organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(propyl­ammonium) benzene-1,2,4,5-tetra­carboxyl­ate 2,5-dicarb­­oxy­benzene-1,4-carboxyl­ate tetra­hydrate

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
*Correspondence e-mail: Manuel.Fernandes@wits.ac.za

(Received 11 April 2012; accepted 21 August 2012; online 31 August 2012)

The title organic salt, 6C3H10N+·C10H2O84−·C10H4O82−·4H2O, contains seven independent entities in the asymmetric unit which comprises three propyl­ammonium cations, two water mol­ecules, half a 2,5-dicarb­oxy­benzene-1,4-carboxyl­ate dianion (H2btc2−) and half a benzene-1,2,4,5-tetra­carboxyl­ate tetra­anion (btc4−), the latter two anions being located about centres of inversion. One of the water mol­ecules is disordered over two positions in a 0.55 (2):0.45 (2) ratio. The combination of mol­ecular ions and water mol­ecules results in an extensive and complex three-dimensional network of hydrogen bonds, the network being made up of nine unique N—H⋯O inter­actions between the ammonium cations and the anions, as well as four unique O—H⋯O inter­actions between the water mol­ecules and the anions.

Related literature

For studies involving hydrogen-bonding inter­actions, see: Pimentel & McClellan (1960[Pimentel, G. C. & McClellan, A. L. (1960). In The Hydrogen Bond. San Francisco: Freeman.]); Lemmerer (2011[Lemmerer, A. (2011). Cryst. Growth Des. 11, 583-593.]); Arora & Pedireddi (2003[Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177-9185.]); Biradha & Zaworotko (1998[Biradha, K. & Zaworotko, M. J. (1998). Cryst. Eng. 1, 67-78.]). For graph-set motifs in crystal structures, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 6C3H10N+·C10H2O84−·C10H4O82−·4H2O

  • Mr = 935.03

  • Triclinic, [P \overline 1]

  • a = 9.9826 (2) Å

  • b = 11.0994 (2) Å

  • c = 12.4453 (2) Å

  • α = 107.461 (1)°

  • β = 90.062 (1)°

  • γ = 105.721 (1)°

  • V = 1261.10 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.55 × 0.33 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 41269 measured reflections

  • 6092 independent reflections

  • 4741 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.10

  • 6092 reflections

  • 359 parameters

  • 36 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1C—H1C⋯O1W 0.93 (1) 1.93 (1) 2.8293 (14) 162 (1)
N1D—H1F⋯O1B 0.98 (1) 1.77 (1) 2.7387 (14) 172 (1)
N1E—H1I⋯O4B 0.95 (1) 1.87 (1) 2.8197 (13) 179 (1)
N1C—H1B⋯O1Bi 0.96 (1) 1.92 (1) 2.8598 (13) 167 (1)
N1C—H1D⋯O2Bii 0.94 (1) 1.80 (1) 2.7269 (13) 171 (1)
N1D—H1G⋯O3Aiii 0.95 (1) 1.94 (1) 2.8725 (14) 167 (2)
N1D—H1E⋯O4Aiv 0.98 (1) 1.79 (1) 2.7642 (14) 179 (2)
N1E—H1H⋯O2Aiv 0.98 (1) 1.91 (1) 2.8493 (14) 159 (2)
N1E—H1J⋯O3Biii 0.97 (1) 1.75 (1) 2.7170 (13) 174 (1)
O1W—H1WB⋯O3Aiii 0.880 (19) 1.94 (2) 2.8107 (14) 169.2 (17)
O1W—H1WA⋯O3B 0.958 (19) 1.796 (19) 2.7421 (14) 169.1 (16)
O1A—H1A⋯O2WBv 1.00 (2) 1.54 (2) 2.513 (4) 163.1 (19)
O1A—H1A⋯O2WAv 1.00 (2) 1.62 (2) 2.598 (5) 168.4 (19)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y, z+1; (v) x, y, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Intramolecular and intermolecular hydrogen bonding is of great importance in chemical and biological systems. In the crystal engineering field, hydrogen bonding plays an important role to organize molecules and assemble them to create supramolecules and control their dimensions in one-dimensional, two-dimensional, or three-dimensional networks (Lemmerer, 2011; Pimentel & McClellan, 1960; Arora & Pedireddi, 2003; Biradha & Zaworotko, 1998).

The title salt complex (Fig. 1) crystallizes in the centrosymmetric triclinic space group P-1 and contains seven independent entities per asymmetric unit: half a 2,5-dicarboxybenzene-1,4-carboxylate dianion (H2btc2-; molecule A), half a benzene-1,2,4,5-tetracarboxylate tetraanion (btc4-; molecule B), three propylammonium cations (molecules C, D and E), and two water molecules (Fig. 1). Both aromatic anions lie about inversion centres located at the centroids of the aromatic rings. One of the water molecules is disordered over two positions in a 0.55 (2):0.45 (2) ratio.

The crystal structure contains a very extensive hydrogen bonded network based on O—H···O and N—H···O interactions. Several of these involve water molecules. Water molecule O1W accepts a hydrogen from N1C located on propylammonium cation C (N1C—H1C···O1W), and donates H atoms to both aromatic anions (molecules A and B). It is therefore involved in hydrogen bonding to an ammonium cation and two aromatic anions (Fig. 2). Figure 3 shows the hydrogen bonding between the O2WA water molecule and adjacent aromatic anions. In this case the disordered water molecule only forms intermolecular hydrogen bonds with the aromatic anions as both donor and acceptor. Hydrogen bonds involving O2WA as hydrogen donor consist of O2WA—H2WA···O4B and O2WA—H2WB···O3A, and as acceptor consists of O1A—H1A···O2WA (Table 1). The combination of two O2WA water molecules and the two aromatic anions (molecules A and B) forms a hydrogen bonded ring described by the graph set R44(18) (Etter et al., 1990; Bernstein et al., 1995). This extends as a chain of rings along the a axis. There are no intramolecular hydrogen bonds in this structure due to the syn orientation of the carboxyl hydrogen atoms. Each of the three independent propylammonium cations (molecules C, D, and E) donate three hydrogen atoms to various molecules and hence do not participate in hydrogen bond interactions with each other. Cations D and E hydrogen bond exclusively to the two aromatic anions: cation D hydrogen bonds to one B tetraanion and two A dianions, while cation E hydrogen bonds to one A dianion and two B tetraanions. The environment around propylammonium cation C is different from D and E in that it is involved in hydrogen bonding to a water molecule in addition to two B tetraanions.

Related literature top

For studies involving hydrogen-bonding interactions, see: Pimentel & McClellan (1960); Lemmerer (2011); Arora & Pedireddi (2003); Biradha & Zaworotko (1998). For graph-set motifs in crystal structures, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The title organic salt was synthesized by reacting propylamine (0.27 g) with pyromellitic dianhydride (0.50 g) in the presence of THF (5 ml; not anhydrous) as a solvent, at room temperature – the presence of water resulting in ring opening of the pyromellitic dianhydride and subsequent salt formation. The solid was filtered and recrystallized in methanol, yielding colourless crystals suitable for analysis by X-ray diffraction.

Refinement top

All H atoms attached to C atoms were positioned geometrically, and allowed to ride on their parent atoms, with C—H bond lengths of 0.95 (aromatic CH), 0.99 (methylene CH2), or 0.98 Å (methyl CH3), and isotropic displacement parameters set to 1.2 (CH and CH2) or 1.5 times (CH3) the Ueq of the parent atom. Amine H atoms were placed from the difference map and refined freely. SADI (SAme DIstance restraint; Sheldrick, 2008) was used in the final refinements to restrain all the N—H bond lengths to reasonable values. Water H atoms were placed from the difference map and refined freely. One of the water molecules is disordered over two positions, O2WA and O2WB, in a 0.55 (2):0.45 (2) ratio.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
Molecules in the structure of title salt complex. Only the asymmetric unit atoms have been labeled. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been drawn with spheres of arbitrary radius.

O—H···O and N—H···O hydrogen bond interactions between the water molecule O1W, the aromatic dianion (molecule A), the aromatic tetraanion (molecule B), and a propylamonium cation (molecule C).

Hydrogen bond environment around the water molecule O2W. Here the water molecule hydrogen bonds to two aromatic dianions (molecule A) as both H-bond acceptor and donor. It also H-bonds to two aromatic tetra-anion molecules as H-bond donor. The combination of these interactions results in a R44 (18) ring which extends along the a axis upon translation of the unit cell.
Hexakis(propylammonium) benzene-1,2,4,5-tetracarboxylate 2,5-dicarboxybenzene-1,4-carboxylate tetrahydrate top
Crystal data top
6C3H10N+·C10H2O84·C10H4O82·4H2OZ = 1
Mr = 935.03F(000) = 504
Triclinic, P1Dx = 1.231 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9826 (2) ÅCell parameters from 8121 reflections
b = 11.0994 (2) Åθ = 2.2–27.2°
c = 12.4453 (2) ŵ = 0.10 mm1
α = 107.461 (1)°T = 173 K
β = 90.062 (1)°Block, colourless
γ = 105.721 (1)°0.55 × 0.33 × 0.06 mm
V = 1261.10 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4741 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 28.0°, θmin = 1.7°
ϕ and ω scansh = 1313
41269 measured reflectionsk = 1414
6092 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.0131P]
where P = (Fo2 + 2Fc2)/3
6092 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.40 e Å3
36 restraintsΔρmin = 0.21 e Å3
0 constraints
Crystal data top
6C3H10N+·C10H2O84·C10H4O82·4H2Oγ = 105.721 (1)°
Mr = 935.03V = 1261.10 (4) Å3
Triclinic, P1Z = 1
a = 9.9826 (2) ÅMo Kα radiation
b = 11.0994 (2) ŵ = 0.10 mm1
c = 12.4453 (2) ÅT = 173 K
α = 107.461 (1)°0.55 × 0.33 × 0.06 mm
β = 90.062 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4741 reflections with I > 2σ(I)
41269 measured reflectionsRint = 0.064
6092 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04036 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.40 e Å3
6092 reflectionsΔρmin = 0.21 e Å3
359 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C1A0.22708 (12)0.52580 (12)0.14299 (10)0.0232 (2)
C2A0.11213 (11)0.51156 (11)0.06610 (9)0.0200 (2)
C3A0.12378 (11)0.47733 (11)0.03189 (9)0.0205 (2)
C4A0.25248 (12)0.44589 (12)0.06613 (10)0.0244 (2)
C5A0.01039 (11)0.46641 (11)0.09698 (9)0.0211 (2)
H5A0.01720.44340.16400.025*
O1A0.33910 (9)0.62170 (11)0.09776 (8)0.0409 (3)
O2A0.20978 (11)0.45663 (10)0.24006 (8)0.0426 (3)
O3A0.28839 (9)0.48363 (9)0.17124 (7)0.0290 (2)
O4A0.31169 (11)0.38559 (12)0.00919 (8)0.0481 (3)
H1A0.410 (2)0.627 (2)0.1536 (17)0.073 (6)*
C1B0.54388 (12)0.25468 (10)0.46362 (9)0.0198 (2)
C2B0.51859 (11)0.12374 (10)0.48550 (9)0.0177 (2)
C3B0.38802 (11)0.05553 (10)0.50875 (9)0.0179 (2)
C4B0.26512 (11)0.11247 (10)0.52874 (9)0.0194 (2)
C5B0.37135 (11)0.06751 (10)0.52237 (9)0.0185 (2)
H5B0.28250.11450.53740.022*
O1B0.27743 (8)0.21010 (8)0.61637 (6)0.02247 (18)
O2B0.15747 (9)0.05801 (9)0.46345 (8)0.0351 (2)
O3B0.66579 (9)0.33107 (8)0.49001 (8)0.0317 (2)
O4B0.44488 (8)0.27684 (8)0.41868 (7)0.02546 (19)
C6C1.00660 (13)0.14661 (13)0.78897 (10)0.0302 (3)
H6A1.07760.21980.84370.036*
H6B1.03660.06570.77510.036*
C7C0.86828 (17)0.1274 (2)0.83874 (14)0.0518 (4)
H7A0.79570.05920.78180.062*
H7B0.84190.21070.85830.062*
C8C0.8738 (3)0.0858 (3)0.94401 (18)0.0825 (7)
H8A0.88580.00280.92290.124*
H8B0.78650.08560.98000.124*
H8C0.95260.14790.99700.124*
N1C0.99833 (11)0.17678 (10)0.68130 (9)0.0237 (2)
H1B1.0887 (13)0.1969 (15)0.6545 (12)0.041 (4)*
H1C0.9581 (15)0.2445 (13)0.6863 (13)0.039 (4)*
H1D0.9397 (15)0.1009 (13)0.6289 (11)0.042 (4)*
C6D0.51159 (14)0.19783 (14)0.81853 (11)0.0342 (3)
H6C0.58110.23130.88510.041*
H6D0.55880.16490.75060.041*
C7D0.39438 (16)0.08625 (15)0.83184 (13)0.0429 (4)
H7C0.32190.05680.76780.051*
H7D0.35110.11790.90240.051*
C8D0.4457 (2)0.02982 (18)0.83571 (15)0.0575 (5)
H8D0.48850.06150.76580.086*
H8E0.36660.10090.84310.086*
H8F0.51510.00170.90070.086*
N1D0.45926 (11)0.30762 (11)0.80741 (9)0.0308 (2)
H1G0.5358 (15)0.3796 (14)0.8062 (13)0.044 (4)*
H1E0.4074 (17)0.3349 (17)0.8726 (12)0.056 (5)*
H1F0.4011 (15)0.2756 (15)0.7358 (10)0.041 (4)*
C6E0.11925 (13)0.35625 (13)0.48083 (10)0.0287 (3)
H6E0.06100.41600.51120.034*
H6F0.08320.27640.50410.034*
C7E0.10636 (16)0.31785 (16)0.35439 (12)0.0434 (4)
H7E0.16540.25890.32370.052*
H7F0.14050.39770.33080.052*
C8E0.04440 (17)0.24798 (18)0.30615 (14)0.0538 (4)
H8G0.07900.17000.33080.081*
H8H0.04930.22100.22340.081*
H8I0.10200.30790.33320.081*
N1E0.26635 (11)0.42296 (10)0.53008 (9)0.0240 (2)
H1H0.2706 (18)0.4358 (17)0.6115 (10)0.054 (5)*
H1I0.3266 (14)0.3730 (14)0.4935 (12)0.038 (4)*
H1J0.2960 (15)0.5099 (11)0.5212 (11)0.032 (4)*
O1W0.82657 (12)0.33934 (11)0.67230 (10)0.0453 (3)
H1WA0.7720 (18)0.3259 (17)0.6042 (15)0.055 (5)*
H1WB0.7964 (18)0.3927 (19)0.7282 (15)0.056 (5)*
O2WA0.5131 (5)0.6023 (11)0.7471 (7)0.0361 (15)0.55 (2)
O2WB0.5446 (9)0.6686 (15)0.7894 (10)0.042 (2)0.45 (2)
H2WA0.534 (2)0.662 (2)0.7082 (18)0.070 (6)*
H2WB0.589 (2)0.606 (2)0.7792 (17)0.056 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0222 (6)0.0280 (6)0.0230 (6)0.0108 (5)0.0057 (4)0.0098 (5)
C2A0.0189 (5)0.0224 (5)0.0172 (5)0.0067 (4)0.0027 (4)0.0035 (4)
C3A0.0192 (5)0.0227 (6)0.0185 (5)0.0071 (4)0.0008 (4)0.0038 (4)
C4A0.0205 (5)0.0312 (6)0.0247 (6)0.0097 (5)0.0031 (4)0.0113 (5)
C5A0.0215 (5)0.0247 (6)0.0173 (5)0.0075 (4)0.0013 (4)0.0061 (4)
O1A0.0236 (5)0.0557 (6)0.0325 (5)0.0013 (4)0.0075 (4)0.0093 (5)
O2A0.0454 (6)0.0454 (6)0.0258 (5)0.0064 (5)0.0159 (4)0.0005 (4)
O3A0.0256 (4)0.0408 (5)0.0241 (4)0.0149 (4)0.0009 (3)0.0104 (4)
O4A0.0478 (6)0.0829 (8)0.0320 (5)0.0482 (6)0.0138 (4)0.0180 (5)
C1B0.0254 (6)0.0176 (5)0.0188 (5)0.0095 (4)0.0049 (4)0.0062 (4)
C2B0.0209 (5)0.0161 (5)0.0169 (5)0.0069 (4)0.0021 (4)0.0045 (4)
C3B0.0202 (5)0.0168 (5)0.0168 (5)0.0073 (4)0.0005 (4)0.0036 (4)
C4B0.0190 (5)0.0168 (5)0.0247 (5)0.0061 (4)0.0040 (4)0.0088 (4)
C5B0.0186 (5)0.0168 (5)0.0199 (5)0.0046 (4)0.0036 (4)0.0059 (4)
O1B0.0239 (4)0.0215 (4)0.0227 (4)0.0110 (3)0.0034 (3)0.0039 (3)
O2B0.0233 (4)0.0268 (5)0.0467 (5)0.0094 (4)0.0095 (4)0.0029 (4)
O3B0.0302 (5)0.0196 (4)0.0453 (5)0.0012 (4)0.0054 (4)0.0156 (4)
O4B0.0277 (4)0.0292 (4)0.0293 (4)0.0152 (4)0.0071 (3)0.0169 (4)
C6C0.0317 (7)0.0317 (7)0.0294 (6)0.0119 (5)0.0014 (5)0.0103 (5)
C7C0.0448 (9)0.0760 (12)0.0487 (9)0.0236 (8)0.0202 (7)0.0341 (9)
C8C0.0876 (15)0.121 (2)0.0633 (13)0.0335 (14)0.0300 (11)0.0605 (14)
N1C0.0218 (5)0.0231 (5)0.0249 (5)0.0074 (4)0.0028 (4)0.0044 (4)
C6D0.0303 (7)0.0449 (8)0.0270 (6)0.0162 (6)0.0000 (5)0.0059 (6)
C7D0.0480 (9)0.0474 (9)0.0357 (7)0.0175 (7)0.0105 (6)0.0130 (7)
C8D0.0827 (13)0.0550 (10)0.0442 (9)0.0288 (9)0.0124 (9)0.0212 (8)
N1D0.0248 (5)0.0359 (6)0.0268 (6)0.0090 (5)0.0018 (4)0.0024 (5)
C6E0.0285 (6)0.0297 (6)0.0328 (7)0.0115 (5)0.0082 (5)0.0140 (5)
C7E0.0422 (8)0.0494 (9)0.0337 (7)0.0008 (7)0.0014 (6)0.0182 (7)
C8E0.0459 (9)0.0584 (10)0.0482 (9)0.0011 (8)0.0083 (7)0.0161 (8)
N1E0.0296 (5)0.0201 (5)0.0264 (5)0.0104 (4)0.0062 (4)0.0100 (4)
O1W0.0521 (6)0.0462 (6)0.0359 (6)0.0330 (5)0.0143 (5)0.0066 (5)
O2WA0.0229 (13)0.063 (4)0.042 (2)0.0199 (17)0.0125 (14)0.038 (3)
O2WB0.032 (2)0.072 (5)0.048 (3)0.030 (3)0.020 (2)0.042 (4)
Geometric parameters (Å, º) top
C1A—O2A1.2041 (14)N1C—H1C0.930 (12)
C1A—O1A1.3017 (15)N1C—H1D0.938 (11)
C1A—C2A1.5007 (15)C6D—N1D1.4910 (18)
C2A—C5Ai1.3859 (15)C6D—C7D1.506 (2)
C2A—C3A1.3953 (15)C6D—H6C0.9900
C3A—C5A1.3923 (15)C6D—H6D0.9900
C3A—C4A1.5117 (16)C7D—C8D1.523 (2)
C4A—O4A1.2309 (15)C7D—H7C0.9900
C4A—O3A1.2665 (14)C7D—H7D0.9900
C5A—C2Ai1.3859 (15)C8D—H8D0.9800
C5A—H5A0.9500C8D—H8E0.9800
O1A—H1A1.00 (2)C8D—H8F0.9800
C1B—O4B1.2504 (13)N1D—H1G0.948 (12)
C1B—O3B1.2572 (14)N1D—H1E0.978 (12)
C1B—C2B1.5128 (15)N1D—H1F0.977 (11)
C2B—C5Bii1.3933 (15)C6E—N1E1.4889 (16)
C2B—C3B1.3976 (15)C6E—C7E1.4973 (18)
C3B—C5B1.3920 (15)C6E—H6E0.9900
C3B—C4B1.5142 (14)C6E—H6F0.9900
C4B—O2B1.2376 (14)C7E—C8E1.521 (2)
C4B—O1B1.2638 (13)C7E—H7E0.9900
C5B—C2Bii1.3933 (15)C7E—H7F0.9900
C5B—H5B0.9500C8E—H8G0.9800
C6C—N1C1.4827 (15)C8E—H8H0.9800
C6C—C7C1.5024 (19)C8E—H8I0.9800
C6C—H6A0.9900N1E—H1H0.979 (12)
C6C—H6B0.9900N1E—H1I0.952 (11)
C7C—C8C1.519 (2)N1E—H1J0.970 (11)
C7C—H7A0.9900O1W—H1WA0.958 (19)
C7C—H7B0.9900O1W—H1WB0.880 (19)
C8C—H8A0.9800O2WA—H2WA0.91 (2)
C8C—H8B0.9800O2WA—H2WB0.84 (2)
C8C—H8C0.9800O2WB—H2WA1.00 (2)
N1C—H1B0.955 (12)O2WB—H2WB0.89 (2)
O2A—C1A—O1A124.64 (11)H1B—N1C—H1D109.4 (13)
O2A—C1A—C2A120.64 (11)H1C—N1C—H1D106.6 (13)
O1A—C1A—C2A114.60 (10)N1D—C6D—C7D111.46 (11)
C5Ai—C2A—C3A120.07 (10)N1D—C6D—H6C109.3
C5Ai—C2A—C1A116.65 (10)C7D—C6D—H6C109.3
C3A—C2A—C1A123.27 (10)N1D—C6D—H6D109.3
C5A—C3A—C2A118.52 (10)C7D—C6D—H6D109.3
C5A—C3A—C4A119.36 (10)H6C—C6D—H6D108.0
C2A—C3A—C4A122.06 (10)C6D—C7D—C8D111.73 (13)
O4A—C4A—O3A126.02 (11)C6D—C7D—H7C109.3
O4A—C4A—C3A117.91 (10)C8D—C7D—H7C109.3
O3A—C4A—C3A116.06 (10)C6D—C7D—H7D109.3
C2Ai—C5A—C3A121.40 (10)C8D—C7D—H7D109.3
C2Ai—C5A—H5A119.3H7C—C7D—H7D107.9
C3A—C5A—H5A119.3C7D—C8D—H8D109.5
C1A—O1A—H1A110.4 (11)C7D—C8D—H8E109.5
O4B—C1B—O3B125.49 (10)H8D—C8D—H8E109.5
O4B—C1B—C2B118.29 (10)C7D—C8D—H8F109.5
O3B—C1B—C2B116.19 (9)H8D—C8D—H8F109.5
C5Bii—C2B—C3B119.25 (10)H8E—C8D—H8F109.5
C5Bii—C2B—C1B118.35 (9)C6D—N1D—H1G109.7 (10)
C3B—C2B—C1B122.35 (10)C6D—N1D—H1E108.3 (11)
C5B—C3B—C2B118.92 (10)H1G—N1D—H1E109.5 (14)
C5B—C3B—C4B117.47 (9)C6D—N1D—H1F107.8 (9)
C2B—C3B—C4B123.45 (9)H1G—N1D—H1F109.1 (13)
O2B—C4B—O1B123.98 (10)H1E—N1D—H1F112.5 (14)
O2B—C4B—C3B119.26 (10)N1E—C6E—C7E112.22 (10)
O1B—C4B—C3B116.65 (9)N1E—C6E—H6E109.2
C3B—C5B—C2Bii121.83 (10)C7E—C6E—H6E109.2
C3B—C5B—H5B119.1N1E—C6E—H6F109.2
C2Bii—C5B—H5B119.1C7E—C6E—H6F109.2
N1C—C6C—C7C111.51 (11)H6E—C6E—H6F107.9
N1C—C6C—H6A109.3C6E—C7E—C8E111.17 (13)
C7C—C6C—H6A109.3C6E—C7E—H7E109.4
N1C—C6C—H6B109.3C8E—C7E—H7E109.4
C7C—C6C—H6B109.3C6E—C7E—H7F109.4
H6A—C6C—H6B108.0C8E—C7E—H7F109.4
C6C—C7C—C8C111.48 (15)H7E—C7E—H7F108.0
C6C—C7C—H7A109.3C7E—C8E—H8G109.5
C8C—C7C—H7A109.3C7E—C8E—H8H109.5
C6C—C7C—H7B109.3H8G—C8E—H8H109.5
C8C—C7C—H7B109.3C7E—C8E—H8I109.5
H7A—C7C—H7B108.0H8G—C8E—H8I109.5
C7C—C8C—H8A109.5H8H—C8E—H8I109.5
C7C—C8C—H8B109.5C6E—N1E—H1H108.8 (10)
H8A—C8C—H8B109.5C6E—N1E—H1I110.5 (9)
C7C—C8C—H8C109.5H1H—N1E—H1I111.7 (13)
H8A—C8C—H8C109.5C6E—N1E—H1J109.6 (9)
H8B—C8C—H8C109.5H1H—N1E—H1J106.8 (13)
C6C—N1C—H1B110.5 (9)H1I—N1E—H1J109.4 (12)
C6C—N1C—H1C113.5 (9)H1WA—O1W—H1WB107.7 (15)
H1B—N1C—H1C110.0 (13)H2WA—O2WA—H2WB106.7 (19)
C6C—N1C—H1D106.7 (9)H2WA—O2WB—H2WB96 (2)
O2A—C1A—C2A—C5Ai60.87 (16)O4B—C1B—C2B—C3B30.62 (15)
O1A—C1A—C2A—C5Ai115.26 (12)O3B—C1B—C2B—C3B151.27 (11)
O2A—C1A—C2A—C3A118.78 (14)C5Bii—C2B—C3B—C5B0.60 (17)
O1A—C1A—C2A—C3A65.09 (15)C1B—C2B—C3B—C5B176.82 (9)
C5Ai—C2A—C3A—C5A0.15 (18)C5Bii—C2B—C3B—C4B174.69 (9)
C1A—C2A—C3A—C5A179.80 (10)C1B—C2B—C3B—C4B7.88 (16)
C5Ai—C2A—C3A—C4A176.98 (10)C5B—C3B—C4B—O2B66.68 (14)
C1A—C2A—C3A—C4A2.66 (17)C2B—C3B—C4B—O2B117.96 (12)
C5A—C3A—C4A—O4A140.12 (12)C5B—C3B—C4B—O1B109.48 (11)
C2A—C3A—C4A—O4A36.99 (17)C2B—C3B—C4B—O1B65.87 (14)
C5A—C3A—C4A—O3A39.17 (16)C2B—C3B—C5B—C2Bii0.62 (17)
C2A—C3A—C4A—O3A143.72 (11)C4B—C3B—C5B—C2Bii174.96 (9)
C2A—C3A—C5A—C2Ai0.16 (18)N1C—C6C—C7C—C8C175.47 (16)
C4A—C3A—C5A—C2Ai177.05 (10)N1D—C6D—C7D—C8D176.37 (11)
O4B—C1B—C2B—C5Bii146.82 (10)N1E—C6E—C7E—C8E179.07 (13)
O3B—C1B—C2B—C5Bii31.29 (14)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1C—H1C···O1W0.93 (1)1.93 (1)2.8293 (14)162 (1)
N1D—H1F···O1B0.98 (1)1.77 (1)2.7387 (14)172 (1)
N1E—H1I···O4B0.95 (1)1.87 (1)2.8197 (13)179 (1)
N1C—H1B···O1Biii0.96 (1)1.92 (1)2.8598 (13)167 (1)
N1C—H1D···O2Bii0.94 (1)1.80 (1)2.7269 (13)171 (1)
N1D—H1G···O3Aiv0.95 (1)1.94 (1)2.8725 (14)167 (2)
N1D—H1E···O4Av0.98 (1)1.79 (1)2.7642 (14)179 (2)
N1E—H1H···O2Av0.98 (1)1.91 (1)2.8493 (14)159 (2)
N1E—H1J···O3Biv0.97 (1)1.75 (1)2.7170 (13)174 (1)
O1W—H1WB···O3Aiv0.880 (19)1.94 (2)2.8107 (14)169.2 (17)
O1W—H1WA···O3B0.958 (19)1.796 (19)2.7421 (14)169.1 (16)
O1A—H1A···O2WBvi1.00 (2)1.54 (2)2.513 (4)163.1 (19)
O1A—H1A···O2WAvi1.00 (2)1.62 (2)2.598 (5)168.4 (19)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula6C3H10N+·C10H2O84·C10H4O82·4H2O
Mr935.03
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.9826 (2), 11.0994 (2), 12.4453 (2)
α, β, γ (°)107.461 (1), 90.062 (1), 105.721 (1)
V3)1261.10 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.55 × 0.33 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
41269, 6092, 4741
Rint0.064
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.10
No. of reflections6092
No. of parameters359
No. of restraints36
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and SCHAKAL99 (Keller, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1C—H1C···O1W0.930 (12)1.930 (12)2.8293 (14)162.2 (14)
N1D—H1F···O1B0.977 (11)1.767 (12)2.7387 (14)172.4 (14)
N1E—H1I···O4B0.952 (11)1.868 (11)2.8197 (13)178.5 (14)
N1C—H1B···O1Bi0.955 (12)1.921 (12)2.8598 (13)167.2 (14)
N1C—H1D···O2Bii0.938 (11)1.796 (12)2.7269 (13)171.2 (14)
N1D—H1G···O3Aiii0.948 (12)1.940 (12)2.8725 (14)167.4 (15)
N1D—H1E···O4Aiv0.978 (12)1.786 (12)2.7642 (14)179.3 (17)
N1E—H1H···O2Aiv0.979 (12)1.913 (13)2.8493 (14)159.2 (15)
N1E—H1J···O3Biii0.970 (11)1.750 (11)2.7170 (13)174.4 (13)
O1W—H1WB···O3Aiii0.880 (19)1.94 (2)2.8107 (14)169.2 (17)
O1W—H1WA···O3B0.958 (19)1.796 (19)2.7421 (14)169.1 (16)
O1A—H1A···O2WBv1.00 (2)1.54 (2)2.513 (4)163.1 (19)
O1A—H1A···O2WAv1.00 (2)1.62 (2)2.598 (5)168.4 (19)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x, y, z1.
 

Acknowledgements

This work was supported by the National Research Foundation, Pretoria (NRF, GUN 77122) and the University of the Witwatersrand.

References

First citationArora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177–9185.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBiradha, K. & Zaworotko, M. J. (1998). Cryst. Eng. 1, 67–78.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiberg, Germany.  Google Scholar
First citationLemmerer, A. (2011). Cryst. Growth Des. 11, 583–593.  Web of Science CSD CrossRef CAS Google Scholar
First citationPimentel, G. C. & McClellan, A. L. (1960). In The Hydrogen Bond. San Francisco: Freeman.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds