organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Di­bromo­isophthalic acid monohydrate

aDepartment of Analytical Chemistry, China Pharmaceutical University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: baofenye@yahoo.com.cn

(Received 22 July 2012; accepted 29 July 2012; online 4 August 2012)

In the crystal structure of the title hydrate, C8H4Br2O4·H2O, O—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to (10-2). The acid groups of the main mol­ecule and the water mol­ecule are all involved in the supra­molecular structure. The dihedral angles between the benzene ring and the acid groups are 37.8 (4) and 36.4 (5)°, while the dihedral angle between the acid groups is 10.9 (4)°.

Related literature

For the synthesis of the title compound, see: Singh & Bedi (1957[Singh, T. & Bedi, S. N. (1957). J. Indian Chem. Soc. 34, 321-323.]). For a related structure, see: Song et al. (2008[Song, G.-L., Liu, S., Liu, H.-J., Zeng, T. & Zhu, H.-J. (2008). Acta Cryst. E64, o1860.]).

[Scheme 1]

Experimental

Crystal data
  • C8H4Br2O4·H2O

  • Mr = 341.95

  • Monoclinic, P 21 /c

  • a = 3.8740 (8) Å

  • b = 17.366 (4) Å

  • c = 15.710 (3) Å

  • β = 90.91 (3)°

  • V = 1056.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.67 mm−1

  • T = 293 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.207, Tmax = 0.700

  • 2206 measured reflections

  • 1910 independent reflections

  • 1109 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.089

  • S = 0.99

  • 1910 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯OW 0.82 1.74 2.554 (8) 176
O4—H4B⋯O1i 0.82 1.86 2.665 (8) 168
OW—HWB⋯O3ii 0.85 2.08 2.893 (9) 159
OW—HWA⋯O3iii 0.85 2.17 2.903 (9) 144
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4,6-Dibromoisophthalic acid (DBPA) is an important organic intermediate for organic synthesis, which can be used in many fields such as organic light-emitting materials. We report herein the crystal structure of the hydrate of DBPA (Fig. 1). Bond lengths and angles are within normal ranges (Song et al., 2008). The asymmetric unit contains one 4,6-dibromoisophthalic acid molecule and one water molecule, in general positions. In the crystal, O—H···O hydrogen bonds link the molecules to form a bidimensional framework (Fig. 2), where all OH groups of the DBPA and the water molecules are involved, as well as carbonyl groups. The water molecule serves as donor and acceptor for hydrogen bonding.

Related literature top

For the synthesis of the title compound, see: Singh & Bedi (1957). For a related structure, see: Song et al. (2008).

Experimental top

DBPA was prepared according to the literature method (Singh & Bedi, 1957). Single crystals of the title hydrate suitable for X-ray analysis were obtained by dissolving DBPA (2.0 g) in water (80 ml) and evaporating the solution slowly at room temperature for about 15 days.

Refinement top

All H atoms may be found in a difference map, but their positions were fixed in the final refinement with idealized bond lengths of 0.82 (OH of acid), 0.85 (water molecule) or 0.93 Å (aromatic CH). Isotropic displacement parameters for H atoms were calculated as Uiso(H) = xUeq(parent atom), where x = 1.5 for acid OH groups, and x = 1.2 for other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 30% probability level. Dashed lines are non-bonding contacts.
[Figure 2] Fig. 2. A packing diagram for the title compound, with O—H···O intermolecular hydrogen bonds shown as dashed lines.
4,6-Dibromoisophthalic acid monohydrate top
Crystal data top
C8H4Br2O4·H2OF(000) = 656
Mr = 341.95Dx = 2.149 Mg m3
Monoclinic, P21/cMelting point = 441–443 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 3.8740 (8) ÅCell parameters from 25 reflections
b = 17.366 (4) Åθ = 10–14°
c = 15.710 (3) ŵ = 7.67 mm1
β = 90.91 (3)°T = 293 K
V = 1056.8 (4) Å3Rodlike, colourless
Z = 40.30 × 0.05 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1109 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 25.2°, θmin = 1.8°
ω/2θ scansh = 44
Absorption correction: ψ scan
(North et al., 1968)
k = 020
Tmin = 0.207, Tmax = 0.700l = 018
2206 measured reflections3 standard reflections every 200 reflections
1910 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.02P)2]
where P = (Fo2 + 2Fc2)/3
1910 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.50 e Å3
0 constraints
Crystal data top
C8H4Br2O4·H2OV = 1056.8 (4) Å3
Mr = 341.95Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.8740 (8) ŵ = 7.67 mm1
b = 17.366 (4) ÅT = 293 K
c = 15.710 (3) Å0.30 × 0.05 × 0.05 mm
β = 90.91 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1109 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.051
Tmin = 0.207, Tmax = 0.7003 standard reflections every 200 reflections
2206 measured reflections intensity decay: none
1910 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.99Δρmax = 0.63 e Å3
1910 reflectionsΔρmin = 0.50 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
OW0.6960 (16)0.0557 (3)0.0592 (4)0.079 (2)
HWB0.80130.05360.01140.094*
HWA0.69460.01160.08280.094*
Br10.1479 (2)0.52659 (5)0.24930 (5)0.0486 (3)
O10.6060 (18)0.2282 (4)0.0212 (4)0.073 (2)
C10.041 (2)0.3595 (5)0.3421 (5)0.041 (2)
Br20.3840 (2)0.38158 (6)0.03673 (5)0.0473 (3)
C20.4568 (19)0.2307 (5)0.0891 (5)0.0314 (19)
O20.4320 (16)0.1710 (3)0.1373 (4)0.071 (2)
H2A0.52480.13420.11360.107*
C30.0622 (17)0.3658 (4)0.2523 (5)0.0297 (19)
O30.0053 (17)0.4099 (4)0.3936 (4)0.070 (2)
C40.1931 (18)0.3018 (5)0.2089 (5)0.034 (2)
H4A0.20570.25560.23850.041*
O40.1724 (15)0.2937 (4)0.3616 (3)0.0598 (18)
H4B0.22950.29350.41210.090*
C50.3038 (18)0.3022 (5)0.1261 (4)0.0294 (19)
C60.2627 (17)0.3713 (5)0.0796 (4)0.0315 (19)
C70.1313 (18)0.4354 (5)0.1184 (5)0.036 (2)
H7A0.10890.48070.08730.043*
C80.0319 (18)0.4341 (4)0.2022 (4)0.0293 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
OW0.131 (6)0.051 (4)0.053 (4)0.036 (4)0.027 (4)0.007 (4)
Br10.0605 (6)0.0433 (5)0.0422 (5)0.0132 (5)0.0028 (4)0.0097 (5)
O10.131 (6)0.049 (4)0.039 (4)0.029 (4)0.031 (4)0.003 (3)
C10.057 (6)0.040 (6)0.027 (5)0.004 (5)0.007 (4)0.006 (5)
Br20.0647 (6)0.0517 (6)0.0254 (4)0.0066 (5)0.0047 (4)0.0072 (5)
C20.036 (5)0.039 (5)0.019 (4)0.000 (4)0.003 (4)0.001 (4)
O20.126 (6)0.038 (4)0.050 (4)0.023 (4)0.025 (4)0.006 (4)
C30.029 (5)0.032 (5)0.028 (4)0.004 (4)0.000 (3)0.000 (4)
O30.125 (6)0.061 (5)0.024 (3)0.023 (4)0.011 (3)0.006 (4)
C40.039 (5)0.025 (4)0.038 (5)0.002 (4)0.002 (4)0.003 (4)
O40.097 (5)0.056 (5)0.026 (3)0.024 (4)0.014 (3)0.005 (3)
C50.035 (5)0.031 (5)0.022 (4)0.000 (4)0.007 (4)0.002 (4)
C60.038 (5)0.037 (5)0.020 (4)0.001 (4)0.005 (3)0.004 (4)
C70.037 (5)0.036 (5)0.034 (5)0.002 (4)0.001 (4)0.005 (4)
C80.038 (5)0.026 (4)0.024 (4)0.001 (4)0.003 (3)0.007 (4)
Geometric parameters (Å, º) top
OW—HWB0.8500O2—H2A0.8200
OW—HWA0.8502C3—C41.394 (10)
Br1—C81.896 (7)C3—C81.430 (10)
O1—C21.205 (9)C4—C51.363 (9)
C1—O31.201 (9)C4—H4A0.9300
C1—O41.285 (10)O4—H4B0.8200
C1—C31.465 (10)C5—C61.414 (10)
Br2—C61.888 (7)C6—C71.363 (10)
C2—O21.287 (9)C7—C81.367 (10)
C2—C51.491 (10)C7—H7A0.9300
HWB—OW—HWA110.2C1—O4—H4B109.5
O3—C1—O4122.5 (7)C4—C5—C6117.4 (7)
O3—C1—C3124.2 (8)C4—C5—C2119.0 (7)
O4—C1—C3113.3 (8)C6—C5—C2123.6 (6)
O1—C2—O2121.4 (8)C7—C6—C5120.4 (7)
O1—C2—C5123.9 (8)C7—C6—Br2116.2 (6)
O2—C2—C5114.6 (6)C5—C6—Br2123.4 (6)
C2—O2—H2A109.5C6—C7—C8121.0 (8)
C4—C3—C8115.1 (6)C6—C7—H7A119.5
C4—C3—C1120.2 (7)C8—C7—H7A119.5
C8—C3—C1124.7 (7)C7—C8—C3121.3 (7)
C5—C4—C3124.7 (8)C7—C8—Br1117.3 (6)
C5—C4—H4A117.7C3—C8—Br1121.4 (5)
C3—C4—H4A117.7
O3—C1—C3—C4144.6 (9)C4—C5—C6—C72.9 (11)
O4—C1—C3—C434.9 (11)C2—C5—C6—C7177.8 (7)
O3—C1—C3—C837.0 (13)C4—C5—C6—Br2177.5 (5)
O4—C1—C3—C8143.5 (8)C2—C5—C6—Br21.9 (10)
C8—C3—C4—C53.2 (11)C5—C6—C7—C81.0 (12)
C1—C3—C4—C5178.2 (7)Br2—C6—C7—C8179.3 (6)
C3—C4—C5—C64.1 (11)C6—C7—C8—C30.1 (12)
C3—C4—C5—C2176.5 (7)C6—C7—C8—Br1179.9 (6)
O1—C2—C5—C4169.0 (8)C4—C3—C8—C71.0 (11)
O2—C2—C5—C48.0 (10)C1—C3—C8—C7179.5 (7)
O1—C2—C5—C611.7 (13)C4—C3—C8—Br1178.9 (5)
O2—C2—C5—C6171.3 (7)C1—C3—C8—Br10.4 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···OW0.821.742.554 (8)176
O4—H4B···O1i0.821.862.665 (8)168
OW—HWB···O3ii0.852.082.893 (9)159
OW—HWA···O3iii0.852.172.903 (9)144
C4—H4A···O20.932.332.692 (10)103
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H4Br2O4·H2O
Mr341.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)3.8740 (8), 17.366 (4), 15.710 (3)
β (°) 90.91 (3)
V3)1056.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.67
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.207, 0.700
No. of measured, independent and
observed [I > 2σ(I)] reflections
2206, 1910, 1109
Rint0.051
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.089, 0.99
No. of reflections1910
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.50

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···OW0.82001.74002.554 (8)176.00
O4—H4B···O1i0.82001.86002.665 (8)168.00
OW—HWB···O3ii0.85002.08002.893 (9)159.00
OW—HWA···O3iii0.85002.17002.903 (9)144.00
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z1/2.
 

Acknowledgements

The author thanks the Center of Testing and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, T. & Bedi, S. N. (1957). J. Indian Chem. Soc. 34, 321–323.  CAS Google Scholar
First citationSong, G.-L., Liu, S., Liu, H.-J., Zeng, T. & Zhu, H.-J. (2008). Acta Cryst. E64, o1860.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds