (3)
C7—H7A0.9700C21—C221.499 (3)
C8—N11.457 (3)C22—H22C0.9600
C8—C111.524 (3)C22—H22B0.9600
C8—H80.9800C22—H22A0.9600
C9—O21.236 (3)C18—H18B0.9700
C9—N11.339 (3)C18—H18A0.9700
C9—C101.510 (4)N1—H1N0.852 (7)
C10—H10C0.9600N2—H2N0.847 (7)
C10—H10A0.9600O1—H1O0.829 (7)
C10—H10B0.9600O3—H3O0.832 (7)
C12—O51.359 (3)O5—H5O0.825 (7)
C12—C131.386 (3)O7—H7O0.830 (7)
C12—C171.403 (3)O1W—H1W0.837 (7)
C13—C141.391 (4)O1W—H2W0.830 (7)
O1—C1—C2124.0 (2)C15—C14—C13121.1 (2)
O1—C1—C6118.8 (2)C15—C14—H14119.5
C2—C1—C6117.2 (2)C13—C14—H14119.5
C1—C2—C3121.9 (2)O4—C11—O3124.4 (2)
C1—C2—Br3117.70 (18)O4—C11—C8124.0 (2)
C3—C2—Br3120.31 (17)O3—C11—C8111.53 (19)
C4—C3—C2120.5 (2)C14—C15—C16117.2 (2)
C4—C3—H3119.7C14—C15—C18120.8 (2)
C2—C3—H3119.7C16—C15—C18121.9 (2)
C3—C4—C5118.1 (2)O6—C20—O7125.2 (2)
C3—C4—C7121.3 (2)O6—C20—C19124.4 (2)
C5—C4—C7120.5 (2)O7—C20—C19110.4 (2)
C6—C5—C4120.5 (2)N2—C19—C20109.8 (2)
C6—C5—H5119.8N2—C19—C18112.7 (2)
C4—C5—H5119.8C20—C19—C18113.7 (2)
C4—C7—C8115.08 (18)N2—C19—H19106.8
C4—C7—H7B108.5C20—C19—H19106.8
C8—C7—H7B108.5C18—C19—H19106.8
C4—C7—H7A108.5O8—C21—N2121.2 (2)
C8—C7—H7A108.5O8—C21—C22122.1 (2)
H7B—C7—H7A107.5N2—C21—C22116.8 (2)
N1—C8—C11109.89 (18)C21—C22—H22C109.5
N1—C8—C7111.89 (19)C21—C22—H22B109.5
C11—C8—C7111.97 (19)H22C—C22—H22B109.5
N1—C8—H8107.6C21—C22—H22A109.5
C11—C8—H8107.6H22C—C22—H22A109.5
C7—C8—H8107.6H22B—C22—H22A109.5
O2—C9—N1122.0 (2)C15—C18—C19116.3 (2)
O2—C9—C10122.7 (2)C15—C18—H18B108.2
N1—C9—C10115.3 (2)C19—C18—H18B108.2
C9—C10—H10C109.5C15—C18—H18A108.2
C9—C10—H10A109.5C19—C18—H18A108.2
H10C—C10—H10A109.5H18B—C18—H18A107.4
C9—C10—H10B109.5C5—C6—C1121.8 (2)
H10C—C10—H10B109.5C5—C6—Br1119.52 (19)
H10A—C10—H10B109.5C1—C6—Br1118.63 (18)
O5—C12—C13124.2 (2)C9—N1—C8121.4 (2)
O5—C12—C17119.0 (2)C9—N1—H1N122.9 (18)
C13—C12—C17116.9 (2)C8—N1—H1N115.2 (18)
C12—C13—C14121.7 (2)C21—N2—C19123.1 (2)
C12—C13—Br4119.0 (2)C21—N2—H2N124.7 (19)
C14—C13—Br4119.26 (18)C19—N2—H2N112.2 (19)
C16—C17—C12121.7 (2)C1—O1—H1O113 (2)
C16—C17—Br2120.17 (18)C11—O3—H3O106 (2)
C12—C17—Br2118.09 (18)C12—O5—H5O115 (2)
C17—C16—C15121.3 (2)C20—O7—H7O108 (2)
C17—C16—H16119.3H1W—O1W—H2W108 (4)
C15—C16—H16119.3
O1—C1—C2—C3179.9 (2)N1—C8—C11—O3159.0 (2)
C6—C1—C2—C30.7 (3)C7—C8—C11—O376.0 (2)
O1—C1—C2—Br33.8 (3)C13—C14—C15—C161.7 (3)
C6—C1—C2—Br3175.51 (16)C13—C14—C15—C18175.2 (2)
C1—C2—C3—C41.1 (3)C17—C16—C15—C141.7 (3)
Br3—C2—C3—C4175.04 (17)C17—C16—C15—C18175.2 (2)
C2—C3—C4—C50.9 (3)O6—C20—C19—N20.1 (3)
C2—C3—C4—C7175.7 (2)O7—C20—C19—N2179.62 (19)
C3—C4—C5—C60.3 (3)O6—C20—C19—C18127.2 (3)
C7—C4—C5—C6176.3 (2)O7—C20—C19—C1853.2 (3)
C3—C4—C7—C898.5 (3)C14—C15—C18—C19110.4 (3)
C5—C4—C7—C885.1 (3)C16—C15—C18—C1972.9 (3)
C4—C7—C8—N155.1 (3)N2—C19—C18—C1560.6 (3)
C4—C7—C8—C1168.8 (3)C20—C19—C18—C1565.1 (3)
O5—C12—C13—C14178.4 (2)C4—C5—C6—C10.0 (3)
C17—C12—C13—C142.2 (3)C4—C5—C6—Br1176.88 (17)
O5—C12—C13—Br42.3 (3)O1—C1—C6—C5179.5 (2)
C17—C12—C13—Br4177.10 (17)C2—C1—C6—C50.2 (3)
O5—C12—C17—C16178.3 (2)O1—C1—C6—Br12.6 (3)
C13—C12—C17—C162.3 (3)C2—C1—C6—Br1176.72 (16)
O5—C12—C17—Br20.6 (3)O2—C9—N1—C82.6 (4)
C13—C12—C17—Br2178.86 (17)C10—C9—N1—C8178.4 (2)
C12—C17—C16—C150.3 (3)C11—C8—N1—C9152.5 (2)
Br2—C17—C16—C15179.19 (17)C7—C8—N1—C982.5 (3)
C12—C13—C14—C150.3 (4)O8—C21—N2—C195.7 (4)
Br4—C13—C14—C15179.05 (17)C22—C21—N2—C19173.3 (2)
N1—C8—C11—O422.1 (3)C20—C19—N2—C21135.0 (2)
C7—C8—C11—O4102.9 (3)C18—C19—N2—C2197.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.85 (1)2.11 (1)2.945 (3)169 (3)
O7—H7O···O1Wii0.83 (1)1.78 (1)2.607 (3)171 (3)
O1W—H1W···O4iii0.84 (1)2.11 (2)2.814 (3)142 (3)
O1W—H2W···O2iv0.83 (1)2.01 (1)2.836 (3)172 (4)
N1—H1N···O5v0.85 (1)2.31 (1)3.152 (3)170 (2)
O3—H3O···O8iv0.83 (1)1.76 (1)2.573 (2)165 (3)
O5—H5O···Br40.83 (1)2.73 (3)3.1096 (16)110 (2)
O5—H5O···O4vi0.83 (1)1.96 (1)2.732 (2)156 (3)
O1—H1O···O6vii0.83 (1)2.06 (2)2.750 (2)141 (3)
O1—H1O···Br30.83 (1)2.61 (3)3.0777 (17)117 (2)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y, z1; (v) x, y1/2, z+1; (vi) x, y+1/2, z+1; (vii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H11Br2NO4·0.5H2O
Mr390.02
Crystal system, space groupMonoclinic, P21
Temperature (K)125
a, b, c (Å)7.1095 (3), 22.5186 (9), 8.6486 (4)
β (°) 105.946 (1)
V3)1331.3 (1)
Z4
Radiation typeMo Kα
µ (mm1)6.10
Crystal size (mm)0.23 × 0.17 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2007)
Tmin, Tmax0.334, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
18331, 7067, 6449
Rint0.030
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.048, 0.92
No. of reflections7067
No. of parameters361
No. of restraints17
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.34
Absolute structureFlack (1983), 3399 Friedel pairs
Absolute structure parameter0.005 (5)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.847 (7)2.109 (9)2.945 (3)169 (3)
O7—H7O···O1Wii0.830 (7)1.784 (9)2.607 (3)171 (3)
O1W—H1W···O4iii0.837 (7)2.11 (2)2.814 (3)142 (3)
O1W—H2W···O2iv0.830 (7)2.011 (9)2.836 (3)172 (4)
N1—H1N···O5v0.852 (7)2.308 (9)3.152 (3)170 (2)
O3—H3O···O8iv0.832 (7)1.762 (11)2.573 (2)165 (3)
O5—H5O···Br40.825 (7)2.73 (3)3.1096 (16)110 (2)
O5—H5O···O4vi0.825 (7)1.956 (14)2.732 (2)156 (3)
O1—H1O···O6vii0.829 (7)2.057 (18)2.750 (2)141 (3)
O1—H1O···Br30.829 (7)2.61 (3)3.0777 (17)117 (2)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x, y, z1; (v) x, y1/2, z+1; (vi) x, y+1/2, z+1; (vii) x+1, y1/2, z+1.
 

Acknowledgements

MR thanks the US National Science Foundation, through grant 0521237, for the X-ray diffractometer.

References

First citationBovonsombat, P., Khanthapura, P., Krause, M. M. & Leykajarakul, J. (2008). Tetrahedron Lett. 49, 7008–7011.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDewitt, H. D. & Ingersoll, A. W. (1951). J. Am. Chem. Soc. 73, 5782–5783.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, Z. W., Salamonczyk, G. M., Han, K., Machiya, K. & Sih, C. J. (1997). J. Org. Chem. 62, 6700–6701.  CrossRef CAS Web of Science Google Scholar
First citationKazlauskas, R., Lidgard, R. O., Murphy, P. T. & Well, R. J. (1980). Tetrahedron Lett. 23, 2277–2281.  CrossRef Web of Science Google Scholar
First citationKazlauskas, R., Lidgard, R. O., Murphy, P. T., Well, R. J. & Blount, J. F. (1981). Aust. J. Chem. 34, 765–786.  CSD CrossRef CAS Google Scholar
First citationKoszelak, S. N. & van der Helm, D. (1981). Acta Cryst. B37, 1122–1124.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQuast, H., Witzel, M., Peters, E. M., Peters, K. & von Schnering, H. G. (1995). Liebigs Ann. pp. 725–738.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2601-o2602
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds