metal-organic compounds
Diaquabis{3-[4-(1H-imidazol-1-yl)phenyl]-5-(pyridin-2-yl-κN)-1H-1,2,4-triazol-1-ido-κN1}zinc
aDepartment of Chemistry and Chemical Engineering, College of Life Science and Bioengineering, SouthWest JiaoTong University, Chengdu, Sichuan 610031, People's Republic of China
*Correspondence e-mail: ejuan6046@sina.com
The centrosymmetric molecule of the title compound, [Zn(C16H11N6)2(H2O)2], contains one Zn2+ ion located on a center of symmetry, two 3-[4-(1H-imidazol-1-yl)phenyl]-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ide (Ippyt) ligands and two coordinating water molecules. The ZnII ion is six-coordinated in a distorted octahedral coordination geometry by four N atoms from two Ippyt ligands and by two O atoms from two water molecules. Adjacent units are interconnected though O—H⋯N hydrogen bonds, forming a three-dimensional network.
Related literature
For similar structures, see: Braga et al. (2005); Lin et al. (2010); Faulmann et al. (1990); Han et al. (2005); Xue et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536812035428/br2206sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812035428/br2206Isup2.hkl
A mixture of Zn(NO3)2.6H2O (0.02 mmol), Ippyt (0.02 mmol), H2O (8 ml) was sealed in 25ml Teflon-lined stainless steel reactor, which was heated to 413 K for 5d and was subsequently cooled slowly to room temperature. Colourless block-shaped crystals were collected in 47% yield based on Zn.
All H atoms were positioned geometrically (C-H = 0.93Åand O-H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) values equal to 1.2Ueq(C) or 1.5Ueq(O).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The coordination environment of ZnII atom in the title compound. | |
Fig. 2. The 3D supermolecule network of the title compound. Dashed lines denote hydrogen bonds. |
[Zn(C16H11N6)2(H2O)2] | F(000) = 700 |
Mr = 676.04 | Dx = 1.512 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1141 reflections |
a = 12.6481 (9) Å | θ = 2.4–28.3° |
b = 11.6659 (6) Å | µ = 0.88 mm−1 |
c = 10.4922 (7) Å | T = 293 K |
β = 105.891 (7)° | Block, colourless |
V = 1488.98 (16) Å3 | 0.03 × 0.03 × 0.02 mm |
Z = 2 |
Bruker SMART diffractometer | 2626 independent reflections |
Radiation source: fine-focus sealed tube | 1724 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −15→8 |
Tmin = 0.974, Tmax = 0.983 | k = −12→13 |
4938 measured reflections | l = −8→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0332P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | |
2626 reflections | Δρmax = 0.23 e Å−3 |
214 parameters | Δρmin = −0.29 e Å−3 |
Primary atom site location: structure-invariant direct methods |
[Zn(C16H11N6)2(H2O)2] | V = 1488.98 (16) Å3 |
Mr = 676.04 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.6481 (9) Å | µ = 0.88 mm−1 |
b = 11.6659 (6) Å | T = 293 K |
c = 10.4922 (7) Å | 0.03 × 0.03 × 0.02 mm |
β = 105.891 (7)° |
Bruker SMART diffractometer | 2626 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1724 reflections with I > 2σ(I) |
Tmin = 0.974, Tmax = 0.983 | Rint = 0.048 |
4938 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 214 parameters |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.23 e Å−3 |
2626 reflections | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 0.0000 | 0.5000 | 0.0451 (2) | |
N1 | 0.4454 (2) | 0.1728 (2) | 0.4816 (3) | 0.0390 (8) | |
N2 | 0.6022 (2) | 0.0728 (2) | 0.6718 (3) | 0.0391 (8) | |
N3 | 0.6852 (2) | 0.0414 (3) | 0.7797 (3) | 0.0441 (8) | |
N4 | 0.6357 (2) | 0.2248 (2) | 0.8079 (3) | 0.0385 (8) | |
N5 | 1.0281 (2) | 0.1265 (3) | 1.3567 (3) | 0.0553 (9) | |
N6 | 1.1782 (3) | 0.0806 (3) | 1.5144 (4) | 0.0726 (12) | |
O1 | 0.62155 (17) | 0.04131 (19) | 0.3861 (3) | 0.0481 (7) | |
H1B | 0.6317 | 0.1134 | 0.3870 | 0.058* | |
H1 | 0.6799 | 0.0087 | 0.4200 | 0.072* | |
C1 | 0.3757 (3) | 0.2195 (3) | 0.3764 (4) | 0.0469 (10) | |
H1A | 0.3432 | 0.1729 | 0.3045 | 0.056* | |
C2 | 0.3496 (3) | 0.3348 (3) | 0.3698 (4) | 0.0516 (11) | |
H2 | 0.3024 | 0.3661 | 0.2938 | 0.062* | |
C3 | 0.3952 (3) | 0.4012 (3) | 0.4776 (4) | 0.0545 (11) | |
H3 | 0.3769 | 0.4784 | 0.4767 | 0.065* | |
C4 | 0.4682 (3) | 0.3549 (3) | 0.5884 (4) | 0.0474 (10) | |
H4 | 0.4994 | 0.4000 | 0.6623 | 0.057* | |
C5 | 0.4938 (2) | 0.2399 (3) | 0.5865 (4) | 0.0344 (8) | |
C6 | 0.5757 (3) | 0.1811 (3) | 0.6919 (4) | 0.0347 (8) | |
C7 | 0.7019 (3) | 0.1340 (3) | 0.8583 (4) | 0.0378 (9) | |
C8 | 0.7859 (3) | 0.1342 (3) | 0.9879 (4) | 0.0393 (9) | |
C9 | 0.7952 (3) | 0.2227 (3) | 1.0774 (4) | 0.0468 (10) | |
H9 | 0.7472 | 0.2846 | 1.0566 | 0.056* | |
C10 | 0.8756 (3) | 0.2204 (3) | 1.1987 (4) | 0.0510 (11) | |
H10 | 0.8815 | 0.2811 | 1.2578 | 0.061* | |
C11 | 0.9465 (3) | 0.1283 (3) | 1.2313 (4) | 0.0464 (10) | |
C12 | 0.9361 (3) | 0.0383 (4) | 1.1451 (5) | 0.0595 (12) | |
H12 | 0.9823 | −0.0249 | 1.1676 | 0.071* | |
C13 | 0.8562 (3) | 0.0414 (3) | 1.0237 (4) | 0.0559 (11) | |
H13 | 0.8500 | −0.0199 | 0.9655 | 0.067* | |
C14 | 1.0221 (4) | 0.1771 (6) | 1.4698 (5) | 0.113 (2) | |
H14 | 0.9652 | 0.2232 | 1.4806 | 0.136* | |
C15 | 1.1136 (4) | 0.1485 (5) | 1.5641 (5) | 0.114 (2) | |
H15 | 1.1299 | 0.1725 | 1.6519 | 0.137* | |
C16 | 1.1249 (3) | 0.0693 (4) | 1.3884 (5) | 0.0675 (13) | |
H16 | 1.1507 | 0.0269 | 1.3280 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0514 (4) | 0.0329 (3) | 0.0373 (4) | 0.0044 (3) | −0.0112 (3) | −0.0042 (4) |
N1 | 0.0353 (16) | 0.0368 (18) | 0.037 (2) | 0.0012 (14) | −0.0030 (14) | 0.0003 (16) |
N2 | 0.0400 (17) | 0.0332 (17) | 0.0352 (19) | 0.0010 (13) | −0.0049 (14) | −0.0039 (15) |
N3 | 0.0469 (18) | 0.0380 (18) | 0.036 (2) | 0.0023 (14) | −0.0069 (15) | −0.0009 (17) |
N4 | 0.0367 (16) | 0.0354 (17) | 0.0371 (19) | 0.0015 (13) | −0.0005 (14) | −0.0029 (16) |
N5 | 0.0367 (18) | 0.082 (2) | 0.040 (2) | 0.0157 (17) | −0.0026 (15) | −0.002 (2) |
N6 | 0.049 (2) | 0.097 (3) | 0.056 (3) | 0.018 (2) | −0.0124 (19) | 0.001 (3) |
O1 | 0.0452 (14) | 0.0400 (14) | 0.0496 (18) | 0.0068 (11) | −0.0032 (12) | 0.0066 (14) |
C1 | 0.048 (2) | 0.048 (3) | 0.033 (2) | 0.0015 (18) | −0.0066 (18) | −0.001 (2) |
C2 | 0.052 (2) | 0.045 (2) | 0.045 (3) | 0.0087 (19) | −0.008 (2) | 0.005 (2) |
C3 | 0.059 (3) | 0.038 (2) | 0.056 (3) | 0.0133 (19) | −0.002 (2) | 0.000 (2) |
C4 | 0.052 (2) | 0.037 (2) | 0.043 (3) | 0.0054 (18) | −0.0035 (19) | −0.008 (2) |
C5 | 0.0328 (19) | 0.034 (2) | 0.033 (2) | 0.0002 (15) | 0.0020 (16) | 0.0004 (19) |
C6 | 0.038 (2) | 0.033 (2) | 0.032 (2) | −0.0027 (16) | 0.0065 (16) | −0.0031 (18) |
C7 | 0.035 (2) | 0.040 (2) | 0.034 (2) | −0.0052 (16) | 0.0028 (16) | −0.001 (2) |
C8 | 0.034 (2) | 0.042 (2) | 0.036 (2) | 0.0027 (16) | 0.0006 (17) | 0.002 (2) |
C9 | 0.044 (2) | 0.050 (2) | 0.041 (3) | 0.0092 (18) | 0.0016 (18) | −0.003 (2) |
C10 | 0.047 (2) | 0.060 (3) | 0.039 (2) | 0.008 (2) | −0.0003 (19) | −0.015 (2) |
C11 | 0.040 (2) | 0.057 (3) | 0.035 (2) | 0.0064 (19) | −0.0021 (17) | 0.001 (2) |
C12 | 0.053 (3) | 0.057 (3) | 0.055 (3) | 0.020 (2) | −0.007 (2) | −0.003 (3) |
C13 | 0.056 (2) | 0.050 (2) | 0.051 (3) | 0.009 (2) | −0.003 (2) | −0.010 (2) |
C14 | 0.078 (4) | 0.202 (7) | 0.045 (3) | 0.071 (4) | −0.008 (3) | −0.024 (4) |
C15 | 0.074 (4) | 0.209 (7) | 0.041 (3) | 0.057 (4) | −0.015 (3) | −0.018 (4) |
C16 | 0.054 (3) | 0.075 (3) | 0.059 (3) | 0.017 (2) | −0.009 (2) | −0.005 (3) |
Zn1—N2i | 2.090 (3) | C2—C3 | 1.362 (5) |
Zn1—N2 | 2.090 (3) | C2—H2 | 0.9300 |
Zn1—N1 | 2.123 (3) | C3—C4 | 1.381 (5) |
Zn1—N1i | 2.123 (3) | C3—H3 | 0.9300 |
Zn1—O1i | 2.243 (2) | C4—C5 | 1.381 (4) |
Zn1—O1 | 2.243 (2) | C4—H4 | 0.9300 |
N1—C1 | 1.326 (4) | C5—C6 | 1.463 (5) |
N1—C5 | 1.353 (4) | C7—C8 | 1.479 (5) |
N2—C6 | 1.339 (4) | C8—C9 | 1.378 (5) |
N2—N3 | 1.366 (4) | C8—C13 | 1.385 (5) |
N3—C7 | 1.340 (4) | C9—C10 | 1.396 (5) |
N4—C6 | 1.346 (4) | C9—H9 | 0.9300 |
N4—C7 | 1.365 (4) | C10—C11 | 1.381 (5) |
N5—C14 | 1.345 (6) | C10—H10 | 0.9300 |
N5—C16 | 1.353 (5) | C11—C12 | 1.368 (5) |
N5—C11 | 1.433 (5) | C12—C13 | 1.393 (5) |
N6—C16 | 1.316 (6) | C12—H12 | 0.9300 |
N6—C15 | 1.343 (6) | C13—H13 | 0.9300 |
O1—H1B | 0.8500 | C14—C15 | 1.342 (6) |
O1—H1 | 0.8199 | C14—H14 | 0.9300 |
C1—C2 | 1.382 (5) | C15—H15 | 0.9300 |
C1—H1A | 0.9300 | C16—H16 | 0.9300 |
N2i—Zn1—N2 | 180.0 | C3—C4—C5 | 118.2 (4) |
N2i—Zn1—N1 | 101.45 (11) | C3—C4—H4 | 120.9 |
N2—Zn1—N1 | 78.55 (11) | C5—C4—H4 | 120.9 |
N2i—Zn1—N1i | 78.55 (11) | N1—C5—C4 | 121.2 (3) |
N2—Zn1—N1i | 101.45 (11) | N1—C5—C6 | 114.4 (3) |
N1—Zn1—N1i | 180.0 | C4—C5—C6 | 124.4 (3) |
N2i—Zn1—O1i | 91.13 (10) | N2—C6—N4 | 113.4 (3) |
N2—Zn1—O1i | 88.87 (10) | N2—C6—C5 | 118.7 (3) |
N1—Zn1—O1i | 89.95 (10) | N4—C6—C5 | 127.8 (3) |
N1i—Zn1—O1i | 90.05 (10) | N3—C7—N4 | 114.3 (3) |
N2i—Zn1—O1 | 88.87 (10) | N3—C7—C8 | 121.3 (3) |
N2—Zn1—O1 | 91.13 (10) | N4—C7—C8 | 124.5 (3) |
N1—Zn1—O1 | 90.05 (10) | C9—C8—C13 | 118.2 (3) |
N1i—Zn1—O1 | 89.95 (10) | C9—C8—C7 | 122.2 (3) |
O1i—Zn1—O1 | 180.0 | C13—C8—C7 | 119.6 (4) |
C1—N1—C5 | 119.3 (3) | C8—C9—C10 | 120.8 (3) |
C1—N1—Zn1 | 126.3 (3) | C8—C9—H9 | 119.6 |
C5—N1—Zn1 | 114.3 (2) | C10—C9—H9 | 119.6 |
C6—N2—N3 | 107.0 (3) | C11—C10—C9 | 120.1 (4) |
C6—N2—Zn1 | 113.4 (2) | C11—C10—H10 | 119.9 |
N3—N2—Zn1 | 139.4 (2) | C9—C10—H10 | 119.9 |
C7—N3—N2 | 104.4 (3) | C12—C11—C10 | 119.7 (4) |
C6—N4—C7 | 101.0 (3) | C12—C11—N5 | 120.7 (3) |
C14—N5—C16 | 105.4 (4) | C10—C11—N5 | 119.6 (4) |
C14—N5—C11 | 127.1 (3) | C11—C12—C13 | 119.9 (4) |
C16—N5—C11 | 127.4 (4) | C11—C12—H12 | 120.0 |
C16—N6—C15 | 104.5 (4) | C13—C12—H12 | 120.0 |
Zn1—O1—H1B | 109.3 | C8—C13—C12 | 121.3 (4) |
Zn1—O1—H1 | 109.7 | C8—C13—H13 | 119.4 |
H1B—O1—H1 | 109.8 | C12—C13—H13 | 119.4 |
N1—C1—C2 | 122.5 (4) | C15—C14—N5 | 107.2 (4) |
N1—C1—H1A | 118.8 | C15—C14—H14 | 126.4 |
C2—C1—H1A | 118.8 | N5—C14—H14 | 126.4 |
C3—C2—C1 | 118.1 (4) | C14—C15—N6 | 110.7 (5) |
C3—C2—H2 | 121.0 | C14—C15—H15 | 124.6 |
C1—C2—H2 | 121.0 | N6—C15—H15 | 124.6 |
C2—C3—C4 | 120.7 (3) | N6—C16—N5 | 112.2 (4) |
C2—C3—H3 | 119.7 | N6—C16—H16 | 123.9 |
C4—C3—H3 | 119.7 | N5—C16—H16 | 123.9 |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N6ii | 0.82 | 2.03 | 2.842 (4) | 174 |
O1—H1B···N4iii | 0.85 | 2.07 | 2.868 (4) | 157 |
Symmetry codes: (ii) −x+2, −y, −z+2; (iii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C16H11N6)2(H2O)2] |
Mr | 676.04 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 12.6481 (9), 11.6659 (6), 10.4922 (7) |
β (°) | 105.891 (7) |
V (Å3) | 1488.98 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.88 |
Crystal size (mm) | 0.03 × 0.03 × 0.02 |
Data collection | |
Diffractometer | Bruker SMART diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.974, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4938, 2626, 1724 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.109, 1.02 |
No. of reflections | 2626 |
No. of parameters | 214 |
No. of restraints | ? |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.29 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N6i | 0.82 | 2.03 | 2.842 (4) | 174.1 |
O1—H1B···N4ii | 0.85 | 2.07 | 2.868 (4) | 156.7 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) x, −y+1/2, z−1/2. |
Acknowledgements
This work was supported by the Fundamental Research Funds for the Central Universities, P. R. China (No. SWJTU12CX048).
References
Braga, D., Polito, M., Giaffreda, S. L. & Grepioni, F. (2005). Discuss. Faraday Soc. pp. 2766–73. Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Faulmann, C., van Koningsbruggen, P. J., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1990). Acta Cryst. C46, 2357–2360. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Han, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des. E65, 695–700. Web of Science CSD CrossRef Google Scholar
Lin, J. B., Lin, R. B., Cheng, X. N., Zhang, J. P. & Chen, X. M. (2010). Chem. Commun. 47, 9185–9187. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, D. X., Lin, J. B., Zhang, J. P. & Chen, X. M. (2009). CrystEngComm, 11, 183–188. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The rational design and syntheses of metal-organic frameworks have been of increasing interest in the crystal engineering of coordination polymers owing to their ability to provide diverse assemblies with fascinating topological structures and material properties ( Han et al., 2005; Xue et al.,2009). The centrosymmetric unit of the title compound contains one Zn2+ion, two Ippyt ligands and two coordination water molecules. For a similar structure, see: Braga et al. (2005); Lin et al. (2010); Faulmann et al. (1990). Every ZnII ion is six-coordinated in a distorted octahedral coordination geometry by four N atoms from two Ippyt ligands and by two O atoms from two coordination water molecules (Fig. 1). There are two kinds of hydrogen bonding interactions which are between the coordinated waters and the triazolyl nitrogen atoms, and between the coordinated waters and the imidazolyl nitrogen atoms, respectively. However, the construct units are connected by the hydrogen bonding interactions between oxygen/ imidazolyl nitrogen atoms and imidazolyl nitrogen/ oxygen atoms from adjacent units respectively. Thus, infinite one-dimensional ring-shaped chains are formed. And then N3 and N3' are further involved in forming another hydrogen bonding interactions with other neighbouring water oxygen atoms and thus connect the 1D supramolecular chains together to form the two-dimensional supramolecular architecture in the a,c plane. And finally the structures are interlinked alternately by different hydrogen bonding interactions and finally result in the three-dimensional supramolecular network architectures.(Fig.2).