organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl 3-[(E)-(furan-2-yl)methyl­­idene]-2-methyldi­thio­carbazate

aUniversity of Chittagong, Chittagong 4331, Bangladesh, and bDepartamento de Química Inorgánica Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
*Correspondence e-mail: tapashir57@gmail.com

(Received 19 July 2012; accepted 12 August 2012; online 23 August 2012)

In the title compound, C14H14N2OS2, the furan ring exhibits rotational disorder over two orientations, with an occupancy ratio of 0.508 (7):0.492 (7). The furan and phenyl rings form dihedral angles of 8.2 (6) (major occupancy component), 14.8 (6) (minor occupancy component) and 73.65 (9)°, respectively, with the central residue (C4N2S2), indicating a twisted conformation for the mol­ecule. The methyl group and the thione S atom are syn and the conformation about the imine bond is E. In the crystal, C—H⋯π inter­actions involving the phenyl ring are observed.

Related literature

For background to the biological activity of S-containing ligands, see: Hazari et al. (2012[Hazari, S. K. S., Dey, B. K., Roy, T. G., Ganguly, B., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1216.]). For related structures, see: Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1024.]); Ganguly et al. (2011[Ganguly, B., Foi, A., Doctorovich, F., K. Dey, B. & G. Roy, T. (2011). Acta Cryst. E67, o2777.]). For a similar compound with a thio­phene instead of a furan ring, see: Hazari et al. (2012[Hazari, S. K. S., Dey, B. K., Roy, T. G., Ganguly, B., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1216.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2OS2

  • Mr = 290.39

  • Monoclinic, P 21 /n

  • a = 6.0415 (3) Å

  • b = 20.4840 (11) Å

  • c = 11.8959 (7) Å

  • β = 101.601 (5)°

  • V = 1442.09 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.5 × 0.5 × 0.3 mm

Data collection
  • Oxford Diffraction Gemini CCD S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.850, Tmax = 0.897

  • 21725 measured reflections

  • 3361 independent reflections

  • 2393 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.090

  • S = 1.06

  • 3361 reflections

  • 219 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Table 1[link]. Cg is the centroid of the phenyl ring

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7BCgi 0.97 2.88 3.560 (2) 128
C13—H13ACgii 0.93 2.80 3.62 (2) 149
Symmetry codes: (i) -x-1, -y, -z+1; (ii) -x+1, -y, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a continuation of systematic studies into the synthesis, characterization and biological activities of substituted Schiff base ligands and their metal complexes (Ganguly et al., 2011; Hazari et al., 2012), the present investigation is an attempt to prepare complexes of vanadium(IV) and molybdenum(VI) with the title Schiff base ligand, benzyl 2-methyl-3-[(E)-(furan-2-yl)-methylidene]dithiocarbazate. Crystals of the title compound were isolated (see Experimental) and characterized crystallographically.

In the title compound (Fig. 1), C14H14N2OS2, the furan ring exhibits rotational disorder over two orientations, with an occupancy of 0.5 for each orientation. The thione S atom and methyl group are syn and the conformation about the imine N2C10 bond [1.281 (2) Å] is E, in agreement with similar structures (Hazari et al., 2012).

The eight atoms of the central residue (S1, S2, N1, N2, C7, C8, C9 and C10) are co-planar having a r.m.s. deviation for the fitted atoms of 0.002 Å. The maximum deviations from this plane are 0.043 (2) Å for the N2 atom and -0.033 (3) Å for the N1 atom. The molecule is twisted, the dihedral angles between the C4N2S2 residue and the pendent 2-furanyl and phenyl rings being 14.8 (6) [or 8.22 (6) for the disordered part of the furanyl] and 73.65 (9)° respectively, as found in a similar compound (Shan et al., 2008).

In the crystal, molecules assemble into a three-dimensional architecture by π ··· π stacking between 2-furanyl rings [Cg1···Cg1iii = 4.467 (7) Å, Cg1 is the centroid of ring O1, C11, C12, C13, C14; symmetry code: iii 4-x, -y, 2-z], and C–H ··· π interactions, involving the phenyl ring as acceptor (see Table 1 and Fig. 2).

Related literature top

For the biological activity of S-containing ligands, see: Hazari et al. (2012). For related structures, see: Shan et al. (2008); Ganguly et al. (2011). For a similar compound with a thiophene instead of a furan ring, see: Hazari et al. (2012).

Experimental top

Single crystals of the title compound were prepared by following three steps.

Step 1 (Hazari et al., 2012). Synthesis of N-methyl-S-benzyldithiocarbazate. Potassium hydroxide (11.5 g) was dissolved in 60 ml of 90% ethanol and the mixture was cooled down to 273 K in an ice bath. Methyl hydrazine (11.1 ml) was added slowly with mechanical stirring. A solution of CS2 (12 ml) was added dropwise from a burette with constant stirring over a period of 1 h. During the addition of CS2, the temperature of the reaction mixture was not allowed to rise above 279 K. A yellow colour was obtained. After adding carbon disulfide, benzyl chloride (25 ml) was added from a burette dropwise with vigorous mechanical stirring. After complete addition, the mixture was stirred for further 15 min, whereupon shining crystals appeared. The product was separated by filtration, washed with water, recrystallized from ethanol and dried in a vacuum desiccator over silica gel. Yield: 14.20 g. m.p. 373–374 K.

Step 2. Synthesis of the title molecule. A hot solution of furan-2-carbaldehyde (10 mmol) in absolute ethanol (40 ml) was mixed with a hot solution of N-methyl-S-benzyldithiocarbazate (10 mmol) in 40 ml of the same solvent. The mixture was refluxed for 6 h on a water bath. After reducing the volume, an off white product appeared which was filtered off. This product was washed with ethanol several times and dried in a vacuum desiccator over silica gel. Yield: 1.65 g. m.p. 432–434 K.

Step 3. Crystallization. The product was dissolved in ethanol to which half volume of petroleum ether was added (2:1 v/v, 10 ml ethanol and 5 ml petroleum ether). The solution was left for several days after which crystals of the title compound deposited.

Refinement top

All H atoms were placed in idealized positions and allowed to ride on their parent C atoms, with C—H bond lengths fixed to 0.93 (aromatic CH), 0.97 (methylene CH2) or 0.96 Å (methyl CH3). Displacement parameters were taken as Uiso(H) = 1.5Ueq(C9) for the methyl group and Uiso(H) = 1.2Ueq(carrier C) otherwise. The furan ring exhibits rotational disorder over two orientations. The occupancies for all sites were fixed to 0.5, since the refined occupancy for each part was very close to that distribution. In order to approximate the expected geometry for both furan groups, their bond lengths were restrained to be identical, with an effective standard deviation of 0.01 Å (command SAME in SHELXL97; Sheldrick, 2008).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
The molecular structure of the title molecule, showing displacement ellipsoids at the 50% probability level for non-H atoms.

Crystal packing for the title compound viewed along a.
Benzyl 3-[(E)-(furan-2-yl)methylidene]-2-methyldithiocarbazate top
Crystal data top
C14H14N2OS2F(000) = 608
Mr = 290.39Dx = 1.338 Mg m3
Monoclinic, P21/nMelting point: 432 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.0415 (3) ÅCell parameters from 4212 reflections
b = 20.4840 (11) Åθ = 4.0–28.9°
c = 11.8959 (7) ŵ = 0.36 mm1
β = 101.601 (5)°T = 298 K
V = 1442.09 (14) Å3Prism, green
Z = 40.5 × 0.5 × 0.3 mm
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
3361 independent reflections
Graphite monochromator2393 reflections with I > 2σ(I)
Detector resolution: 16.1158 pixels mm-1Rint = 0.033
ω scansθmax = 27.9°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 77
Tmin = 0.850, Tmax = 0.897k = 026
21725 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0275P)2 + 0.3918P]
where P = (Fo2 + 2Fc2)/3
3361 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.16 e Å3
12 restraintsΔρmin = 0.17 e Å3
0 constraints
Crystal data top
C14H14N2OS2V = 1442.09 (14) Å3
Mr = 290.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.0415 (3) ŵ = 0.36 mm1
b = 20.4840 (11) ÅT = 298 K
c = 11.8959 (7) Å0.5 × 0.5 × 0.3 mm
β = 101.601 (5)°
Data collection top
Oxford Diffraction Gemini CCD S Ultra
diffractometer
3361 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2393 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.897Rint = 0.033
21725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04012 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
3361 reflectionsΔρmin = 0.17 e Å3
219 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.84126 (9)0.20754 (3)0.57831 (5)0.06926 (18)
S20.99621 (8)0.08488 (2)0.71050 (4)0.05239 (14)
N11.2300 (3)0.19263 (7)0.72613 (14)0.0561 (4)
N21.3649 (2)0.15222 (8)0.80423 (13)0.0554 (4)
C10.5997 (3)0.13887 (10)0.66897 (17)0.0637 (5)
H1A0.57070.18280.67910.076*
C20.7562 (4)0.12057 (10)0.60675 (18)0.0656 (5)
H2A0.83440.15220.57440.079*
C30.7987 (3)0.05537 (10)0.59175 (17)0.0605 (5)
H3A0.90620.04360.54940.073*
C40.6844 (3)0.00718 (9)0.63849 (14)0.0471 (4)
C50.5281 (3)0.02642 (10)0.70175 (16)0.0580 (5)
H5A0.45040.0050.7350.07*
C60.4856 (3)0.09170 (11)0.71639 (19)0.0676 (6)
H6A0.37860.10390.75880.081*
C70.7263 (3)0.06390 (9)0.61993 (16)0.0554 (5)
H7A0.60670.09020.64030.066*
H7B0.73020.07190.540.066*
C81.0304 (3)0.16650 (9)0.67204 (15)0.0496 (4)
C91.3012 (4)0.25833 (10)0.7034 (2)0.0813 (7)
H9A1.18250.27970.65030.122*
H9B1.43430.25610.6710.122*
H9C1.33390.28260.77380.122*
C101.5598 (3)0.17332 (11)0.85386 (18)0.0663 (6)
H10A1.61660.21340.83640.08*0.508 (7)
H10B1.59480.21560.83470.08*0.492 (7)
O11.6236 (10)0.0685 (3)0.9740 (6)0.0728 (16)0.508 (7)
C111.691 (2)0.1271 (8)0.9441 (14)0.055 (3)0.508 (7)
C121.9117 (12)0.1360 (5)1.0053 (7)0.081 (2)0.508 (7)
H12A2.00610.17161.0030.097*0.508 (7)
C131.960 (4)0.0774 (10)1.0732 (16)0.083 (4)0.508 (7)
H13A2.0950.06841.1240.1*0.508 (7)
C141.7950 (12)0.0413 (4)1.0535 (6)0.088 (2)0.508 (7)
H14A1.78690.00081.08780.106*0.508 (7)
O1'1.9236 (7)0.1675 (2)0.9587 (4)0.0668 (14)0.492 (7)
C11'1.720 (2)0.1418 (9)0.9281 (16)0.054 (3)0.492 (7)
C12'1.6978 (18)0.0874 (6)0.9882 (9)0.075 (2)0.492 (7)
H12B1.57130.06110.98550.09*0.492 (7)
C13'1.922 (5)0.0804 (15)1.058 (2)0.112 (9)0.492 (7)
H13B1.9690.04671.10970.134*0.492 (7)
C14'2.0407 (11)0.1267 (4)1.0379 (6)0.078 (2)0.492 (7)
H14B2.19150.13241.0730.093*0.492 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0677 (3)0.0587 (3)0.0773 (4)0.0155 (2)0.0048 (3)0.0102 (3)
S20.0496 (3)0.0497 (3)0.0529 (3)0.0008 (2)0.00161 (19)0.0016 (2)
N10.0523 (9)0.0497 (9)0.0666 (10)0.0012 (7)0.0124 (8)0.0024 (8)
N20.0479 (9)0.0599 (9)0.0573 (9)0.0000 (7)0.0082 (7)0.0103 (8)
C10.0673 (13)0.0523 (12)0.0684 (13)0.0010 (10)0.0061 (10)0.0024 (10)
C20.0726 (13)0.0577 (12)0.0690 (13)0.0165 (10)0.0201 (11)0.0040 (10)
C30.0589 (12)0.0627 (13)0.0638 (12)0.0075 (9)0.0218 (10)0.0016 (10)
C40.0400 (9)0.0520 (10)0.0451 (9)0.0031 (7)0.0014 (7)0.0034 (8)
C50.0487 (10)0.0617 (12)0.0637 (12)0.0049 (9)0.0116 (9)0.0107 (10)
C60.0597 (12)0.0703 (14)0.0767 (14)0.0065 (10)0.0228 (11)0.0010 (11)
C70.0479 (10)0.0534 (11)0.0592 (11)0.0034 (8)0.0027 (8)0.0001 (9)
C80.0513 (10)0.0489 (10)0.0509 (10)0.0061 (8)0.0156 (8)0.0048 (8)
C90.0736 (15)0.0534 (13)0.120 (2)0.0069 (11)0.0259 (14)0.0048 (13)
C100.0540 (12)0.0694 (13)0.0745 (14)0.0052 (10)0.0108 (10)0.0231 (11)
O10.064 (3)0.081 (4)0.066 (3)0.006 (2)0.004 (2)0.003 (2)
C110.037 (3)0.078 (10)0.051 (6)0.010 (5)0.008 (4)0.014 (4)
C120.053 (3)0.100 (7)0.083 (5)0.011 (4)0.002 (4)0.034 (4)
C130.070 (5)0.102 (10)0.068 (6)0.018 (5)0.006 (4)0.022 (5)
C140.080 (5)0.114 (6)0.064 (3)0.031 (4)0.003 (3)0.002 (4)
O1'0.052 (2)0.074 (3)0.068 (3)0.0043 (19)0.0011 (17)0.0178 (19)
C11'0.053 (5)0.056 (5)0.056 (5)0.015 (4)0.019 (4)0.015 (3)
C12'0.074 (6)0.090 (7)0.058 (4)0.007 (5)0.007 (5)0.003 (4)
C13'0.13 (2)0.129 (14)0.070 (7)0.048 (13)0.003 (9)0.010 (9)
C14'0.060 (3)0.094 (5)0.070 (4)0.013 (3)0.007 (3)0.018 (3)
Geometric parameters (Å, º) top
S1—C81.6562 (18)C9—H9B0.96
S2—C81.7566 (19)C9—H9C0.96
S2—C71.8161 (18)C10—C111.529 (10)
N1—C81.357 (2)C10—C11'1.338 (11)
N1—N21.381 (2)C10—H10A0.93
N1—C91.455 (2)C10—H10B0.9299
N2—C101.281 (2)O1—C111.338 (14)
C1—C21.365 (3)O1—C141.373 (9)
C1—C61.372 (3)C11—C121.396 (13)
C1—H1A0.93C12—C131.444 (18)
C2—C31.378 (3)C12—H12A0.93
C2—H2A0.93C13—C141.23 (3)
C3—C41.384 (2)C13—H13A0.93
C3—H3A0.93C14—H14A0.93
C4—C51.378 (2)O1'—C11'1.320 (15)
C4—C71.502 (2)O1'—C14'1.349 (8)
C5—C61.379 (3)C11'—C12'1.347 (14)
C5—H5A0.93C12'—C13'1.45 (2)
C6—H6A0.93C12'—H12B0.93
C7—H7A0.97C13'—C14'1.24 (3)
C7—H7B0.97C13'—H13B0.93
C9—H9A0.96C14'—H14B0.93
C8—S2—C7102.08 (8)H9A—C9—H9C109.5
C8—N1—N2115.50 (15)H9B—C9—H9C109.5
C8—N1—C9123.00 (17)N2—C10—C11'128.2 (7)
N2—N1—C9121.50 (16)N2—C10—C11114.4 (6)
C10—N2—N1118.11 (17)N2—C10—H10A122.8
C2—C1—C6119.30 (19)C11'—C10—H10A108.8
C2—C1—H1A120.3C11—C10—H10A122.8
C6—C1—H1A120.3N2—C10—H10B115.7
C1—C2—C3120.25 (18)C11'—C10—H10B116.1
C1—C2—H2A119.9C11—C10—H10B129.6
C3—C2—H2A119.9C11—O1—C14108.6 (6)
C2—C3—C4121.21 (18)O1—C11—C12106.8 (7)
C2—C3—H3A119.4O1—C11—C10126.8 (9)
C4—C3—H3A119.4C12—C11—C10126.3 (11)
C5—C4—C3117.87 (18)C11—C12—C13104.3 (13)
C5—C4—C7120.78 (17)C11—C12—H12A127.9
C3—C4—C7121.35 (17)C13—C12—H12A127.9
C4—C5—C6120.78 (18)C14—C13—C12109.3 (13)
C4—C5—H5A119.6C14—C13—H13A125.4
C6—C5—H5A119.6C12—C13—H13A125.4
C1—C6—C5120.59 (19)C13—C14—O1111.0 (9)
C1—C6—H6A119.7C13—C14—H14A124.5
C5—C6—H6A119.7O1—C14—H14A124.5
C4—C7—S2107.45 (12)C11'—O1'—C14'105.9 (6)
C4—C7—H7A110.2O1'—C11'—C10120.0 (10)
S2—C7—H7A110.2O1'—C11'—C12'111.8 (9)
C4—C7—H7B110.2C10—C11'—C12'127.8 (13)
S2—C7—H7B110.2C11'—C12'—C13'101.9 (15)
H7A—C7—H7B108.5C11'—C12'—H12B129.1
N1—C8—S1123.08 (14)C13'—C12'—H12B129.1
N1—C8—S2113.05 (13)C14'—C13'—C12'108.9 (12)
S1—C8—S2123.87 (11)C14'—C13'—H13B125.5
N1—C9—H9A109.5C12'—C13'—H13B125.5
N1—C9—H9B109.5C13'—C14'—O1'111.5 (9)
H9A—C9—H9B109.5C13'—C14'—H14B124.3
N1—C9—H9C109.5O1'—C14'—H14B124.3
Hydrogen-bond geometry (Å, º) top
Table 1. Cg is the centroid of the phenyl ring
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cgi0.972.883.560 (2)128
C13—H13A···Cgii0.932.803.62 (2)149
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC14H14N2OS2
Mr290.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.0415 (3), 20.4840 (11), 11.8959 (7)
β (°) 101.601 (5)
V3)1442.09 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.5 × 0.5 × 0.3
Data collection
DiffractometerOxford Diffraction Gemini CCD S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.850, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
21725, 3361, 2393
Rint0.033
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.090, 1.06
No. of reflections3361
No. of parameters219
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Table 1. Cg is the centroid of the phenyl ring
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cgi0.9692.883.560 (2)128
C13—H13A···Cgii0.9322.803.62 (2)149
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z+2.
 

Acknowledgements

The authors acknowledge the University Grants Commission (UGC), Bangladesh, for the award of a fellowship to BG and thank the Third World Academy of Sciences (TWAS), Trieste, Italy, for awarding a TWAS–UNESCO Associateship to TGR. They are also grateful to ANPCyT for a grant (PME–2006–01113) and especially to R. Baggio for his helpful suggestions.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGanguly, B., Foi, A., Doctorovich, F., K. Dey, B. & G. Roy, T. (2011). Acta Cryst. E67, o2777.  Google Scholar
First citationHazari, S. K. S., Dey, B. K., Roy, T. G., Ganguly, B., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1216.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds