organic compounds
4-Carbamoylpyridin-1-ium 2,2,2-trichloroacetate
aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, P. O. Box 537, SI-1000 Ljubljana, Slovenia, and CO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si
In the 6H7N2O+·C2Cl3O2−, there are two crystallographic independent ion pairs. The amide groups of the 4-carbamoylpyridin-1-ium ions are slightly twisted out of the plane of the aromatic ring with C—C—C—N torsion angles of 8.8 (9)° and 4.6 (8)°. In the crystal, the 4-carbamoylpyridin-1-ium ion is N—H⋯O hydrogen bonded to the trichloroacetate ion via the pyridinium unit and amide group. Layers parallel to the ac plane are formed due to the N—H⋯O hydrogen bonding of the adjacent amide groups of 4-carbamoylpyridin-1-ium ions. Weak C—H⋯O interactions also occur.
of the title salt, CRelated literature
For applications of co-crystals, see: Karki et al. (2009); Friščić & Jones (2010). For related structures, see: Das & Baruah (2011).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812035507/bq2374sup1.cif
contains datablock global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812035507/bq2374Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812035507/bq2374Isup3.cml
Crystals of the title compound were obtained by slow evaporation of a 1:1 mol. mixture of isonicotinamide and trichloroacetic acid in methanol at room temperature.
The presence of atoms H1A and H3B bonded to N1 and N3, respectively was confirmed by the observation of peaks in those locations in an electron-density map. All H atoms were then added at calculated positions and refined using a riding model, with C—H = 0.93 Å and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N). To improve the δ(F2)/e.s.d. and with Fo2 < Fc2 were deleted from the Displacement ellipsoid of O5 and O6 are large compared to the other atoms, however the treatment of O5 and O6 as disordered over two positions did not improve the model.
results, two reflection with too high value ofData collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and publCIF (Westrip, 2010).Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Fig. 2. Layer formation. Dashed lines indicate intermolecular N—H···O and C—H···O hydrogen bonding. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Symmetry codes: i x + 1, y, z; ii x + 1, y, z – 1; iii x + 1, –y + 1, z – 1/2; v x, –y + 1, z + 1/2. |
C6H7N2O+·C2Cl3O2− | F(000) = 576 |
Mr = 285.51 | Dx = 1.625 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yc | Cell parameters from 4989 reflections |
a = 9.8768 (3) Å | θ = 3.0–30.3° |
b = 9.4403 (3) Å | µ = 0.78 mm−1 |
c = 12.5157 (3) Å | T = 293 K |
β = 90.240 (2)° | Cube, colourless |
V = 1166.95 (6) Å3 | 0.2 × 0.2 × 0.2 mm |
Z = 4 |
Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer | 5195 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 4452 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 10.4933 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −12→12 |
Tmin = 0.860, Tmax = 0.860 | l = −16→16 |
11114 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.069 | H-atom parameters constrained |
wR(F2) = 0.199 | w = 1/[σ2(Fo2) + (0.104P)2 + 1.1455P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
5195 reflections | Δρmax = 0.53 e Å−3 |
289 parameters | Δρmin = −0.47 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 2512 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.08 (12) |
C6H7N2O+·C2Cl3O2− | V = 1166.95 (6) Å3 |
Mr = 285.51 | Z = 4 |
Monoclinic, Pc | Mo Kα radiation |
a = 9.8768 (3) Å | µ = 0.78 mm−1 |
b = 9.4403 (3) Å | T = 293 K |
c = 12.5157 (3) Å | 0.2 × 0.2 × 0.2 mm |
β = 90.240 (2)° |
Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer | 5195 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 4452 reflections with I > 2σ(I) |
Tmin = 0.860, Tmax = 0.860 | Rint = 0.026 |
11114 measured reflections |
R[F2 > 2σ(F2)] = 0.069 | H-atom parameters constrained |
wR(F2) = 0.199 | Δρmax = 0.53 e Å−3 |
S = 1.04 | Δρmin = −0.47 e Å−3 |
5195 reflections | Absolute structure: Flack (1983), 2512 Friedel pairs |
289 parameters | Absolute structure parameter: 0.08 (12) |
2 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.10761 (17) | 0.0588 (2) | 0.78518 (16) | 0.0826 (5) | |
Cl2 | −0.0364 (2) | 0.03005 (15) | 0.98391 (14) | 0.0768 (5) | |
Cl3 | −0.18351 (17) | 0.0792 (2) | 0.78632 (16) | 0.0819 (5) | |
Cl4 | 0.3217 (3) | 0.0487 (2) | 0.5048 (3) | 0.1287 (12) | |
Cl5 | 0.4613 (3) | 0.04358 (18) | 0.70263 (17) | 0.0950 (7) | |
Cl6 | 0.6112 (3) | 0.0464 (2) | 0.5097 (3) | 0.1206 (10) | |
N1 | 0.9738 (5) | 0.3469 (4) | 0.5899 (3) | 0.0465 (9) | |
H1A | 0.9911 | 0.3487 | 0.6573 | 0.07* | |
N2 | 0.9725 (5) | 0.3126 (5) | 0.1897 (3) | 0.0545 (11) | |
H2A | 0.9523 | 0.3112 | 0.1228 | 0.082* | |
H2B | 1.0545 | 0.2975 | 0.21 | 0.082* | |
N3 | 0.4737 (5) | 0.6594 (5) | 0.3579 (3) | 0.0489 (10) | |
H3A | 0.4908 | 0.6608 | 0.2906 | 0.073* | |
N4 | 0.4753 (5) | 0.6746 (5) | 0.7577 (3) | 0.0519 (10) | |
H4A | 0.4549 | 0.6785 | 0.8243 | 0.078* | |
H4B | 0.5587 | 0.6786 | 0.7384 | 0.078* | |
O1 | −0.0643 (6) | 0.3280 (4) | 0.9614 (3) | 0.0789 (15) | |
O2 | 0.0158 (5) | 0.3511 (5) | 0.7986 (3) | 0.0713 (13) | |
O3 | 0.5208 (6) | 0.3362 (5) | 0.6487 (3) | 0.0713 (12) | |
O4 | 0.4394 (7) | 0.3324 (4) | 0.4841 (3) | 0.0834 (16) | |
O5 | 0.7614 (5) | 0.3595 (9) | 0.2357 (4) | 0.116 (3) | |
O6 | 0.2588 (5) | 0.6567 (10) | 0.7106 (4) | 0.138 (3) | |
C1 | 1.0769 (5) | 0.3404 (6) | 0.5206 (4) | 0.0512 (12) | |
H1 | 1.1657 | 0.3372 | 0.5456 | 0.061* | |
C2 | 1.0507 (5) | 0.3384 (6) | 0.4112 (4) | 0.0451 (10) | |
H2 | 1.1213 | 0.3352 | 0.3623 | 0.054* | |
C3 | 0.9178 (5) | 0.3415 (5) | 0.3768 (4) | 0.0410 (9) | |
C4 | 0.8152 (5) | 0.3479 (5) | 0.4506 (4) | 0.0471 (10) | |
H4 | 0.7253 | 0.3503 | 0.4283 | 0.057* | |
C5 | 0.8467 (6) | 0.3506 (6) | 0.5575 (4) | 0.0555 (13) | |
H5 | 0.7775 | 0.3551 | 0.6076 | 0.067* | |
C6 | 0.8784 (6) | 0.3376 (6) | 0.2605 (4) | 0.0538 (13) | |
C7 | 0.5779 (6) | 0.6614 (6) | 0.4269 (4) | 0.0519 (12) | |
H7 | 0.6667 | 0.6613 | 0.4026 | 0.062* | |
C8 | 0.5502 (5) | 0.6637 (5) | 0.5346 (4) | 0.0470 (11) | |
H8 | 0.6208 | 0.6664 | 0.5839 | 0.056* | |
C9 | 0.4176 (5) | 0.6621 (5) | 0.5696 (4) | 0.0418 (10) | |
C10 | 0.3170 (6) | 0.6561 (6) | 0.4940 (4) | 0.0543 (12) | |
H10 | 0.2271 | 0.6525 | 0.5155 | 0.065* | |
C11 | 0.3464 (6) | 0.6552 (6) | 0.3887 (4) | 0.0556 (13) | |
H11 | 0.2771 | 0.6518 | 0.3382 | 0.067* | |
C12 | 0.3792 (5) | 0.6626 (7) | 0.6854 (4) | 0.0558 (13) | |
C13 | −0.0250 (5) | 0.2831 (5) | 0.8761 (3) | 0.0436 (10) | |
C14 | −0.0344 (5) | 0.1177 (5) | 0.8593 (4) | 0.0481 (10) | |
C15 | 0.4722 (5) | 0.2781 (5) | 0.5682 (3) | 0.0419 (9) | |
C16 | 0.4658 (5) | 0.1124 (5) | 0.5706 (4) | 0.0463 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0647 (9) | 0.0950 (12) | 0.0882 (12) | 0.0167 (8) | 0.0213 (8) | −0.0217 (10) |
Cl2 | 0.1036 (12) | 0.0537 (7) | 0.0730 (10) | 0.0026 (8) | 0.0071 (9) | 0.0188 (7) |
Cl3 | 0.0599 (8) | 0.1001 (12) | 0.0856 (11) | −0.0164 (8) | −0.0161 (7) | −0.0240 (10) |
Cl4 | 0.1135 (16) | 0.0708 (11) | 0.201 (3) | −0.0082 (11) | −0.0941 (19) | −0.0250 (14) |
Cl5 | 0.1471 (19) | 0.0620 (9) | 0.0760 (11) | −0.0091 (10) | 0.0003 (12) | 0.0210 (8) |
Cl6 | 0.1032 (15) | 0.0709 (12) | 0.188 (3) | 0.0098 (11) | 0.0773 (17) | −0.0256 (14) |
N1 | 0.066 (3) | 0.049 (2) | 0.0250 (16) | −0.0007 (19) | 0.0018 (17) | 0.0029 (14) |
N2 | 0.059 (2) | 0.083 (3) | 0.0216 (17) | 0.008 (2) | −0.0014 (16) | −0.0018 (19) |
N3 | 0.065 (3) | 0.053 (2) | 0.0280 (18) | 0.004 (2) | −0.0005 (17) | 0.0013 (16) |
N4 | 0.057 (2) | 0.069 (3) | 0.0296 (19) | 0.003 (2) | −0.0002 (17) | −0.0002 (18) |
O1 | 0.146 (5) | 0.059 (2) | 0.0319 (18) | 0.012 (3) | 0.008 (2) | 0.0011 (16) |
O2 | 0.116 (4) | 0.071 (3) | 0.0270 (16) | −0.017 (2) | 0.002 (2) | 0.0035 (16) |
O3 | 0.117 (4) | 0.065 (2) | 0.0324 (18) | −0.017 (2) | 0.004 (2) | −0.0052 (16) |
O4 | 0.158 (5) | 0.052 (2) | 0.040 (2) | 0.007 (3) | −0.014 (3) | 0.0037 (17) |
O5 | 0.049 (2) | 0.251 (8) | 0.047 (2) | 0.012 (4) | −0.0102 (19) | 0.015 (4) |
O6 | 0.051 (3) | 0.312 (11) | 0.051 (3) | −0.018 (4) | 0.011 (2) | 0.008 (4) |
C1 | 0.047 (2) | 0.067 (3) | 0.039 (2) | 0.005 (2) | −0.005 (2) | 0.001 (2) |
C2 | 0.040 (2) | 0.065 (3) | 0.030 (2) | 0.003 (2) | 0.0028 (17) | 0.0013 (19) |
C3 | 0.043 (2) | 0.052 (3) | 0.0288 (18) | −0.0013 (19) | 0.0020 (16) | 0.0073 (16) |
C4 | 0.040 (2) | 0.057 (3) | 0.044 (2) | 0.001 (2) | 0.0088 (19) | 0.003 (2) |
C5 | 0.061 (3) | 0.065 (3) | 0.041 (3) | 0.000 (2) | 0.018 (2) | 0.004 (2) |
C6 | 0.051 (3) | 0.082 (4) | 0.029 (2) | −0.007 (3) | −0.0046 (19) | 0.010 (2) |
C7 | 0.053 (3) | 0.063 (3) | 0.040 (2) | −0.008 (2) | 0.010 (2) | 0.004 (2) |
C8 | 0.049 (3) | 0.063 (3) | 0.029 (2) | −0.008 (2) | −0.0054 (19) | 0.0021 (19) |
C9 | 0.047 (2) | 0.051 (3) | 0.0277 (19) | −0.0028 (19) | −0.0021 (17) | 0.0005 (17) |
C10 | 0.049 (3) | 0.071 (3) | 0.043 (2) | 0.002 (2) | −0.005 (2) | −0.001 (2) |
C11 | 0.056 (3) | 0.065 (3) | 0.046 (3) | 0.012 (3) | −0.010 (2) | −0.001 (2) |
C12 | 0.044 (2) | 0.093 (4) | 0.030 (2) | −0.004 (3) | 0.0067 (19) | 0.003 (2) |
C13 | 0.056 (2) | 0.046 (2) | 0.028 (2) | −0.001 (2) | −0.0072 (18) | 0.0027 (17) |
C14 | 0.047 (2) | 0.051 (3) | 0.046 (2) | −0.002 (2) | 0.0039 (19) | −0.006 (2) |
C15 | 0.058 (2) | 0.044 (2) | 0.0239 (18) | −0.004 (2) | 0.0062 (17) | −0.0036 (17) |
C16 | 0.044 (2) | 0.048 (2) | 0.047 (2) | 0.001 (2) | 0.0028 (19) | −0.005 (2) |
Cl1—C14 | 1.774 (5) | O5—C6 | 1.213 (7) |
Cl2—C14 | 1.766 (5) | O6—C12 | 1.233 (7) |
Cl3—C14 | 1.768 (5) | C1—C2 | 1.393 (6) |
Cl4—C16 | 1.748 (5) | C1—H1 | 0.93 |
Cl5—C16 | 1.777 (6) | C2—C3 | 1.380 (7) |
Cl6—C16 | 1.743 (5) | C2—H2 | 0.93 |
N1—C5 | 1.318 (7) | C3—C4 | 1.375 (6) |
N1—C1 | 1.342 (7) | C3—C6 | 1.505 (6) |
N1—H1A | 0.86 | C4—C5 | 1.372 (8) |
N2—C6 | 1.308 (7) | C4—H4 | 0.93 |
N2—H2A | 0.86 | C5—H5 | 0.93 |
N2—H2B | 0.86 | C7—C8 | 1.377 (7) |
N3—C11 | 1.317 (7) | C7—H7 | 0.93 |
N3—C7 | 1.340 (7) | C8—C9 | 1.382 (7) |
N3—H3A | 0.86 | C8—H8 | 0.93 |
N4—C12 | 1.314 (7) | C9—C10 | 1.371 (7) |
N4—H4A | 0.86 | C9—C12 | 1.499 (6) |
N4—H4B | 0.86 | C10—C11 | 1.350 (8) |
O1—C13 | 1.213 (6) | C10—H10 | 0.93 |
O2—C13 | 1.233 (6) | C11—H11 | 0.93 |
O3—C15 | 1.242 (6) | C13—C14 | 1.578 (7) |
O4—C15 | 1.215 (6) | C15—C16 | 1.566 (7) |
C5—N1—C1 | 121.8 (4) | C7—C8—C9 | 120.2 (4) |
C5—N1—H1A | 119.1 | C7—C8—H8 | 119.9 |
C1—N1—H1A | 119.1 | C9—C8—H8 | 119.9 |
C6—N2—H2A | 120 | C10—C9—C8 | 117.8 (4) |
C6—N2—H2B | 120 | C10—C9—C12 | 118.8 (4) |
H2A—N2—H2B | 120 | C8—C9—C12 | 123.4 (4) |
C11—N3—C7 | 122.9 (4) | C11—C10—C9 | 121.1 (5) |
C11—N3—H3A | 118.6 | C11—C10—H10 | 119.5 |
C7—N3—H3A | 118.6 | C9—C10—H10 | 119.5 |
C12—N4—H4A | 120 | N3—C11—C10 | 119.6 (5) |
C12—N4—H4B | 120 | N3—C11—H11 | 120.2 |
H4A—N4—H4B | 120 | C10—C11—H11 | 120.2 |
N1—C1—C2 | 119.8 (5) | O6—C12—N4 | 121.5 (5) |
N1—C1—H1 | 120.1 | O6—C12—C9 | 119.7 (5) |
C2—C1—H1 | 120.1 | N4—C12—C9 | 118.8 (4) |
C3—C2—C1 | 118.6 (4) | O1—C13—O2 | 128.1 (5) |
C3—C2—H2 | 120.7 | O1—C13—C14 | 116.4 (4) |
C1—C2—H2 | 120.7 | O2—C13—C14 | 115.4 (4) |
C4—C3—C2 | 119.6 (4) | C13—C14—Cl2 | 110.3 (3) |
C4—C3—C6 | 117.6 (4) | C13—C14—Cl3 | 108.7 (3) |
C2—C3—C6 | 122.8 (4) | Cl2—C14—Cl3 | 110.3 (3) |
C5—C4—C3 | 119.5 (5) | C13—C14—Cl1 | 109.5 (3) |
C5—C4—H4 | 120.3 | Cl2—C14—Cl1 | 109.1 (3) |
C3—C4—H4 | 120.3 | Cl3—C14—Cl1 | 108.9 (3) |
N1—C5—C4 | 120.7 (5) | O4—C15—O3 | 128.1 (5) |
N1—C5—H5 | 119.6 | O4—C15—C16 | 115.3 (4) |
C4—C5—H5 | 119.6 | O3—C15—C16 | 116.2 (4) |
O5—C6—N2 | 122.4 (5) | C15—C16—Cl6 | 108.4 (3) |
O5—C6—C3 | 119.0 (5) | C15—C16—Cl4 | 111.6 (4) |
N2—C6—C3 | 118.6 (5) | Cl6—C16—Cl4 | 110.0 (3) |
N3—C7—C8 | 118.4 (5) | C15—C16—Cl5 | 112.6 (3) |
N3—C7—H7 | 120.8 | Cl6—C16—Cl5 | 107.4 (3) |
C8—C7—H7 | 120.8 | Cl4—C16—Cl5 | 106.8 (3) |
C5—N1—C1—C2 | 0.5 (8) | C7—N3—C11—C10 | 1.5 (8) |
N1—C1—C2—C3 | −0.8 (8) | C9—C10—C11—N3 | 0.4 (9) |
C1—C2—C3—C4 | 0.7 (8) | C10—C9—C12—O6 | 0.5 (10) |
C1—C2—C3—C6 | −179.1 (5) | C8—C9—C12—O6 | −177.8 (7) |
C2—C3—C4—C5 | −0.3 (8) | C10—C9—C12—N4 | −177.1 (6) |
C6—C3—C4—C5 | 179.6 (5) | C8—C9—C12—N4 | 4.6 (8) |
C1—N1—C5—C4 | 0.0 (8) | O1—C13—C14—Cl2 | −23.3 (6) |
C3—C4—C5—N1 | −0.1 (8) | O2—C13—C14—Cl2 | 159.9 (4) |
C4—C3—C6—O5 | 9.9 (9) | O1—C13—C14—Cl3 | 97.8 (5) |
C2—C3—C6—O5 | −170.3 (7) | O2—C13—C14—Cl3 | −79.1 (5) |
C4—C3—C6—N2 | −171.0 (5) | O1—C13—C14—Cl1 | −143.3 (5) |
C2—C3—C6—N2 | 8.8 (9) | O2—C13—C14—Cl1 | 39.8 (6) |
C11—N3—C7—C8 | −2.1 (8) | O4—C15—C16—Cl6 | 80.2 (6) |
N3—C7—C8—C9 | 0.8 (8) | O3—C15—C16—Cl6 | −93.8 (5) |
C7—C8—C9—C10 | 0.9 (8) | O4—C15—C16—Cl4 | −41.1 (6) |
C7—C8—C9—C12 | 179.2 (5) | O3—C15—C16—Cl4 | 145.0 (5) |
C8—C9—C10—C11 | −1.6 (9) | O4—C15—C16—Cl5 | −161.2 (5) |
C12—C9—C10—C11 | −180.0 (5) | O3—C15—C16—Cl5 | 24.9 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.86 | 1.78 | 2.643 (5) | 176 |
N2—H2A···O1ii | 0.86 | 2.03 | 2.883 (6) | 170 |
N2—H2B···O6iii | 0.86 | 2.06 | 2.854 (7) | 152 |
N3—H3A···O3iv | 0.86 | 1.8 | 2.661 (5) | 178 |
N4—H4A···O4v | 0.86 | 2.01 | 2.858 (6) | 169 |
N4—H4B···O5v | 0.86 | 2.03 | 2.858 (7) | 160 |
C2—H2···O6iii | 0.93 | 2.34 | 3.251 (7) | 166 |
C5—H5···O3 | 0.93 | 2.6 | 3.422 (8) | 148 |
C8—H8···O5v | 0.93 | 2.36 | 3.270 (6) | 166 |
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z−1; (iii) x+1, −y+1, z−1/2; (iv) x, −y+1, z−1/2; (v) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H7N2O+·C2Cl3O2− |
Mr | 285.51 |
Crystal system, space group | Monoclinic, Pc |
Temperature (K) | 293 |
a, b, c (Å) | 9.8768 (3), 9.4403 (3), 12.5157 (3) |
β (°) | 90.240 (2) |
V (Å3) | 1166.95 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.78 |
Crystal size (mm) | 0.2 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.860, 0.860 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11114, 5195, 4452 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.199, 1.04 |
No. of reflections | 5195 |
No. of parameters | 289 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.53, −0.47 |
Absolute structure | Flack (1983), 2512 Friedel pairs |
Absolute structure parameter | 0.08 (12) |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX publication routines (Farrugia, 1999) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.86 | 1.78 | 2.643 (5) | 176.4 |
N2—H2A···O1ii | 0.86 | 2.03 | 2.883 (6) | 169.7 |
N2—H2B···O6iii | 0.86 | 2.06 | 2.854 (7) | 152.4 |
N3—H3A···O3iv | 0.86 | 1.8 | 2.661 (5) | 178.2 |
N4—H4A···O4v | 0.86 | 2.01 | 2.858 (6) | 169.3 |
N4—H4B···O5v | 0.86 | 2.03 | 2.858 (7) | 160.1 |
C2—H2···O6iii | 0.93 | 2.34 | 3.251 (7) | 166.4 |
C5—H5···O3 | 0.93 | 2.6 | 3.422 (8) | 148.3 |
C8—H8···O5v | 0.93 | 2.36 | 3.270 (6) | 165.6 |
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z−1; (iii) x+1, −y+1, z−1/2; (iv) x, −y+1, z−1/2; (v) x, −y+1, z+1/2. |
Acknowledgements
The author thanks the Ministry of Education, Science, Culture and Sport of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 as well as the EN–FIST Centre of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia for use of the Supernova diffractometer.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Das, B. & Baruah, J. B. (2011). Cryst. Growth Des. 11, 5522–5532. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Friščić, T. & Jones, W. (2010). J. Pharm. Pharmacol. 62, 15547–1559. Google Scholar
Karki, S., Friščić, T., Fábián, L., Laity, P. R., Day, G. M. & Jones, W. (2009). Adv. Mater. 21, 3905–3909. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Salts or co-crystals represent two possible ways to produce functional pharmaceutical materials. The salt or co-crystal formation is dependent on a pKa difference between the acid and the base (Karki et al., 2009; Friščić & Jones, 2010). Here we present the structure obtained by contacting isonicotinamide and trichloroacetic acid in 1:1 molar ratio.
The asymmetric unit of (I) consists of two crystallographic independent 4-carbamoylpyridin-1-ium cations and two trichloroacetate anions (Fig. 1). The amide groups of 4-carbamoylpyridin-1-ium ions are only slightly twisted out of the plane of the aromatic ring with a C—C—C—N torsion angle of 8.8 (9)° and 4.6 (8)°, respectively. The 4-carbamoylpyridin-1-ium ion is N—H···O hydrogen bonded to the trichloroacetate ion via the pyridinium unit and amide group (Fig. 2). Two-dimensional framework is formed due to the N—H···O hydrogen bonding of the adjacent amide groups of 4-carbamoylpyridin-1-ium ions. This layer formation is further stabilized by weak C—H···O interactions. In the structure of (I) typical amide-amide hydrogen-bonded homodimer is not present as is for example in the 4-carbamoylpyridin-1-ium 3-carboxypicolinate (Das & Baruah, 2011).