organic compounds
Bis(2-hydroxyethyl)ammonium 2-bromophenolate
aSchool of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
*Correspondence e-mail: Alvaro.DeSousa@wits.ac.za
In the 4H12NO2+·C6H4BrO−, hydrogen-bonding interactions originate from the ammonium cation, which adopts a syn conformation. A gauche relationship between the C—O and C—N bonds of the 2-hydroxyethyl fragments also facilitates O—H⋯O interactions of bis(2-hydroxyethyl)ammonium cation chains to phenolate O atoms. The resulting double-ion chains along [100] are further linked by N—H⋯O interactions, forming chains parallel to [110].
of the 1:1 title salt, CRelated literature
For structures of related 2-haloethylammonium salts and properties of these salts, see: Cody (1981); Cody & Strong (1980); Prout et al. (1988); Castellari & Ottani (1995); de Sousa et al. (2010a,b); Larsen et al. (2005); Mootz et al. (1989). For graph-set motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-NT (Bruker, 2005); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536812033752/bh2446sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812033752/bh2446Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812033752/bh2446Isup3.cml
Diethanolamine (0.501 g, 4.8 mmol) was stirred in 20 ml of dimethylformamide. To this solution, sodium carbonate (0.504 g, 4.75 mmol) and 2-bromophenol (0.823 g, 4.76 mmol) was added with continuous stirring. The reaction mixture was allowed to stir for an additional 24 hours under ambient conditions. The mixture was filtered and the solvent removed under reduced pressure, to yield a clear viscous oil that crystallized upon standing.
Hydrogen atoms were visible in the difference maps, but those bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.99 Å (CH2) or 0.95 Å (aromatic CH), as well as H3, bonded to O3, with O3—H3 bond length fixed to 0.84 Å. Isotropic displacement parameters for these H atoms were defined as Uiso(H) = 1.2Ueq(parent C atom) and Uiso(H3) = 1.5Ueq(O3). Other H atoms (H1A, H1B and H2), which are involved in hydrogen bonds, were refined freely.
Data collection: APEX2 (Bruker, 2005); cell
SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C4H12NO2+·C6H4BrO− | F(000) = 284 |
Mr = 278.15 | Dx = 1.603 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 8333 reflections |
a = 8.0592 (1) Å | θ = 2.2–28.2° |
b = 7.6653 (1) Å | µ = 3.56 mm−1 |
c = 9.7659 (2) Å | T = 173 K |
β = 107.250 (1)° | Needle, colourless |
V = 576.16 (2) Å3 | 0.48 × 0.21 × 0.20 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 2784 independent reflections |
Radiation source: fine-focus sealed tube | 2638 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 28.0°, θmin = 2.2° |
Absorption correction: gaussian (XPREP; Bruker, 2005) | h = −10→10 |
Tmin = 0.280, Tmax = 0.537 | k = −10→10 |
11689 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.042 | w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2784 reflections | Δρmax = 0.17 e Å−3 |
149 parameters | Δρmin = −0.28 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1290 Friedel pairs |
0 constraints | Absolute structure parameter: −0.012 (5) |
Primary atom site location: structure-invariant direct methods |
C4H12NO2+·C6H4BrO− | V = 576.16 (2) Å3 |
Mr = 278.15 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.0592 (1) Å | µ = 3.56 mm−1 |
b = 7.6653 (1) Å | T = 173 K |
c = 9.7659 (2) Å | 0.48 × 0.21 × 0.20 mm |
β = 107.250 (1)° |
Bruker APEXII CCD diffractometer | 2784 independent reflections |
Absorption correction: gaussian (XPREP; Bruker, 2005) | 2638 reflections with I > 2σ(I) |
Tmin = 0.280, Tmax = 0.537 | Rint = 0.033 |
11689 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.042 | Δρmax = 0.17 e Å−3 |
S = 1.05 | Δρmin = −0.28 e Å−3 |
2784 reflections | Absolute structure: Flack (1983), 1290 Friedel pairs |
149 parameters | Absolute structure parameter: −0.012 (5) |
1 restraint |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4737 (2) | 0.35547 (19) | 0.23985 (15) | 0.0163 (3) | |
C2 | 0.2924 (2) | 0.3582 (2) | 0.17355 (16) | 0.0204 (3) | |
H2A | 0.2208 | 0.4246 | 0.2157 | 0.025* | |
C3 | 0.2168 (2) | 0.2669 (3) | 0.04897 (18) | 0.0278 (4) | |
H3A | 0.0942 | 0.2709 | 0.0076 | 0.033* | |
C4 | 0.3155 (3) | 0.1699 (2) | −0.01670 (18) | 0.0299 (4) | |
H4 | 0.2619 | 0.1080 | −0.1028 | 0.036* | |
C5 | 0.4937 (3) | 0.1639 (2) | 0.04447 (18) | 0.0263 (4) | |
H5 | 0.5637 | 0.0972 | 0.0009 | 0.032* | |
C6 | 0.56985 (19) | 0.2557 (3) | 0.16984 (15) | 0.0191 (3) | |
O1 | 0.54554 (14) | 0.44173 (13) | 0.36173 (11) | 0.0181 (2) | |
Br1 | 0.815421 (18) | 0.24105 (3) | 0.250455 (16) | 0.02891 (5) | |
C7 | 0.7822 (2) | 0.7869 (2) | 0.46980 (18) | 0.0222 (4) | |
H7A | 0.8807 | 0.8699 | 0.4908 | 0.027* | |
H7B | 0.7600 | 0.7583 | 0.5617 | 0.027* | |
C8 | 0.6234 (2) | 0.8745 (2) | 0.37228 (18) | 0.0210 (3) | |
H8A | 0.6257 | 0.9999 | 0.3971 | 0.025* | |
H8B | 0.6266 | 0.8654 | 0.2720 | 0.025* | |
C9 | 0.3024 (2) | 0.8634 (2) | 0.26948 (17) | 0.0235 (4) | |
H9A | 0.3174 | 0.9897 | 0.2557 | 0.028* | |
H9B | 0.2930 | 0.8035 | 0.1777 | 0.028* | |
C10 | 0.1394 (3) | 0.8345 (3) | 0.3100 (2) | 0.0235 (4) | |
H10A | 0.1458 | 0.8977 | 0.3998 | 0.028* | |
H10B | 0.0379 | 0.8786 | 0.2334 | 0.028* | |
N1 | 0.4570 (2) | 0.7953 (2) | 0.38319 (17) | 0.0168 (3) | |
O2 | 0.83024 (16) | 0.63195 (16) | 0.41133 (14) | 0.0241 (3) | |
O3 | 0.1216 (2) | 0.65362 (19) | 0.3294 (2) | 0.0379 (4) | |
H3 | 0.0341 | 0.6357 | 0.3575 | 0.057* | |
H1A | 0.449 (2) | 0.829 (2) | 0.4768 (19) | 0.017 (4)* | |
H2 | 0.752 (3) | 0.557 (3) | 0.396 (2) | 0.038 (6)* | |
H1B | 0.473 (3) | 0.676 (3) | 0.3791 (19) | 0.012 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0227 (8) | 0.0118 (7) | 0.0152 (7) | −0.0009 (6) | 0.0069 (6) | 0.0028 (5) |
C2 | 0.0243 (9) | 0.0182 (7) | 0.0196 (8) | 0.0012 (6) | 0.0077 (6) | 0.0030 (6) |
C3 | 0.0265 (8) | 0.0303 (12) | 0.0213 (7) | 0.0000 (8) | −0.0008 (6) | 0.0043 (7) |
C4 | 0.0424 (11) | 0.0284 (8) | 0.0144 (8) | −0.0062 (8) | 0.0016 (8) | −0.0026 (7) |
C5 | 0.0398 (11) | 0.0213 (8) | 0.0217 (9) | 0.0017 (7) | 0.0150 (8) | −0.0010 (7) |
C6 | 0.0211 (6) | 0.0157 (8) | 0.0219 (7) | −0.0016 (8) | 0.0087 (5) | 0.0026 (8) |
O1 | 0.0192 (6) | 0.0182 (5) | 0.0170 (5) | −0.0016 (4) | 0.0055 (4) | −0.0027 (4) |
Br1 | 0.02163 (8) | 0.02397 (8) | 0.04356 (10) | 0.00235 (9) | 0.01340 (6) | −0.00094 (11) |
C7 | 0.0176 (8) | 0.0238 (10) | 0.0252 (8) | −0.0027 (6) | 0.0063 (6) | −0.0042 (6) |
C8 | 0.0210 (8) | 0.0180 (7) | 0.0267 (8) | −0.0036 (6) | 0.0111 (7) | 0.0011 (6) |
C9 | 0.0244 (9) | 0.0243 (8) | 0.0191 (8) | 0.0031 (7) | 0.0022 (7) | 0.0042 (6) |
C10 | 0.0195 (10) | 0.0225 (9) | 0.0273 (10) | 0.0044 (7) | 0.0050 (8) | −0.0048 (8) |
N1 | 0.0162 (7) | 0.0151 (6) | 0.0201 (7) | −0.0009 (4) | 0.0070 (5) | 0.0006 (4) |
O2 | 0.0187 (6) | 0.0195 (6) | 0.0356 (7) | −0.0023 (5) | 0.0104 (5) | −0.0033 (5) |
O3 | 0.0285 (9) | 0.0231 (8) | 0.0722 (12) | −0.0009 (6) | 0.0306 (8) | −0.0068 (7) |
C1—O1 | 1.3344 (18) | C7—H7B | 0.9900 |
C1—C6 | 1.403 (2) | C8—N1 | 1.505 (2) |
C1—C2 | 1.411 (2) | C8—H8A | 0.9900 |
C2—C3 | 1.379 (2) | C8—H8B | 0.9900 |
C2—H2A | 0.9500 | C9—C10 | 1.496 (3) |
C3—C4 | 1.378 (3) | C9—N1 | 1.496 (2) |
C3—H3A | 0.9500 | C9—H9A | 0.9900 |
C4—C5 | 1.383 (3) | C9—H9B | 0.9900 |
C4—H4 | 0.9500 | C10—O3 | 1.412 (2) |
C5—C6 | 1.388 (2) | C10—H10A | 0.9900 |
C5—H5 | 0.9500 | C10—H10B | 0.9900 |
C6—Br1 | 1.9041 (15) | N1—H1A | 0.969 (18) |
C7—O2 | 1.4204 (19) | N1—H1B | 0.93 (2) |
C7—C8 | 1.508 (2) | O2—H2 | 0.83 (2) |
C7—H7A | 0.9900 | O3—H3 | 0.8400 |
O1—C1—C6 | 123.26 (14) | N1—C8—H8A | 109.1 |
O1—C1—C2 | 121.22 (14) | C7—C8—H8A | 109.1 |
C6—C1—C2 | 115.53 (14) | N1—C8—H8B | 109.1 |
C3—C2—C1 | 121.58 (16) | C7—C8—H8B | 109.1 |
C3—C2—H2A | 119.2 | H8A—C8—H8B | 107.8 |
C1—C2—H2A | 119.2 | C10—C9—N1 | 110.82 (14) |
C4—C3—C2 | 121.27 (17) | C10—C9—H9A | 109.5 |
C4—C3—H3A | 119.4 | N1—C9—H9A | 109.5 |
C2—C3—H3A | 119.4 | C10—C9—H9B | 109.5 |
C3—C4—C5 | 119.06 (16) | N1—C9—H9B | 109.5 |
C3—C4—H4 | 120.5 | H9A—C9—H9B | 108.1 |
C5—C4—H4 | 120.5 | O3—C10—C9 | 108.25 (17) |
C4—C5—C6 | 119.67 (16) | O3—C10—H10A | 110.0 |
C4—C5—H5 | 120.2 | C9—C10—H10A | 110.0 |
C6—C5—H5 | 120.2 | O3—C10—H10B | 110.0 |
C5—C6—C1 | 122.89 (15) | C9—C10—H10B | 110.0 |
C5—C6—Br1 | 117.92 (13) | H10A—C10—H10B | 108.4 |
C1—C6—Br1 | 119.19 (12) | C9—N1—C8 | 111.74 (13) |
O2—C7—C8 | 113.57 (13) | C9—N1—H1A | 109.6 (10) |
O2—C7—H7A | 108.9 | C8—N1—H1A | 105.5 (10) |
C8—C7—H7A | 108.9 | C9—N1—H1B | 114.2 (12) |
O2—C7—H7B | 108.9 | C8—N1—H1B | 104.8 (14) |
C8—C7—H7B | 108.9 | H1A—N1—H1B | 110.6 (16) |
H7A—C7—H7B | 107.7 | C7—O2—H2 | 111.9 (16) |
N1—C8—C7 | 112.52 (13) | C10—O3—H3 | 109.5 |
O1—C1—C2—C3 | −178.80 (15) | C2—C1—C6—C5 | −0.6 (2) |
C6—C1—C2—C3 | 0.6 (2) | O1—C1—C6—Br1 | −0.1 (2) |
C1—C2—C3—C4 | −0.5 (3) | C2—C1—C6—Br1 | −179.51 (11) |
C2—C3—C4—C5 | 0.3 (3) | O2—C7—C8—N1 | 82.70 (18) |
C3—C4—C5—C6 | −0.3 (3) | N1—C9—C10—O3 | −59.0 (2) |
C4—C5—C6—C1 | 0.4 (3) | C10—C9—N1—C8 | −160.34 (16) |
C4—C5—C6—Br1 | 179.38 (13) | C7—C8—N1—C9 | −170.68 (14) |
O1—C1—C6—C5 | 178.81 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.83 (2) | 1.83 (2) | 2.6393 (16) | 165 (2) |
O3—H3···O2i | 0.84 | 1.87 | 2.7010 (18) | 171 |
N1—H1A···O1ii | 0.969 (18) | 1.789 (19) | 2.738 (2) | 165.7 (16) |
N1—H1B···O1 | 0.93 (2) | 1.91 (2) | 2.8259 (19) | 169 (2) |
O2—H2···Br1 | 0.83 (2) | 2.92 (2) | 3.3690 (13) | 115.6 (18) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C4H12NO2+·C6H4BrO− |
Mr | 278.15 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 173 |
a, b, c (Å) | 8.0592 (1), 7.6653 (1), 9.7659 (2) |
β (°) | 107.250 (1) |
V (Å3) | 576.16 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.56 |
Crystal size (mm) | 0.48 × 0.21 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Gaussian (XPREP; Bruker, 2005) |
Tmin, Tmax | 0.280, 0.537 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11689, 2784, 2638 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.660 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.042, 1.05 |
No. of reflections | 2784 |
No. of parameters | 149 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.28 |
Absolute structure | Flack (1983), 1290 Friedel pairs |
Absolute structure parameter | −0.012 (5) |
Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.83 (2) | 1.83 (2) | 2.6393 (16) | 165 (2) |
O3—H3···O2i | 0.84 | 1.87 | 2.7010 (18) | 171.0 |
N1—H1A···O1ii | 0.969 (18) | 1.789 (19) | 2.738 (2) | 165.7 (16) |
N1—H1B···O1 | 0.93 (2) | 1.91 (2) | 2.8259 (19) | 169 (2) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1. |
Acknowledgements
This work was funded in part by a grant through the Department of Science and Technology/National Research Foundation South Africa Research Chairs initiative to HMM.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Castellari, C. & Ottani, S. (1995). Acta Cryst. C51, 2612–2615. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Cody, V. (1981). Acta Cryst. B37, 1685–1689. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Cody, V. & Strong, P. D. (1980). Acta Cryst. B36, 1723–1726. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Larsen, F. K., Muryn, C. A., Overgaard, J., Timco, G. A. & Winpenny, R. E. P. (2005). Acta Cryst. E61, m1525–m1527. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mootz, D., Brodalla, D. & Wiebcke, M. (1989). Acta Cryst. C45, 754–757. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Prout, K., Fail, J., Jones, R. M., Warner, R. E. & Emmett, J. C. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 265–284. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sousa, A. S. de, Hlam, Z., Fernandes, M. A. & Marques, H. M. (2010a). Acta Cryst. C66, o229–o232. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sousa, A. S. de, Hlam, Z., Fernandes, M. A. & Marques, H. M. (2010b). Acta Cryst. C66, o553–o556. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecular structure (Fig. 1) of the 1:1 salt of 2-bromophenol with diethanolamine (DEA) is reported. Our interest in studying DEA is aimed at developing amino alcohols as supramolecules in a crystal engineering strategy, for template self-assembly of these compounds in supramolecular structures. Directional hydrogen-bonding patterns associated with DEA have labeled this compound a potential supramolecule. It is known to aggregate into tubular columns (Mootz et al., 1989); the behaviour is emulated by C— and N—alkylated derivatives (de Sousa et al., 2010a,b). Specific O—H···O interactions of the 2-hydroxyalkyl groups contribute significantly towards tubular aggregation in alkylated derivatives of this compound. These hydrogen bonds also feature prominently in salts of DEA elucidating binding modes of thyroid hormones to transport proteins (Cody, 1981; Cody & Strong, 1980; Prout et al., 1988); the template synthesis of heterometallic wheels (Larsen et al., 2005); and in studies aimed at correlating structural and pharmacological properties of anti-inflammatory drugs (Castellari & Ottani, 1995).
O—H···O hydrogen bonds are highly influential in the molecular structure reported here for the 2-bromophenol (1:1) salt with DEA. The unitary level C(8) chain (Bernstein et al., 1995), described by O3—H3···O2 hydrogen bonds along [100], defines the backbone of the crystal structure (Fig. 2 and Table 1). In these chains syn conformations of the bis(2-hydroxyethyl) ammonium cations enjoy gauche relationships between C—O and C—N bonds, enabling further O—H···O and N—H···O hydrogen bonds of this supramolecular synthon. Hydroxyethyl O atom O2 acts as a weakly bifurcated H-donor, via H2, to phenolate O1 and Br1 atoms (Table 1). The hydrogen bonding array of the double-ion pair is completed by the N1—H1B···O1 interaction involving the ammonium N1 atom acting as a hydrogen donor, via H1B, to the phenolate oxygen atom O1. The combined O2—H2···O1 and N1—H1B···O1 interactions describe a R21(7) ring motif (Fig. 2) at the binary level (Bernstein et al., 1995). Chains of double-ion pairs along [100] are linked by N1—H1A···O1 interactions (Table 1) to form layers parallel to the ab plane (Fig. 3). Within these layers N—H···O interactions define C21(4) and C21(7) motifs along [010] (Fig. 4) when combined with interactions N1—H1B···O1 and O2—H2···O1, respectively.