organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E,2E)-1,2-Bis(2,3-di­hydro-1H-inden-1-yl­­idene)hydrazine

aInstitute of Integrated Natural Sciences, Universitαtsstr. 1, 56070 Koblenz, Germany, and bInstitute of Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 8, 07743 Jena, Germany
*Correspondence e-mail: Imhof@uni-koblenz.de

(Received 28 June 2012; accepted 13 August 2012; online 23 August 2012)

In the title compound, C18H16N2, there are two independent half-mol­ecules (A and B) in the asymmetric unit, each mol­ecule being completed by an inversion center situated in the mid-point of the central N—N bond. The mol­ecules themselves therefore are essentially planar with r.m.s. deviations of 0.015 (1) and 0.020 (1) Å, respectively. In the crystal, mol­ecules are connected via C—H⋯π inter­actions in which only type B mol­ecules are donors, while both A and B mol­ecules act as acceptors. As a result, type B mol­ecules are linked into infinite chains along b, which are inter­connected by molecules of type A.

Related literature

For structural and physical properties of indanone-derived azines, see: Choytun et al. (2004[Choytun, D. D., Langlois, L. D., Johansson, T. P., Macdonald, C. L. B., Leach, G. W., Weinberg, N. & Clyburne, J. A. C. (2004). Chem. Commun. pp. 1842-1843.]). For the reactivity of azines towards Fe2(CO)9, see: Dönnecke et al. (2004a[Dönnecke, D., Wunderle, J. & Imhof, W. (2004a). J. Organomet. Chem. 689, 585-594.],b[Dönnecke, D., Halbauer, K. & Imhof, W. (2004b). J. Organomet. Chem. 689, 2707-2719.]); Wu et al. (2006[Wu, C.-Y., Chen, Y., Jing, S.-Y., Lee, C.-S., Dinda, J. & Hwang, W. S. (2006). Polyhedron, 25, 3053-3065.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2

  • Mr = 260.33

  • Triclinic, [P \overline 1]

  • a = 5.1161 (10) Å

  • b = 11.877 (2) Å

  • c = 12.245 (2) Å

  • α = 109.59 (3)°

  • β = 99.93 (3)°

  • γ = 100.47 (3)°

  • V = 667.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 183 K

  • 0.6 × 0.1 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4726 measured reflections

  • 2999 independent reflections

  • 1901 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.114

  • S = 1.02

  • 2999 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17BCg1 0.99 2.76 3.687 (3) 157
C16—H16BCg2i 0.99 2.79 3.649 (2) 146
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the course of a study concerning the reactivity of azines towards Fe2(CO)9 we became interested in the structual properties of several substituted aromatic azine derivatives (Dönnecke et al., 2004a, 2004b). Azines derived from indanone derivatives have been investigated concerning their structural and physical properties due to the fact that some of them exhibit NLO properties (Choytun et al., 2004).

In the asymmetric unit of the crystal structure two independent halves of the molecules of the title compound, C18H16N2, are observed (fIG. 1). Each fragment is expanded to a complete molecule by crystallographic inversion centers that are situated in the middle of the central N—N bonds of both molecules. The molecules themselves therefore are essentially planar with Rms deviations of 0.015 (1) (molecule A: N1, C1 to C9) and 0.020 (1) (molecule B: N2, C10 to C18) Å, respectively. The central N—N bonds are 1.412 (2) (N1—N1i) and 1.415 (3) (N2—N2ii) Å (i = -x, 1-y, 2- z; ii = -x, - y, 1- z). The planes of the two molecules form an angle of 5.77 (7)° with respect to each other. In the crystal structure molecules are connected via C—H···π interactions (Cg···Cg distances: 2.76 and 2.79 Å). Molecules B are linked by mutual C—H···π contacts in which the molecules act as hydrogen bond donors and acceptors resulting in infinite chains. These chains are interconnected by molecules A which only act as acceptor sites for C—H···π interactions (Figure 2).

Related literature top

For structural and physical properties of indanone-derived azines, see: Choytun et al. (2004). For the reactivity of azines towards Fe2(CO)9, see: Dönnecke et al. (2004a,b); Wu et al. (2006).

Experimental top

2,3-Dihydro-1H-inden-1-one (2 g, 1.8 ml, 15.15 mmol) is dissolved in 30 ml ethanol and mixed with hydrazine hydrate (379 mg, 0.37 ml, 7.58 mmol) in the presence of a catalytic amount of p-toluene sulfonic acid. The resulting orange colored mixture is stirred at room temperature for 3 h. Evaporation of the solvent at room temperature for 3 d leads to the formation of the crystalline title compound (yield: 78%).

Refinement top

Hydrogen atoms have been placed in idealized positions and were refined using the riding model approximation with C—H distances of 0.95 and 0.99 Å for aromatic and methylene groups, respectively, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
Figure 1: Molecular structure of the independent molecules of the title compounds with displacement ellipsoids at the 50% probability level (i = -x, 1-y, 2 - z; ii = -x, - y, 1- z).

Figure 2: Packing diagram of the title compound.
(1E,2E)-1,2-Bis(2,3-dihydro-1H-inden-1-ylidene)hydrazine top
Crystal data top
C18H16N2Z = 2
Mr = 260.33F(000) = 276
Triclinic, P1Dx = 1.296 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1161 (10) ÅCell parameters from 4726 reflections
b = 11.877 (2) Åθ = 1.8–27.5°
c = 12.245 (2) ŵ = 0.08 mm1
α = 109.59 (3)°T = 183 K
β = 99.93 (3)°Quader, yellow
γ = 100.47 (3)°0.6 × 0.1 × 0.1 mm
V = 667.1 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
1901 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
phi–scan, ω–scanh = 66
4726 measured reflectionsk = 1415
2999 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
2999 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H16N2γ = 100.47 (3)°
Mr = 260.33V = 667.1 (2) Å3
Triclinic, P1Z = 2
a = 5.1161 (10) ÅMo Kα radiation
b = 11.877 (2) ŵ = 0.08 mm1
c = 12.245 (2) ÅT = 183 K
α = 109.59 (3)°0.6 × 0.1 × 0.1 mm
β = 99.93 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1901 reflections with I > 2σ(I)
4726 measured reflectionsRint = 0.037
2999 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2999 reflectionsΔρmin = 0.19 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0535 (2)0.51077 (11)0.95393 (11)0.0280 (3)
C10.3116 (3)0.50842 (14)0.74721 (14)0.0304 (4)
H10.22870.57540.76830.036*
C20.4487 (3)0.49064 (14)0.65753 (14)0.0338 (4)
H20.46140.54610.61680.041*
N20.0565 (3)0.00657 (12)0.45007 (11)0.0319 (3)
C30.5684 (3)0.39184 (14)0.62645 (14)0.0326 (4)
H30.66270.38070.56480.039*
C40.5518 (3)0.30961 (14)0.68430 (14)0.0309 (4)
H40.63300.24210.66240.037*
C50.4150 (3)0.32704 (13)0.77458 (13)0.0243 (4)
C60.2971 (3)0.42640 (13)0.80617 (13)0.0238 (3)
C70.1704 (3)0.42645 (13)0.90464 (13)0.0237 (3)
C80.2091 (3)0.31658 (13)0.93521 (14)0.0276 (4)
H8B0.02910.25970.92220.033*
H8A0.31100.34391.01990.033*
C90.3745 (3)0.25193 (13)0.85068 (14)0.0291 (4)
H9B0.55340.25190.89690.035*
H9A0.27120.16540.80050.035*
C100.1242 (3)0.20212 (14)0.17948 (13)0.0314 (4)
H100.07740.26780.15940.038*
C110.2587 (3)0.12604 (15)0.11147 (15)0.0365 (4)
H110.30400.13970.04410.044*
C120.3292 (3)0.02931 (15)0.13998 (14)0.0356 (4)
H120.42310.02170.09240.043*
C130.2633 (3)0.00749 (14)0.23669 (14)0.0302 (4)
H130.31040.05830.25650.036*
C140.1258 (3)0.08405 (13)0.30495 (13)0.0250 (3)
C150.0581 (3)0.18161 (13)0.27746 (13)0.0259 (4)
C160.0860 (3)0.25116 (13)0.36545 (14)0.0302 (4)
H16B0.27180.24900.32370.036*
H16A0.02030.33850.40890.036*
C170.1032 (3)0.18309 (14)0.45227 (14)0.0289 (4)
H17B0.00410.23960.53520.035*
H17A0.29710.15080.45060.035*
C180.0289 (3)0.07840 (13)0.40943 (13)0.0250 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0332 (7)0.0306 (7)0.0251 (7)0.0124 (6)0.0151 (6)0.0108 (6)
C10.0360 (9)0.0302 (9)0.0310 (9)0.0135 (7)0.0142 (7)0.0136 (7)
C20.0429 (10)0.0356 (9)0.0322 (9)0.0135 (8)0.0172 (8)0.0190 (8)
N20.0459 (8)0.0310 (7)0.0301 (8)0.0157 (6)0.0198 (6)0.0174 (6)
C30.0365 (9)0.0392 (9)0.0297 (9)0.0143 (7)0.0183 (8)0.0150 (8)
C40.0328 (9)0.0349 (9)0.0317 (9)0.0171 (7)0.0162 (7)0.0126 (8)
C50.0221 (7)0.0268 (8)0.0242 (8)0.0068 (6)0.0072 (7)0.0091 (7)
C60.0251 (8)0.0236 (7)0.0223 (8)0.0061 (6)0.0079 (6)0.0073 (6)
C70.0223 (7)0.0238 (8)0.0233 (8)0.0059 (6)0.0063 (6)0.0066 (6)
C80.0298 (8)0.0270 (8)0.0289 (9)0.0080 (7)0.0120 (7)0.0115 (7)
C90.0311 (8)0.0280 (8)0.0325 (9)0.0116 (7)0.0123 (7)0.0125 (7)
C100.0423 (9)0.0325 (9)0.0300 (9)0.0151 (7)0.0142 (8)0.0195 (8)
C110.0509 (10)0.0400 (9)0.0322 (9)0.0170 (8)0.0226 (8)0.0219 (8)
C120.0476 (10)0.0350 (9)0.0333 (10)0.0187 (8)0.0227 (8)0.0141 (8)
C130.0377 (9)0.0265 (8)0.0310 (9)0.0112 (7)0.0137 (7)0.0126 (7)
C140.0261 (8)0.0256 (8)0.0229 (8)0.0052 (6)0.0064 (6)0.0092 (7)
C150.0284 (8)0.0268 (8)0.0243 (8)0.0078 (6)0.0084 (7)0.0106 (7)
C160.0368 (9)0.0296 (8)0.0318 (9)0.0154 (7)0.0131 (7)0.0152 (7)
C170.0321 (8)0.0325 (8)0.0271 (8)0.0126 (7)0.0110 (7)0.0136 (7)
C180.0267 (8)0.0248 (8)0.0242 (8)0.0070 (6)0.0070 (7)0.0096 (7)
Geometric parameters (Å, º) top
N1—C71.2895 (18)C9—H9B0.9900
N1—N1i1.412 (2)C9—H9A0.9900
C1—C21.381 (2)C10—C111.379 (2)
C1—C61.393 (2)C10—C151.385 (2)
C1—H10.9500C10—H100.9500
C2—C31.393 (2)C11—C121.396 (2)
C2—H20.9500C11—H110.9500
N2—C181.2847 (19)C12—C131.377 (2)
N2—N2ii1.415 (2)C12—H120.9500
C3—C41.385 (2)C13—C141.395 (2)
C3—H30.9500C13—H130.9500
C4—C51.386 (2)C14—C151.394 (2)
C4—H40.9500C14—C181.467 (2)
C5—C61.393 (2)C15—C161.512 (2)
C5—C91.505 (2)C16—C171.541 (2)
C6—C71.464 (2)C16—H16B0.9900
C7—C81.509 (2)C16—H16A0.9900
C8—C91.544 (2)C17—C181.506 (2)
C8—H8B0.9900C17—H17B0.9900
C8—H8A0.9900C17—H17A0.9900
C7—N1—N1i111.59 (15)H9B—C9—H9A108.9
C2—C1—C6118.82 (14)C11—C10—C15119.20 (14)
C2—C1—H1120.6C11—C10—H10120.4
C6—C1—H1120.6C15—C10—H10120.4
C1—C2—C3120.35 (15)C10—C11—C12121.08 (15)
C1—C2—H2119.8C10—C11—H11119.5
C3—C2—H2119.8C12—C11—H11119.5
C18—N2—N2ii111.52 (15)C13—C12—C11120.29 (15)
C4—C3—C2120.84 (14)C13—C12—H12119.9
C4—C3—H3119.6C11—C12—H12119.9
C2—C3—H3119.6C12—C13—C14118.55 (15)
C5—C4—C3119.13 (14)C12—C13—H13120.7
C5—C4—H4120.4C14—C13—H13120.7
C3—C4—H4120.4C13—C14—C15121.22 (14)
C4—C5—C6119.98 (14)C13—C14—C18128.93 (15)
C4—C5—C9128.68 (13)C15—C14—C18109.84 (13)
C6—C5—C9111.34 (12)C10—C15—C14119.64 (14)
C1—C6—C5120.89 (14)C10—C15—C16129.42 (14)
C1—C6—C7129.37 (14)C14—C15—C16110.94 (13)
C5—C6—C7109.75 (13)C15—C16—C17104.84 (12)
N1—C7—C6122.75 (14)C15—C16—H16B110.8
N1—C7—C8128.85 (14)C17—C16—H16B110.8
C6—C7—C8108.39 (12)C15—C16—H16A110.8
C7—C8—C9105.79 (12)C17—C16—H16A110.8
C7—C8—H8B110.6H16B—C16—H16A108.9
C9—C8—H8B110.6C18—C17—C16105.91 (12)
C7—C8—H8A110.6C18—C17—H17B110.6
C9—C8—H8A110.6C16—C17—H17B110.6
H8B—C8—H8A108.7C18—C17—H17A110.6
C5—C9—C8104.71 (12)C16—C17—H17A110.6
C5—C9—H9B110.8H17B—C17—H17A108.7
C8—C9—H9B110.8N2—C18—C14122.08 (14)
C5—C9—H9A110.8N2—C18—C17129.46 (14)
C8—C9—H9A110.8C14—C18—C17108.45 (13)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17B···Cg10.992.763.687 (3)157
C16—H16B···Cg2iii0.992.793.649 (2)146
Symmetry code: (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H16N2
Mr260.33
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)5.1161 (10), 11.877 (2), 12.245 (2)
α, β, γ (°)109.59 (3), 99.93 (3), 100.47 (3)
V3)667.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.6 × 0.1 × 0.1
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4726, 2999, 1901
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.02
No. of reflections2999
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17B···Cg10.992.763.687 (3)156.5
C16—H16B···Cg2i0.992.793.649 (2)145.9
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

First citationChoytun, D. D., Langlois, L. D., Johansson, T. P., Macdonald, C. L. B., Leach, G. W., Weinberg, N. & Clyburne, J. A. C. (2004). Chem. Commun. pp. 1842–1843.  Web of Science CSD CrossRef Google Scholar
First citationDönnecke, D., Halbauer, K. & Imhof, W. (2004b). J. Organomet. Chem. 689, 2707–2719.  Google Scholar
First citationDönnecke, D., Wunderle, J. & Imhof, W. (2004a). J. Organomet. Chem. 689, 585–594.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C.-Y., Chen, Y., Jing, S.-Y., Lee, C.-S., Dinda, J. & Hwang, W. S. (2006). Polyhedron, 25, 3053–3065.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds