organic compounds
4-Butoxy-N′-[1-(4-methylphenyl)ethylidene]benzohydrazide
aDepartment of Physics, Arts and Sciences Faculty, Aksaray University, 68100 Aksaray, Turkey, bDepartment of Physics Education, Faculty of Education, Gazi University, Teknikokullar, Ankara, Turkey, and cDepartment of Chemistry, Arts and Sciences Faculty, Mugla University, 48000 Kotekli, Mugla, Turkey
*Correspondence e-mail: nefised@gmail.com
The molecule of the title compound, C20H24N2O2, exists in a trans conformation with respect to the C=N bond. The dihedral angle between the benzene rings is 79.0 (1)°. In the crystal, N—H⋯O hydrogen bonds link the molecules into chains propagating in [001]. Two weak C—H⋯O interactions also occur.
Related literature
For acylhydrazone compounds, see: Rollas & Küçükgüzel (2007); Vicini et al. (2006); Chimenti et al. (2007). For aroylhydrazone compounds, see: Barbazan et al., 2008; Dang et al., 2007. typically act as bi- and tridentate, mono or biprotic depending on the reaction conditions, see: Gup & Kirkan (2005); Naskar et al. (2004); Sreeja et al. (2003). For bond lengths and angles in similar structures, see: Li & Ban (2009); Mao et al. (2011); Singh & Singh (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812035921/bq2373sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812035921/bq2373Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812035921/bq2373Isup3.cml
4'-Methylacetophenon (4 mmol, 0.552 g) dissolved in ethanol (10 ml) was added dropwise to a suspension of 4-hydroxybenzohydrazide (4 mmol, 0.608 g) with two drops of glacial acetic acid in ethanol (40 ml) in room temperature. The reaction mixture was refluxed for further 8 h and the colorless product was filtered. The pure hydrazone was collected by crystallization from ethanol.
A mixture 4-hydroxy-N'-[(1E)-1-(4-methylphenyl)ethylidene]benzohydrazide (10 mmol, 2.68 g), 1-bromobutane (10 mmol, 1.370 g) and dry K2CO3 (10 mmol, 1.380 g) in 40 ml acetone was refluxed with stirring for 24 h and poured to 200 ml of cold water. The white precipitate formed was filtered and washed with water and finally recrystallized from acetone-water. Chemical structure of title compound is given (I).
The H atoms were positioned geometrically, with C—H = 0.95 Å, N—H = 0.88 Å, and and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). Also, the methyl H atoms were positioned geometrically, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The
could not be determined and 1089 Friedel pairs were averaged before the last refinement.Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).An ORTEP drawing of molecular structure with the crystallographic numbering scheme. Thermal ellipsoids are drawn at 30% probability levels. A packing diagram for (I), projected along c direction. Hydrogen bonds are indicated by dashed lines. |
C20H24N2O2 | F(000) = 696 |
Mr = 324.41 | Dx = 1.241 Mg m−3 |
Monoclinic, C1c1 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C-2yc | Cell parameters from 3295 reflections |
a = 15.0800 (4) Å | θ = 2.7–28.2° |
b = 14.0134 (4) Å | µ = 0.08 mm−1 |
c = 8.2419 (2) Å | T = 105 K |
β = 94.609 (2)° | Prism, colourless |
V = 1736.06 (8) Å3 | 0.38 × 0.21 × 0.17 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2150 independent reflections |
Radiation source: sealed tube | 1980 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 28.4°, θmin = 2.0° |
Absorption correction: multi-scan (Blessing, 1995) | h = −20→14 |
Tmin = 0.970, Tmax = 0.987 | k = −18→17 |
8163 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0677P)2 + 0.7866P] where P = (Fo2 + 2Fc2)/3 |
2150 reflections | (Δ/σ)max < 0.001 |
220 parameters | Δρmax = 0.38 e Å−3 |
2 restraints | Δρmin = −0.20 e Å−3 |
C20H24N2O2 | V = 1736.06 (8) Å3 |
Mr = 324.41 | Z = 4 |
Monoclinic, C1c1 | Mo Kα radiation |
a = 15.0800 (4) Å | µ = 0.08 mm−1 |
b = 14.0134 (4) Å | T = 105 K |
c = 8.2419 (2) Å | 0.38 × 0.21 × 0.17 mm |
β = 94.609 (2)° |
Bruker APEXII CCD diffractometer | 2150 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 1980 reflections with I > 2σ(I) |
Tmin = 0.970, Tmax = 0.987 | Rint = 0.026 |
8163 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 2 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.38 e Å−3 |
2150 reflections | Δρmin = −0.20 e Å−3 |
220 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.37326 (10) | 0.84731 (12) | 0.17841 (19) | 0.0229 (4) | |
O2 | 0.09570 (11) | 0.91173 (11) | 0.70734 (19) | 0.0221 (3) | |
N1 | 0.02616 (12) | 0.99195 (14) | 0.4926 (2) | 0.0206 (4) | |
H1 | 0.0300 | 1.0165 | 0.3952 | 0.025* | |
N2 | −0.04815 (12) | 1.00759 (14) | 0.5785 (2) | 0.0204 (4) | |
C1 | 0.47160 (18) | 0.8908 (2) | −0.2273 (3) | 0.0316 (6) | |
H1A | 0.4698 | 0.8420 | −0.3127 | 0.047* | |
H1B | 0.5106 | 0.9431 | −0.2557 | 0.047* | |
H1C | 0.4114 | 0.9154 | −0.2174 | 0.047* | |
C2 | 0.50729 (16) | 0.84699 (19) | −0.0661 (3) | 0.0265 (5) | |
H2A | 0.5691 | 0.8250 | −0.0755 | 0.032* | |
H2B | 0.5089 | 0.8966 | 0.0195 | 0.032* | |
C3 | 0.45168 (16) | 0.76347 (18) | −0.0149 (3) | 0.0261 (5) | |
H3A | 0.4450 | 0.7172 | −0.1059 | 0.031* | |
H3B | 0.4843 | 0.7310 | 0.0785 | 0.031* | |
C4 | 0.36010 (16) | 0.79010 (17) | 0.0327 (3) | 0.0236 (5) | |
H4A | 0.3274 | 0.8269 | −0.0555 | 0.028* | |
H4B | 0.3255 | 0.7320 | 0.0540 | 0.028* | |
C5 | 0.30078 (15) | 0.86690 (15) | 0.2613 (3) | 0.0186 (4) | |
C6 | 0.31990 (15) | 0.90727 (16) | 0.4156 (3) | 0.0198 (4) | |
H6 | 0.3799 | 0.9204 | 0.4533 | 0.024* | |
C7 | 0.25217 (14) | 0.92824 (15) | 0.5135 (3) | 0.0192 (4) | |
H7 | 0.2658 | 0.9530 | 0.6199 | 0.023* | |
C8 | 0.16373 (14) | 0.91299 (15) | 0.4559 (3) | 0.0181 (4) | |
C9 | 0.09251 (14) | 0.93751 (15) | 0.5645 (3) | 0.0191 (4) | |
C10 | −0.09609 (14) | 1.08078 (16) | 0.5367 (3) | 0.0190 (4) | |
C11 | −0.17777 (14) | 1.09221 (16) | 0.6243 (3) | 0.0179 (4) | |
C12 | −0.21596 (15) | 1.01299 (16) | 0.6959 (3) | 0.0217 (5) | |
H12 | −0.1916 | 0.9512 | 0.6826 | 0.026* | |
C13 | −0.28925 (15) | 1.02417 (17) | 0.7862 (3) | 0.0230 (5) | |
H13 | −0.3136 | 0.9700 | 0.8358 | 0.028* | |
C14 | −0.32750 (15) | 1.11314 (17) | 0.8052 (3) | 0.0218 (5) | |
C15 | −0.40582 (17) | 1.1251 (2) | 0.9068 (3) | 0.0296 (5) | |
H15A | −0.4605 | 1.1320 | 0.8350 | 0.044* | |
H15B | −0.3971 | 1.1822 | 0.9749 | 0.044* | |
H15C | −0.4107 | 1.0690 | 0.9764 | 0.044* | |
C16 | −0.07349 (17) | 1.15369 (17) | 0.4137 (3) | 0.0257 (5) | |
H16A | −0.0238 | 1.1930 | 0.4591 | 0.039* | |
H16B | −0.1254 | 1.1944 | 0.3861 | 0.039* | |
H16C | −0.0565 | 1.1214 | 0.3154 | 0.039* | |
C17 | −0.29159 (15) | 1.19105 (16) | 0.7300 (3) | 0.0224 (5) | |
H17 | −0.3177 | 1.2523 | 0.7398 | 0.027* | |
C18 | −0.21795 (15) | 1.18082 (16) | 0.6403 (3) | 0.0212 (5) | |
H18 | −0.1947 | 1.2351 | 0.5893 | 0.025* | |
C19 | 0.14483 (15) | 0.87441 (15) | 0.3012 (3) | 0.0211 (4) | |
H19 | 0.0847 | 0.8651 | 0.2608 | 0.025* | |
C20 | 0.21321 (15) | 0.84930 (16) | 0.2050 (3) | 0.0210 (5) | |
H20 | 0.1999 | 0.8204 | 0.1017 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0193 (8) | 0.0298 (8) | 0.0200 (8) | 0.0002 (7) | 0.0046 (6) | −0.0030 (7) |
O2 | 0.0206 (8) | 0.0230 (8) | 0.0234 (8) | 0.0035 (6) | 0.0065 (6) | 0.0007 (7) |
N1 | 0.0184 (9) | 0.0230 (10) | 0.0213 (9) | 0.0036 (7) | 0.0079 (7) | 0.0040 (7) |
N2 | 0.0155 (9) | 0.0244 (9) | 0.0221 (9) | 0.0012 (7) | 0.0073 (7) | 0.0001 (8) |
C1 | 0.0303 (14) | 0.0420 (14) | 0.0229 (12) | −0.0006 (11) | 0.0049 (10) | 0.0029 (11) |
C2 | 0.0195 (11) | 0.0408 (14) | 0.0199 (11) | 0.0031 (9) | 0.0054 (9) | −0.0002 (10) |
C3 | 0.0264 (12) | 0.0311 (12) | 0.0214 (10) | 0.0085 (9) | 0.0061 (9) | −0.0001 (10) |
C4 | 0.0249 (11) | 0.0263 (11) | 0.0202 (10) | 0.0001 (9) | 0.0063 (8) | −0.0031 (9) |
C5 | 0.0186 (10) | 0.0174 (10) | 0.0202 (10) | 0.0021 (8) | 0.0046 (8) | 0.0019 (8) |
C6 | 0.0170 (10) | 0.0211 (11) | 0.0210 (11) | 0.0005 (8) | −0.0011 (8) | 0.0020 (8) |
C7 | 0.0200 (11) | 0.0159 (10) | 0.0215 (11) | 0.0030 (8) | 0.0012 (9) | −0.0002 (8) |
C8 | 0.0173 (11) | 0.0150 (9) | 0.0228 (11) | 0.0021 (7) | 0.0061 (8) | 0.0030 (8) |
C9 | 0.0169 (10) | 0.0164 (10) | 0.0247 (11) | −0.0017 (8) | 0.0070 (8) | −0.0005 (8) |
C10 | 0.0187 (10) | 0.0179 (10) | 0.0209 (10) | −0.0005 (8) | 0.0045 (8) | −0.0008 (8) |
C11 | 0.0161 (10) | 0.0215 (10) | 0.0162 (10) | 0.0014 (8) | 0.0020 (8) | −0.0004 (9) |
C12 | 0.0207 (11) | 0.0180 (11) | 0.0263 (11) | 0.0029 (8) | 0.0021 (8) | 0.0023 (9) |
C13 | 0.0186 (10) | 0.0249 (11) | 0.0259 (11) | 0.0003 (9) | 0.0033 (9) | 0.0044 (9) |
C14 | 0.0171 (10) | 0.0317 (12) | 0.0167 (10) | 0.0012 (9) | 0.0025 (8) | −0.0017 (9) |
C15 | 0.0213 (12) | 0.0370 (14) | 0.0313 (13) | 0.0036 (10) | 0.0075 (10) | −0.0024 (11) |
C16 | 0.0295 (12) | 0.0216 (11) | 0.0275 (12) | 0.0023 (9) | 0.0114 (10) | 0.0033 (9) |
C17 | 0.0203 (11) | 0.0217 (11) | 0.0252 (11) | 0.0045 (8) | 0.0023 (9) | −0.0032 (9) |
C18 | 0.0232 (11) | 0.0188 (10) | 0.0218 (11) | 0.0006 (8) | 0.0031 (9) | 0.0014 (9) |
C19 | 0.0152 (10) | 0.0211 (10) | 0.0270 (11) | −0.0007 (8) | 0.0018 (8) | 0.0009 (9) |
C20 | 0.0214 (11) | 0.0238 (11) | 0.0181 (10) | −0.0002 (8) | 0.0046 (8) | −0.0009 (9) |
O1—C5 | 1.363 (3) | C8—C19 | 1.393 (3) |
O1—C4 | 1.444 (3) | C8—C9 | 1.492 (3) |
O2—C9 | 1.229 (3) | C10—C11 | 1.485 (3) |
N1—C9 | 1.356 (3) | C10—C16 | 1.498 (3) |
N1—N2 | 1.390 (2) | C11—C18 | 1.393 (3) |
N1—H1 | 0.8800 | C11—C12 | 1.403 (3) |
N2—C10 | 1.286 (3) | C12—C13 | 1.390 (3) |
C1—C2 | 1.522 (3) | C12—H12 | 0.9500 |
C1—H1A | 0.9800 | C13—C14 | 1.388 (3) |
C1—H1B | 0.9800 | C13—H13 | 0.9500 |
C1—H1C | 0.9800 | C14—C17 | 1.387 (3) |
C2—C3 | 1.519 (4) | C14—C15 | 1.511 (3) |
C2—H2A | 0.9900 | C15—H15A | 0.9800 |
C2—H2B | 0.9900 | C15—H15B | 0.9800 |
C3—C4 | 1.512 (3) | C15—H15C | 0.9800 |
C3—H3A | 0.9900 | C16—H16A | 0.9800 |
C3—H3B | 0.9900 | C16—H16B | 0.9800 |
C4—H4A | 0.9900 | C16—H16C | 0.9800 |
C4—H4B | 0.9900 | C17—C18 | 1.390 (3) |
C5—C20 | 1.386 (3) | C17—H17 | 0.9500 |
C5—C6 | 1.400 (3) | C18—H18 | 0.9500 |
C6—C7 | 1.383 (3) | C19—C20 | 1.396 (3) |
C6—H6 | 0.9500 | C19—H19 | 0.9500 |
C7—C8 | 1.396 (3) | C20—H20 | 0.9500 |
C7—H7 | 0.9500 | ||
C5—O1—C4 | 117.82 (17) | O2—C9—C8 | 122.15 (19) |
C9—N1—N2 | 117.58 (17) | N1—C9—C8 | 114.14 (19) |
C9—N1—H1 | 121.2 | N2—C10—C11 | 115.23 (19) |
N2—N1—H1 | 121.2 | N2—C10—C16 | 124.9 (2) |
C10—N2—N1 | 116.62 (18) | C11—C10—C16 | 119.86 (19) |
C2—C1—H1A | 109.5 | C18—C11—C12 | 118.0 (2) |
C2—C1—H1B | 109.5 | C18—C11—C10 | 121.8 (2) |
H1A—C1—H1B | 109.5 | C12—C11—C10 | 120.24 (19) |
C2—C1—H1C | 109.5 | C13—C12—C11 | 120.5 (2) |
H1A—C1—H1C | 109.5 | C13—C12—H12 | 119.8 |
H1B—C1—H1C | 109.5 | C11—C12—H12 | 119.8 |
C3—C2—C1 | 112.9 (2) | C14—C13—C12 | 121.2 (2) |
C3—C2—H2A | 109.0 | C14—C13—H13 | 119.4 |
C1—C2—H2A | 109.0 | C12—C13—H13 | 119.4 |
C3—C2—H2B | 109.0 | C17—C14—C13 | 118.4 (2) |
C1—C2—H2B | 109.0 | C17—C14—C15 | 120.7 (2) |
H2A—C2—H2B | 107.8 | C13—C14—C15 | 120.9 (2) |
C4—C3—C2 | 114.7 (2) | C14—C15—H15A | 109.5 |
C4—C3—H3A | 108.6 | C14—C15—H15B | 109.5 |
C2—C3—H3A | 108.6 | H15A—C15—H15B | 109.5 |
C4—C3—H3B | 108.6 | C14—C15—H15C | 109.5 |
C2—C3—H3B | 108.6 | H15A—C15—H15C | 109.5 |
H3A—C3—H3B | 107.6 | H15B—C15—H15C | 109.5 |
O1—C4—C3 | 106.59 (19) | C10—C16—H16A | 109.5 |
O1—C4—H4A | 110.4 | C10—C16—H16B | 109.5 |
C3—C4—H4A | 110.4 | H16A—C16—H16B | 109.5 |
O1—C4—H4B | 110.4 | C10—C16—H16C | 109.5 |
C3—C4—H4B | 110.4 | H16A—C16—H16C | 109.5 |
H4A—C4—H4B | 108.6 | H16B—C16—H16C | 109.5 |
O1—C5—C20 | 125.24 (19) | C14—C17—C18 | 120.9 (2) |
O1—C5—C6 | 114.95 (19) | C14—C17—H17 | 119.5 |
C20—C5—C6 | 119.81 (19) | C18—C17—H17 | 119.5 |
C7—C6—C5 | 120.5 (2) | C17—C18—C11 | 121.0 (2) |
C7—C6—H6 | 119.7 | C17—C18—H18 | 119.5 |
C5—C6—H6 | 119.7 | C11—C18—H18 | 119.5 |
C6—C7—C8 | 120.0 (2) | C8—C19—C20 | 120.8 (2) |
C6—C7—H7 | 120.0 | C8—C19—H19 | 119.6 |
C8—C7—H7 | 120.0 | C20—C19—H19 | 119.6 |
C19—C8—C7 | 119.36 (19) | C5—C20—C19 | 119.5 (2) |
C19—C8—C9 | 122.27 (19) | C5—C20—H20 | 120.3 |
C7—C8—C9 | 118.4 (2) | C19—C20—H20 | 120.3 |
O2—C9—N1 | 123.69 (19) | ||
C9—N1—N2—C10 | 158.6 (2) | N2—C10—C11—C18 | 155.7 (2) |
C1—C2—C3—C4 | −68.9 (3) | C16—C10—C11—C18 | −22.4 (3) |
C5—O1—C4—C3 | −169.15 (18) | N2—C10—C11—C12 | −23.3 (3) |
C2—C3—C4—O1 | −65.7 (3) | C16—C10—C11—C12 | 158.6 (2) |
C4—O1—C5—C20 | −10.6 (3) | C18—C11—C12—C13 | −2.9 (3) |
C4—O1—C5—C6 | 168.89 (18) | C10—C11—C12—C13 | 176.1 (2) |
O1—C5—C6—C7 | −178.39 (19) | C11—C12—C13—C14 | 1.3 (4) |
C20—C5—C6—C7 | 1.1 (3) | C12—C13—C14—C17 | 0.8 (3) |
C5—C6—C7—C8 | −2.8 (3) | C12—C13—C14—C15 | −178.6 (2) |
C6—C7—C8—C19 | 1.6 (3) | C13—C14—C17—C18 | −1.3 (3) |
C6—C7—C8—C9 | −179.34 (19) | C15—C14—C17—C18 | 178.1 (2) |
N2—N1—C9—O2 | −9.6 (3) | C14—C17—C18—C11 | −0.4 (3) |
N2—N1—C9—C8 | 171.93 (18) | C12—C11—C18—C17 | 2.4 (3) |
C19—C8—C9—O2 | 130.8 (2) | C10—C11—C18—C17 | −176.6 (2) |
C7—C8—C9—O2 | −48.2 (3) | C7—C8—C19—C20 | 1.2 (3) |
C19—C8—C9—N1 | −50.6 (3) | C9—C8—C19—C20 | −177.8 (2) |
C7—C8—C9—N1 | 130.3 (2) | O1—C5—C20—C19 | −178.9 (2) |
N1—N2—C10—C11 | 176.57 (18) | C6—C5—C20—C19 | 1.7 (3) |
N1—N2—C10—C16 | −5.4 (3) | C8—C19—C20—C5 | −2.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.88 | 2.15 | 2.975 (2) | 155 |
C16—H16C···O2i | 0.98 | 2.57 | 3.307 (3) | 131 |
C17—H17···O2ii | 0.95 | 2.59 | 3.527 (3) | 168 |
Symmetry codes: (i) x, −y+2, z−1/2; (ii) x−1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C20H24N2O2 |
Mr | 324.41 |
Crystal system, space group | Monoclinic, C1c1 |
Temperature (K) | 105 |
a, b, c (Å) | 15.0800 (4), 14.0134 (4), 8.2419 (2) |
β (°) | 94.609 (2) |
V (Å3) | 1736.06 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.38 × 0.21 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.970, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8163, 2150, 1980 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.101, 0.93 |
No. of reflections | 2150 |
No. of parameters | 220 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.20 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.88 | 2.15 | 2.975 (2) | 155 |
C16—H16C···O2i | 0.98 | 2.57 | 3.307 (3) | 131 |
C17—H17···O2ii | 0.95 | 2.59 | 3.527 (3) | 168 |
Symmetry codes: (i) x, −y+2, z−1/2; (ii) x−1/2, y+1/2, z. |
Acknowledgements
The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskisehir, Turkey, for the use of the X-ray diffractometer.
References
Barbazan, P., Carballo, R., Covelo, B., Lodeiro, C., Lima, J. C. & Vazquez-Lopez, E. M. (2008). Eur. J. Inorg. Chem. pp. 2713–2720. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chimenti, F., Maccioni, E., Secci, D., Bolasco, A., Chimenti, P., Granese, A., Befani, O., Turini, P., Alcaro, S., Ortuso, F., Cardia, M. C. & Distinto, S. (2007). J. Med. Chem. 50, 707–712. Web of Science CrossRef PubMed CAS Google Scholar
Dang, T. T., Dang, T. T. & Langer, P. (2007). Tetrahedron Lett. 48, 3591–3593. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gup, R. & Kirkan, B. (2005). Spectrochim. Acta A, 62, 1188–1195. Web of Science CrossRef Google Scholar
Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mao, F.-L., Li, W.-S. & Zhou, X.-P. (2011). Acta Cryst. E67, o2547. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naskar, S., Biswas, S., Mishra, D., Adhikary, B., Falvello, L. R., Soler, T., Schwalbe, C. H. & Chattopadhyay, S. K. (2004). Inorg. Chim. Acta 357, 4257–4264. Web of Science CSD CrossRef CAS Google Scholar
Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules, 8, 1910–1939. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2003). Polyhedron, 23, 575–581. Web of Science CSD CrossRef Google Scholar
Vicini, P., Incerti, M., Doytchinova, I. A., Colla, P., Busonera, B. & Loddo, R. (2006). Eur. J. Med. Chem. 41, 624–632. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acylhydrazones and their derivatives constitute a versatile class of compounds in organic and coordination chemistry. These compounds have interesting biological properties, such as anti-inflammatory, analgesic, anticonvulsant, antituberculous, antitumor, anti-HIV and antimicrobial activity (Rollas & Küçükgüzel, 2007; Vicini et al., 2006; Chimenti et al., 2007).
Aroylhydrazones are important compounds for drug design, as possible ligands for metal complexes, catalysis and also for the syntheses of heterocyclic compounds (Barbazan et al., 2008; Dang et al., 2007). The ease of preparation, increased hydrolytic stability relative to imines, and tendency toward crystallinity are all desirable characteristics of hydrazones. Due to these positive traits, the chemical properties of aroylhydrazones have been extensively studied for a long time. Acylhydrazones possess two connected nitrogen atoms of different nature and a carbon-nitrogen double bond that is conjugated with a lone electron pair of the terminal nitrogen atom. These structural fragments are mainly responsible for the physical and chemical properties of hydrazones. The introduction of functional groups in the hydrazone molecules expands the scope of use in coordination chemistry.
Aroylhydrazones are potential ligands due to having a number of bonding sites. They can act a neutral or monoanionic bidentate or tridentate ligand depending on the substituents and the reaction conditions. Furthermore, abilities to coordinate to metals either in keto (I) or enol (II) tautomeric form make them attractive as ligands. This compound is in the keto form in the solid state. The keto hydrazone moiety may coordinate to metals in the keto amide or deprotonated enolimine form. Hydrazones typically act as bi- and tridentate, mono or biprotic depending on the reaction conditions (Sreeja et al., 2003; Naskar et al., 2004; Gup & Kirkan, 2005).
The crystal structure is shown in Fig. 1 with atom-numbering scheme. The bond lengths and angles are in the normal ranges in the molecule. The molecule exist in a trans configuration with respect to the C10═N2 [1.286 (3) Å] bond and the torsion angle N1—N2—C10—C11 = 176.6 (2)°. The O1—C5, O1—C4 and O2═C9 bond lengths are 1.363 (3) Å, 1.444 (3) Å and 1.229 (3) Å, respectively. The N1—C9 and N1—N2 bond lengths are 1.356 (3) Å and 1.390 (3) Å. The other bond lengths and angles in the molecule are within expected ranges, and similar to the other studies (Singh & Singh, 2010; Li & Ban, 2009; Mao et al., 2011).
The ring A (C5–C8, C19, C20) and B (C11–C14, C17, C18) are each essentially planar. The dihedral angle between two substituted benzene rings is 79.0 (1)°, indicating the Schiff base molecule is twisted. The N1 atom lie above 0.937 (4) Å from the A plane. The N2 atom lie above 0.585 (4) Å from the B plane.
As can be seen from the packing diagram (Fig. 2), inter-molecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules and these hydrogen bonds may be effective in the stabilization of the crystal structure. In these interactions, there are the N1, C16 and C17 atoms of molecule as donor and the O2 atom of the other molecules as acceptor (Table 1, Fig. 2).