organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Carbamoylpyridin-1-ium 2,2,2-tri­chloro­acetate

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, P. O. Box 537, SI-1000 Ljubljana, Slovenia, and CO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si

(Received 9 August 2012; accepted 11 August 2012; online 23 August 2012)

In the asymmetric unit of the title salt, C6H7N2O+·C2Cl3O2, there are two crystallographic independent ion pairs. The amide groups of the 4-carbamoylpyridin-1-ium ions are slightly twisted out of the plane of the aromatic ring with C—C—C—N torsion angles of 8.8 (9)° and 4.6 (8)°. In the crystal, the 4-carbamoylpyridin-1-ium ion is N—H⋯O hydrogen bonded to the trichloro­acetate ion via the pyridinium unit and amide group. Layers parallel to the ac plane are formed due to the N—H⋯O hydrogen bonding of the adjacent amide groups of 4-carbamoylpyridin-1-ium ions. Weak C—H⋯O inter­actions also occur.

Related literature

For applications of co-crystals, see: Karki et al. (2009[Karki, S., Friščić, T., Fábián, L., Laity, P. R., Day, G. M. & Jones, W. (2009). Adv. Mater. 21, 3905-3909.]); Friščić & Jones (2010[Friščić, T. & Jones, W. (2010). J. Pharm. Pharmacol. 62, 15547-1559.]). For related structures, see: Das & Baruah (2011[Das, B. & Baruah, J. B. (2011). Cryst. Growth Des. 11, 5522-5532.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2O+·C2Cl3O2

  • Mr = 285.51

  • Monoclinic, P c

  • a = 9.8768 (3) Å

  • b = 9.4403 (3) Å

  • c = 12.5157 (3) Å

  • β = 90.240 (2)°

  • V = 1166.95 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.860, Tmax = 0.860

  • 11114 measured reflections

  • 5195 independent reflections

  • 4452 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.199

  • S = 1.04

  • 5195 reflections

  • 289 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2512 Friedel pairs

  • Flack parameter: 0.08 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 1.78 2.643 (5) 176
N2—H2A⋯O1ii 0.86 2.03 2.883 (6) 170
N2—H2B⋯O6iii 0.86 2.06 2.854 (7) 152
N3—H3A⋯O3iv 0.86 1.8 2.661 (5) 178
N4—H4A⋯O4v 0.86 2.01 2.858 (6) 169
N4—H4B⋯O5v 0.86 2.03 2.858 (7) 160
C2—H2⋯O6iii 0.93 2.34 3.251 (7) 166
C5—H5⋯O3 0.93 2.6 3.422 (8) 148
C8—H8⋯O5v 0.93 2.36 3.270 (6) 166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z-1; (iii) [x+1, -y+1, z-{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Salts or co-crystals represent two possible ways to produce functional pharmaceutical materials. The salt or co-crystal formation is dependent on a pKa difference between the acid and the base (Karki et al., 2009; Friščić & Jones, 2010). Here we present the structure obtained by contacting isonicotinamide and trichloroacetic acid in 1:1 molar ratio.

The asymmetric unit of (I) consists of two crystallographic independent 4-carbamoylpyridin-1-ium cations and two trichloroacetate anions (Fig. 1). The amide groups of 4-carbamoylpyridin-1-ium ions are only slightly twisted out of the plane of the aromatic ring with a C—C—C—N torsion angle of 8.8 (9)° and 4.6 (8)°, respectively. The 4-carbamoylpyridin-1-ium ion is N—H···O hydrogen bonded to the trichloroacetate ion via the pyridinium unit and amide group (Fig. 2). Two-dimensional framework is formed due to the N—H···O hydrogen bonding of the adjacent amide groups of 4-carbamoylpyridin-1-ium ions. This layer formation is further stabilized by weak C—H···O interactions. In the structure of (I) typical amide-amide hydrogen-bonded homodimer is not present as is for example in the 4-carbamoylpyridin-1-ium 3-carboxypicolinate (Das & Baruah, 2011).

Related literature top

For applications of co-crystals, see: Karki et al. (2009); Friščić & Jones (2010). For related structures, see: Das & Baruah (2011).

Experimental top

Crystals of the title compound were obtained by slow evaporation of a 1:1 mol. mixture of isonicotinamide and trichloroacetic acid in methanol at room temperature.

Refinement top

The presence of atoms H1A and H3B bonded to N1 and N3, respectively was confirmed by the observation of peaks in those locations in an electron-density map. All H atoms were then added at calculated positions and refined using a riding model, with C—H = 0.93 Å and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N). To improve the refinement results, two reflection with too high value of δ(F2)/e.s.d. and with Fo2 < Fc2 were deleted from the refinement. Displacement ellipsoid of O5 and O6 are large compared to the other atoms, however the treatment of O5 and O6 as disordered over two positions did not improve the model.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Layer formation. Dashed lines indicate intermolecular N—H···O and C—H···O hydrogen bonding. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Symmetry codes: i x + 1, y, z; ii x + 1, y, z – 1; iii x + 1, –y + 1, z – 1/2; v x, –y + 1, z + 1/2.
4-Carbamoylpyridin-1-ium 2,2,2-trichloroacetate top
Crystal data top
C6H7N2O+·C2Cl3O2F(000) = 576
Mr = 285.51Dx = 1.625 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 4989 reflections
a = 9.8768 (3) Åθ = 3.0–30.3°
b = 9.4403 (3) ŵ = 0.78 mm1
c = 12.5157 (3) ÅT = 293 K
β = 90.240 (2)°Cube, colourless
V = 1166.95 (6) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
5195 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4452 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4933 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1212
Tmin = 0.860, Tmax = 0.860l = 1616
11114 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.104P)2 + 1.1455P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5195 reflectionsΔρmax = 0.53 e Å3
289 parametersΔρmin = 0.47 e Å3
2 restraintsAbsolute structure: Flack (1983), 2512 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (12)
Crystal data top
C6H7N2O+·C2Cl3O2V = 1166.95 (6) Å3
Mr = 285.51Z = 4
Monoclinic, PcMo Kα radiation
a = 9.8768 (3) ŵ = 0.78 mm1
b = 9.4403 (3) ÅT = 293 K
c = 12.5157 (3) Å0.2 × 0.2 × 0.2 mm
β = 90.240 (2)°
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
5195 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4452 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.860Rint = 0.026
11114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.199Δρmax = 0.53 e Å3
S = 1.04Δρmin = 0.47 e Å3
5195 reflectionsAbsolute structure: Flack (1983), 2512 Friedel pairs
289 parametersAbsolute structure parameter: 0.08 (12)
2 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10761 (17)0.0588 (2)0.78518 (16)0.0826 (5)
Cl20.0364 (2)0.03005 (15)0.98391 (14)0.0768 (5)
Cl30.18351 (17)0.0792 (2)0.78632 (16)0.0819 (5)
Cl40.3217 (3)0.0487 (2)0.5048 (3)0.1287 (12)
Cl50.4613 (3)0.04358 (18)0.70263 (17)0.0950 (7)
Cl60.6112 (3)0.0464 (2)0.5097 (3)0.1206 (10)
N10.9738 (5)0.3469 (4)0.5899 (3)0.0465 (9)
H1A0.99110.34870.65730.07*
N20.9725 (5)0.3126 (5)0.1897 (3)0.0545 (11)
H2A0.95230.31120.12280.082*
H2B1.05450.29750.210.082*
N30.4737 (5)0.6594 (5)0.3579 (3)0.0489 (10)
H3A0.49080.66080.29060.073*
N40.4753 (5)0.6746 (5)0.7577 (3)0.0519 (10)
H4A0.45490.67850.82430.078*
H4B0.55870.67860.73840.078*
O10.0643 (6)0.3280 (4)0.9614 (3)0.0789 (15)
O20.0158 (5)0.3511 (5)0.7986 (3)0.0713 (13)
O30.5208 (6)0.3362 (5)0.6487 (3)0.0713 (12)
O40.4394 (7)0.3324 (4)0.4841 (3)0.0834 (16)
O50.7614 (5)0.3595 (9)0.2357 (4)0.116 (3)
O60.2588 (5)0.6567 (10)0.7106 (4)0.138 (3)
C11.0769 (5)0.3404 (6)0.5206 (4)0.0512 (12)
H11.16570.33720.54560.061*
C21.0507 (5)0.3384 (6)0.4112 (4)0.0451 (10)
H21.12130.33520.36230.054*
C30.9178 (5)0.3415 (5)0.3768 (4)0.0410 (9)
C40.8152 (5)0.3479 (5)0.4506 (4)0.0471 (10)
H40.72530.35030.42830.057*
C50.8467 (6)0.3506 (6)0.5575 (4)0.0555 (13)
H50.77750.35510.60760.067*
C60.8784 (6)0.3376 (6)0.2605 (4)0.0538 (13)
C70.5779 (6)0.6614 (6)0.4269 (4)0.0519 (12)
H70.66670.66130.40260.062*
C80.5502 (5)0.6637 (5)0.5346 (4)0.0470 (11)
H80.62080.66640.58390.056*
C90.4176 (5)0.6621 (5)0.5696 (4)0.0418 (10)
C100.3170 (6)0.6561 (6)0.4940 (4)0.0543 (12)
H100.22710.65250.51550.065*
C110.3464 (6)0.6552 (6)0.3887 (4)0.0556 (13)
H110.27710.65180.33820.067*
C120.3792 (5)0.6626 (7)0.6854 (4)0.0558 (13)
C130.0250 (5)0.2831 (5)0.8761 (3)0.0436 (10)
C140.0344 (5)0.1177 (5)0.8593 (4)0.0481 (10)
C150.4722 (5)0.2781 (5)0.5682 (3)0.0419 (9)
C160.4658 (5)0.1124 (5)0.5706 (4)0.0463 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0647 (9)0.0950 (12)0.0882 (12)0.0167 (8)0.0213 (8)0.0217 (10)
Cl20.1036 (12)0.0537 (7)0.0730 (10)0.0026 (8)0.0071 (9)0.0188 (7)
Cl30.0599 (8)0.1001 (12)0.0856 (11)0.0164 (8)0.0161 (7)0.0240 (10)
Cl40.1135 (16)0.0708 (11)0.201 (3)0.0082 (11)0.0941 (19)0.0250 (14)
Cl50.1471 (19)0.0620 (9)0.0760 (11)0.0091 (10)0.0003 (12)0.0210 (8)
Cl60.1032 (15)0.0709 (12)0.188 (3)0.0098 (11)0.0773 (17)0.0256 (14)
N10.066 (3)0.049 (2)0.0250 (16)0.0007 (19)0.0018 (17)0.0029 (14)
N20.059 (2)0.083 (3)0.0216 (17)0.008 (2)0.0014 (16)0.0018 (19)
N30.065 (3)0.053 (2)0.0280 (18)0.004 (2)0.0005 (17)0.0013 (16)
N40.057 (2)0.069 (3)0.0296 (19)0.003 (2)0.0002 (17)0.0002 (18)
O10.146 (5)0.059 (2)0.0319 (18)0.012 (3)0.008 (2)0.0011 (16)
O20.116 (4)0.071 (3)0.0270 (16)0.017 (2)0.002 (2)0.0035 (16)
O30.117 (4)0.065 (2)0.0324 (18)0.017 (2)0.004 (2)0.0052 (16)
O40.158 (5)0.052 (2)0.040 (2)0.007 (3)0.014 (3)0.0037 (17)
O50.049 (2)0.251 (8)0.047 (2)0.012 (4)0.0102 (19)0.015 (4)
O60.051 (3)0.312 (11)0.051 (3)0.018 (4)0.011 (2)0.008 (4)
C10.047 (2)0.067 (3)0.039 (2)0.005 (2)0.005 (2)0.001 (2)
C20.040 (2)0.065 (3)0.030 (2)0.003 (2)0.0028 (17)0.0013 (19)
C30.043 (2)0.052 (3)0.0288 (18)0.0013 (19)0.0020 (16)0.0073 (16)
C40.040 (2)0.057 (3)0.044 (2)0.001 (2)0.0088 (19)0.003 (2)
C50.061 (3)0.065 (3)0.041 (3)0.000 (2)0.018 (2)0.004 (2)
C60.051 (3)0.082 (4)0.029 (2)0.007 (3)0.0046 (19)0.010 (2)
C70.053 (3)0.063 (3)0.040 (2)0.008 (2)0.010 (2)0.004 (2)
C80.049 (3)0.063 (3)0.029 (2)0.008 (2)0.0054 (19)0.0021 (19)
C90.047 (2)0.051 (3)0.0277 (19)0.0028 (19)0.0021 (17)0.0005 (17)
C100.049 (3)0.071 (3)0.043 (2)0.002 (2)0.005 (2)0.001 (2)
C110.056 (3)0.065 (3)0.046 (3)0.012 (3)0.010 (2)0.001 (2)
C120.044 (2)0.093 (4)0.030 (2)0.004 (3)0.0067 (19)0.003 (2)
C130.056 (2)0.046 (2)0.028 (2)0.001 (2)0.0072 (18)0.0027 (17)
C140.047 (2)0.051 (3)0.046 (2)0.002 (2)0.0039 (19)0.006 (2)
C150.058 (2)0.044 (2)0.0239 (18)0.004 (2)0.0062 (17)0.0036 (17)
C160.044 (2)0.048 (2)0.047 (2)0.001 (2)0.0028 (19)0.005 (2)
Geometric parameters (Å, º) top
Cl1—C141.774 (5)O5—C61.213 (7)
Cl2—C141.766 (5)O6—C121.233 (7)
Cl3—C141.768 (5)C1—C21.393 (6)
Cl4—C161.748 (5)C1—H10.93
Cl5—C161.777 (6)C2—C31.380 (7)
Cl6—C161.743 (5)C2—H20.93
N1—C51.318 (7)C3—C41.375 (6)
N1—C11.342 (7)C3—C61.505 (6)
N1—H1A0.86C4—C51.372 (8)
N2—C61.308 (7)C4—H40.93
N2—H2A0.86C5—H50.93
N2—H2B0.86C7—C81.377 (7)
N3—C111.317 (7)C7—H70.93
N3—C71.340 (7)C8—C91.382 (7)
N3—H3A0.86C8—H80.93
N4—C121.314 (7)C9—C101.371 (7)
N4—H4A0.86C9—C121.499 (6)
N4—H4B0.86C10—C111.350 (8)
O1—C131.213 (6)C10—H100.93
O2—C131.233 (6)C11—H110.93
O3—C151.242 (6)C13—C141.578 (7)
O4—C151.215 (6)C15—C161.566 (7)
C5—N1—C1121.8 (4)C7—C8—C9120.2 (4)
C5—N1—H1A119.1C7—C8—H8119.9
C1—N1—H1A119.1C9—C8—H8119.9
C6—N2—H2A120C10—C9—C8117.8 (4)
C6—N2—H2B120C10—C9—C12118.8 (4)
H2A—N2—H2B120C8—C9—C12123.4 (4)
C11—N3—C7122.9 (4)C11—C10—C9121.1 (5)
C11—N3—H3A118.6C11—C10—H10119.5
C7—N3—H3A118.6C9—C10—H10119.5
C12—N4—H4A120N3—C11—C10119.6 (5)
C12—N4—H4B120N3—C11—H11120.2
H4A—N4—H4B120C10—C11—H11120.2
N1—C1—C2119.8 (5)O6—C12—N4121.5 (5)
N1—C1—H1120.1O6—C12—C9119.7 (5)
C2—C1—H1120.1N4—C12—C9118.8 (4)
C3—C2—C1118.6 (4)O1—C13—O2128.1 (5)
C3—C2—H2120.7O1—C13—C14116.4 (4)
C1—C2—H2120.7O2—C13—C14115.4 (4)
C4—C3—C2119.6 (4)C13—C14—Cl2110.3 (3)
C4—C3—C6117.6 (4)C13—C14—Cl3108.7 (3)
C2—C3—C6122.8 (4)Cl2—C14—Cl3110.3 (3)
C5—C4—C3119.5 (5)C13—C14—Cl1109.5 (3)
C5—C4—H4120.3Cl2—C14—Cl1109.1 (3)
C3—C4—H4120.3Cl3—C14—Cl1108.9 (3)
N1—C5—C4120.7 (5)O4—C15—O3128.1 (5)
N1—C5—H5119.6O4—C15—C16115.3 (4)
C4—C5—H5119.6O3—C15—C16116.2 (4)
O5—C6—N2122.4 (5)C15—C16—Cl6108.4 (3)
O5—C6—C3119.0 (5)C15—C16—Cl4111.6 (4)
N2—C6—C3118.6 (5)Cl6—C16—Cl4110.0 (3)
N3—C7—C8118.4 (5)C15—C16—Cl5112.6 (3)
N3—C7—H7120.8Cl6—C16—Cl5107.4 (3)
C8—C7—H7120.8Cl4—C16—Cl5106.8 (3)
C5—N1—C1—C20.5 (8)C7—N3—C11—C101.5 (8)
N1—C1—C2—C30.8 (8)C9—C10—C11—N30.4 (9)
C1—C2—C3—C40.7 (8)C10—C9—C12—O60.5 (10)
C1—C2—C3—C6179.1 (5)C8—C9—C12—O6177.8 (7)
C2—C3—C4—C50.3 (8)C10—C9—C12—N4177.1 (6)
C6—C3—C4—C5179.6 (5)C8—C9—C12—N44.6 (8)
C1—N1—C5—C40.0 (8)O1—C13—C14—Cl223.3 (6)
C3—C4—C5—N10.1 (8)O2—C13—C14—Cl2159.9 (4)
C4—C3—C6—O59.9 (9)O1—C13—C14—Cl397.8 (5)
C2—C3—C6—O5170.3 (7)O2—C13—C14—Cl379.1 (5)
C4—C3—C6—N2171.0 (5)O1—C13—C14—Cl1143.3 (5)
C2—C3—C6—N28.8 (9)O2—C13—C14—Cl139.8 (6)
C11—N3—C7—C82.1 (8)O4—C15—C16—Cl680.2 (6)
N3—C7—C8—C90.8 (8)O3—C15—C16—Cl693.8 (5)
C7—C8—C9—C100.9 (8)O4—C15—C16—Cl441.1 (6)
C7—C8—C9—C12179.2 (5)O3—C15—C16—Cl4145.0 (5)
C8—C9—C10—C111.6 (9)O4—C15—C16—Cl5161.2 (5)
C12—C9—C10—C11180.0 (5)O3—C15—C16—Cl524.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.782.643 (5)176
N2—H2A···O1ii0.862.032.883 (6)170
N2—H2B···O6iii0.862.062.854 (7)152
N3—H3A···O3iv0.861.82.661 (5)178
N4—H4A···O4v0.862.012.858 (6)169
N4—H4B···O5v0.862.032.858 (7)160
C2—H2···O6iii0.932.343.251 (7)166
C5—H5···O30.932.63.422 (8)148
C8—H8···O5v0.932.363.270 (6)166
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1; (iii) x+1, y+1, z1/2; (iv) x, y+1, z1/2; (v) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H7N2O+·C2Cl3O2
Mr285.51
Crystal system, space groupMonoclinic, Pc
Temperature (K)293
a, b, c (Å)9.8768 (3), 9.4403 (3), 12.5157 (3)
β (°) 90.240 (2)
V3)1166.95 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerAgilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.860, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
11114, 5195, 4452
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.199, 1.04
No. of reflections5195
No. of parameters289
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.47
Absolute structureFlack (1983), 2512 Friedel pairs
Absolute structure parameter0.08 (12)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX publication routines (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.782.643 (5)176.4
N2—H2A···O1ii0.862.032.883 (6)169.7
N2—H2B···O6iii0.862.062.854 (7)152.4
N3—H3A···O3iv0.861.82.661 (5)178.2
N4—H4A···O4v0.862.012.858 (6)169.3
N4—H4B···O5v0.862.032.858 (7)160.1
C2—H2···O6iii0.932.343.251 (7)166.4
C5—H5···O30.932.63.422 (8)148.3
C8—H8···O5v0.932.363.270 (6)165.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1; (iii) x+1, y+1, z1/2; (iv) x, y+1, z1/2; (v) x, y+1, z+1/2.
 

Acknowledgements

The author thanks the Ministry of Education, Science, Culture and Sport of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 as well as the EN–FIST Centre of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia for use of the Supernova diffractometer.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDas, B. & Baruah, J. B. (2011). Cryst. Growth Des. 11, 5522–5532.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriščić, T. & Jones, W. (2010). J. Pharm. Pharmacol. 62, 15547–1559.  Google Scholar
First citationKarki, S., Friščić, T., Fábián, L., Laity, P. R., Day, G. M. & Jones, W. (2009). Adv. Mater. 21, 3905–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds