metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1182-m1183

Di­aqua­bis­­{3-[4-(1H-imidazol-1-yl)phenyl]-5-(pyridin-2-yl-κN)-1H-1,2,4-triazol-1-ido-κN1}zinc

aDepartment of Chemistry and Chemical Engineering, College of Life Science and Bioengineering, SouthWest JiaoTong University, Chengdu, Sichuan 610031, People's Republic of China
*Correspondence e-mail: ejuan6046@sina.com

(Received 22 June 2012; accepted 10 August 2012; online 23 August 2012)

The centrosymmetric mol­ecule of the title compound, [Zn(C16H11N6)2(H2O)2], contains one Zn2+ ion located on a center of symmetry, two 3-[4-(1H-imidazol-1-yl)phen­yl]-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ide (Ippyt) ligands and two coordinating water mol­ecules. The ZnII ion is six-coordinated in a distorted octa­hedral coordination geometry by four N atoms from two Ippyt ligands and by two O atoms from two water mol­ecules. Adjacent units are inter­connected though O—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For similar structures, see: Braga et al. (2005[Braga, D., Polito, M., Giaffreda, S. L. & Grepioni, F. (2005). Discuss. Faraday Soc. pp. 2766-73.]); Lin et al. (2010[Lin, J. B., Lin, R. B., Cheng, X. N., Zhang, J. P. & Chen, X. M. (2010). Chem. Commun. 47, 9185-9187.]); Faulmann et al. (1990[Faulmann, C., van Koningsbruggen, P. J., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1990). Acta Cryst. C46, 2357-2360.]); Han et al. (2005[Han, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des. E65, 695-700.]); Xue et al. (2009[Xue, D. X., Lin, J. B., Zhang, J. P. & Chen, X. M. (2009). CrystEngComm, 11, 183-188.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C16H11N6)2(H2O)2]

  • Mr = 676.04

  • Monoclinic, P 21 /c

  • a = 12.6481 (9) Å

  • b = 11.6659 (6) Å

  • c = 10.4922 (7) Å

  • β = 105.891 (7)°

  • V = 1488.98 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 K

  • 0.03 × 0.03 × 0.02 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.983

  • 4938 measured reflections

  • 2626 independent reflections

  • 1724 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.109

  • S = 1.02

  • 2626 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N6i 0.82 2.03 2.842 (4) 174
O1—H1B⋯N4ii 0.85 2.07 2.868 (4) 157
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The rational design and syntheses of metal-organic frameworks have been of increasing interest in the crystal engineering of coordination polymers owing to their ability to provide diverse assemblies with fascinating topological structures and material properties ( Han et al., 2005; Xue et al.,2009). The centrosymmetric unit of the title compound contains one Zn2+ion, two Ippyt ligands and two coordination water molecules. For a similar structure, see: Braga et al. (2005); Lin et al. (2010); Faulmann et al. (1990). Every ZnII ion is six-coordinated in a distorted octahedral coordination geometry by four N atoms from two Ippyt ligands and by two O atoms from two coordination water molecules (Fig. 1). There are two kinds of hydrogen bonding interactions which are between the coordinated waters and the triazolyl nitrogen atoms, and between the coordinated waters and the imidazolyl nitrogen atoms, respectively. However, the construct units are connected by the hydrogen bonding interactions between oxygen/ imidazolyl nitrogen atoms and imidazolyl nitrogen/ oxygen atoms from adjacent units respectively. Thus, infinite one-dimensional ring-shaped chains are formed. And then N3 and N3' are further involved in forming another hydrogen bonding interactions with other neighbouring water oxygen atoms and thus connect the 1D supramolecular chains together to form the two-dimensional supramolecular architecture in the a,c plane. And finally the structures are interlinked alternately by different hydrogen bonding interactions and finally result in the three-dimensional supramolecular network architectures.(Fig.2).

Related literature top

For similar structures, see: Braga et al. (2005); Lin et al. (2010); Faulmann et al. (1990); Han et al. (2005); Xue et al. (2009).

Experimental top

A mixture of Zn(NO3)2.6H2O (0.02 mmol), Ippyt (0.02 mmol), H2O (8 ml) was sealed in 25ml Teflon-lined stainless steel reactor, which was heated to 413 K for 5d and was subsequently cooled slowly to room temperature. Colourless block-shaped crystals were collected in 47% yield based on Zn.

Refinement top

All H atoms were positioned geometrically (C-H = 0.93Åand O-H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) values equal to 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of ZnII atom in the title compound.
[Figure 2] Fig. 2. The 3D supermolecule network of the title compound. Dashed lines denote hydrogen bonds.
Diaquabis{3-[4-(1H-imidazol-1-yl)phenyl]-5-(pyridin-2-yl- κN)-1H-1,2,4-triazol-1-ido-κN1}zinc top
Crystal data top
[Zn(C16H11N6)2(H2O)2]F(000) = 700
Mr = 676.04Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1141 reflections
a = 12.6481 (9) Åθ = 2.4–28.3°
b = 11.6659 (6) ŵ = 0.88 mm1
c = 10.4922 (7) ÅT = 293 K
β = 105.891 (7)°Block, colourless
V = 1488.98 (16) Å30.03 × 0.03 × 0.02 mm
Z = 2
Data collection top
Bruker SMART
diffractometer
2626 independent reflections
Radiation source: fine-focus sealed tube1724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 158
Tmin = 0.974, Tmax = 0.983k = 1213
4938 measured reflectionsl = 812
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0332P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02
2626 reflectionsΔρmax = 0.23 e Å3
214 parametersΔρmin = 0.29 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Zn(C16H11N6)2(H2O)2]V = 1488.98 (16) Å3
Mr = 676.04Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.6481 (9) ŵ = 0.88 mm1
b = 11.6659 (6) ÅT = 293 K
c = 10.4922 (7) Å0.03 × 0.03 × 0.02 mm
β = 105.891 (7)°
Data collection top
Bruker SMART
diffractometer
2626 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1724 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.048
4938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049214 parameters
wR(F2) = 0.109H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
2626 reflectionsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00000.50000.0451 (2)
N10.4454 (2)0.1728 (2)0.4816 (3)0.0390 (8)
N20.6022 (2)0.0728 (2)0.6718 (3)0.0391 (8)
N30.6852 (2)0.0414 (3)0.7797 (3)0.0441 (8)
N40.6357 (2)0.2248 (2)0.8079 (3)0.0385 (8)
N51.0281 (2)0.1265 (3)1.3567 (3)0.0553 (9)
N61.1782 (3)0.0806 (3)1.5144 (4)0.0726 (12)
O10.62155 (17)0.04131 (19)0.3861 (3)0.0481 (7)
H1B0.63170.11340.38700.058*
H10.67990.00870.42000.072*
C10.3757 (3)0.2195 (3)0.3764 (4)0.0469 (10)
H1A0.34320.17290.30450.056*
C20.3496 (3)0.3348 (3)0.3698 (4)0.0516 (11)
H20.30240.36610.29380.062*
C30.3952 (3)0.4012 (3)0.4776 (4)0.0545 (11)
H30.37690.47840.47670.065*
C40.4682 (3)0.3549 (3)0.5884 (4)0.0474 (10)
H40.49940.40000.66230.057*
C50.4938 (2)0.2399 (3)0.5865 (4)0.0344 (8)
C60.5757 (3)0.1811 (3)0.6919 (4)0.0347 (8)
C70.7019 (3)0.1340 (3)0.8583 (4)0.0378 (9)
C80.7859 (3)0.1342 (3)0.9879 (4)0.0393 (9)
C90.7952 (3)0.2227 (3)1.0774 (4)0.0468 (10)
H90.74720.28461.05660.056*
C100.8756 (3)0.2204 (3)1.1987 (4)0.0510 (11)
H100.88150.28111.25780.061*
C110.9465 (3)0.1283 (3)1.2313 (4)0.0464 (10)
C120.9361 (3)0.0383 (4)1.1451 (5)0.0595 (12)
H120.98230.02491.16760.071*
C130.8562 (3)0.0414 (3)1.0237 (4)0.0559 (11)
H130.85000.01990.96550.067*
C141.0221 (4)0.1771 (6)1.4698 (5)0.113 (2)
H140.96520.22321.48060.136*
C151.1136 (4)0.1485 (5)1.5641 (5)0.114 (2)
H151.12990.17251.65190.137*
C161.1249 (3)0.0693 (4)1.3884 (5)0.0675 (13)
H161.15070.02691.32800.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0514 (4)0.0329 (3)0.0373 (4)0.0044 (3)0.0112 (3)0.0042 (4)
N10.0353 (16)0.0368 (18)0.037 (2)0.0012 (14)0.0030 (14)0.0003 (16)
N20.0400 (17)0.0332 (17)0.0352 (19)0.0010 (13)0.0049 (14)0.0039 (15)
N30.0469 (18)0.0380 (18)0.036 (2)0.0023 (14)0.0069 (15)0.0009 (17)
N40.0367 (16)0.0354 (17)0.0371 (19)0.0015 (13)0.0005 (14)0.0029 (16)
N50.0367 (18)0.082 (2)0.040 (2)0.0157 (17)0.0026 (15)0.002 (2)
N60.049 (2)0.097 (3)0.056 (3)0.018 (2)0.0124 (19)0.001 (3)
O10.0452 (14)0.0400 (14)0.0496 (18)0.0068 (11)0.0032 (12)0.0066 (14)
C10.048 (2)0.048 (3)0.033 (2)0.0015 (18)0.0066 (18)0.001 (2)
C20.052 (2)0.045 (2)0.045 (3)0.0087 (19)0.008 (2)0.005 (2)
C30.059 (3)0.038 (2)0.056 (3)0.0133 (19)0.002 (2)0.000 (2)
C40.052 (2)0.037 (2)0.043 (3)0.0054 (18)0.0035 (19)0.008 (2)
C50.0328 (19)0.034 (2)0.033 (2)0.0002 (15)0.0020 (16)0.0004 (19)
C60.038 (2)0.033 (2)0.032 (2)0.0027 (16)0.0065 (16)0.0031 (18)
C70.035 (2)0.040 (2)0.034 (2)0.0052 (16)0.0028 (16)0.001 (2)
C80.034 (2)0.042 (2)0.036 (2)0.0027 (16)0.0006 (17)0.002 (2)
C90.044 (2)0.050 (2)0.041 (3)0.0092 (18)0.0016 (18)0.003 (2)
C100.047 (2)0.060 (3)0.039 (2)0.008 (2)0.0003 (19)0.015 (2)
C110.040 (2)0.057 (3)0.035 (2)0.0064 (19)0.0021 (17)0.001 (2)
C120.053 (3)0.057 (3)0.055 (3)0.020 (2)0.007 (2)0.003 (3)
C130.056 (2)0.050 (2)0.051 (3)0.009 (2)0.003 (2)0.010 (2)
C140.078 (4)0.202 (7)0.045 (3)0.071 (4)0.008 (3)0.024 (4)
C150.074 (4)0.209 (7)0.041 (3)0.057 (4)0.015 (3)0.018 (4)
C160.054 (3)0.075 (3)0.059 (3)0.017 (2)0.009 (2)0.005 (3)
Geometric parameters (Å, º) top
Zn1—N2i2.090 (3)C2—C31.362 (5)
Zn1—N22.090 (3)C2—H20.9300
Zn1—N12.123 (3)C3—C41.381 (5)
Zn1—N1i2.123 (3)C3—H30.9300
Zn1—O1i2.243 (2)C4—C51.381 (4)
Zn1—O12.243 (2)C4—H40.9300
N1—C11.326 (4)C5—C61.463 (5)
N1—C51.353 (4)C7—C81.479 (5)
N2—C61.339 (4)C8—C91.378 (5)
N2—N31.366 (4)C8—C131.385 (5)
N3—C71.340 (4)C9—C101.396 (5)
N4—C61.346 (4)C9—H90.9300
N4—C71.365 (4)C10—C111.381 (5)
N5—C141.345 (6)C10—H100.9300
N5—C161.353 (5)C11—C121.368 (5)
N5—C111.433 (5)C12—C131.393 (5)
N6—C161.316 (6)C12—H120.9300
N6—C151.343 (6)C13—H130.9300
O1—H1B0.8500C14—C151.342 (6)
O1—H10.8199C14—H140.9300
C1—C21.382 (5)C15—H150.9300
C1—H1A0.9300C16—H160.9300
N2i—Zn1—N2180.0C3—C4—C5118.2 (4)
N2i—Zn1—N1101.45 (11)C3—C4—H4120.9
N2—Zn1—N178.55 (11)C5—C4—H4120.9
N2i—Zn1—N1i78.55 (11)N1—C5—C4121.2 (3)
N2—Zn1—N1i101.45 (11)N1—C5—C6114.4 (3)
N1—Zn1—N1i180.0C4—C5—C6124.4 (3)
N2i—Zn1—O1i91.13 (10)N2—C6—N4113.4 (3)
N2—Zn1—O1i88.87 (10)N2—C6—C5118.7 (3)
N1—Zn1—O1i89.95 (10)N4—C6—C5127.8 (3)
N1i—Zn1—O1i90.05 (10)N3—C7—N4114.3 (3)
N2i—Zn1—O188.87 (10)N3—C7—C8121.3 (3)
N2—Zn1—O191.13 (10)N4—C7—C8124.5 (3)
N1—Zn1—O190.05 (10)C9—C8—C13118.2 (3)
N1i—Zn1—O189.95 (10)C9—C8—C7122.2 (3)
O1i—Zn1—O1180.0C13—C8—C7119.6 (4)
C1—N1—C5119.3 (3)C8—C9—C10120.8 (3)
C1—N1—Zn1126.3 (3)C8—C9—H9119.6
C5—N1—Zn1114.3 (2)C10—C9—H9119.6
C6—N2—N3107.0 (3)C11—C10—C9120.1 (4)
C6—N2—Zn1113.4 (2)C11—C10—H10119.9
N3—N2—Zn1139.4 (2)C9—C10—H10119.9
C7—N3—N2104.4 (3)C12—C11—C10119.7 (4)
C6—N4—C7101.0 (3)C12—C11—N5120.7 (3)
C14—N5—C16105.4 (4)C10—C11—N5119.6 (4)
C14—N5—C11127.1 (3)C11—C12—C13119.9 (4)
C16—N5—C11127.4 (4)C11—C12—H12120.0
C16—N6—C15104.5 (4)C13—C12—H12120.0
Zn1—O1—H1B109.3C8—C13—C12121.3 (4)
Zn1—O1—H1109.7C8—C13—H13119.4
H1B—O1—H1109.8C12—C13—H13119.4
N1—C1—C2122.5 (4)C15—C14—N5107.2 (4)
N1—C1—H1A118.8C15—C14—H14126.4
C2—C1—H1A118.8N5—C14—H14126.4
C3—C2—C1118.1 (4)C14—C15—N6110.7 (5)
C3—C2—H2121.0C14—C15—H15124.6
C1—C2—H2121.0N6—C15—H15124.6
C2—C3—C4120.7 (3)N6—C16—N5112.2 (4)
C2—C3—H3119.7N6—C16—H16123.9
C4—C3—H3119.7N5—C16—H16123.9
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N6ii0.822.032.842 (4)174
O1—H1B···N4iii0.852.072.868 (4)157
Symmetry codes: (ii) x+2, y, z+2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C16H11N6)2(H2O)2]
Mr676.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.6481 (9), 11.6659 (6), 10.4922 (7)
β (°) 105.891 (7)
V3)1488.98 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.03 × 0.03 × 0.02
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
4938, 2626, 1724
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.109, 1.02
No. of reflections2626
No. of parameters214
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N6i0.822.032.842 (4)174.1
O1—H1B···N4ii0.852.072.868 (4)156.7
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities, P. R. China (No. SWJTU12CX048).

References

First citationBraga, D., Polito, M., Giaffreda, S. L. & Grepioni, F. (2005). Discuss. Faraday Soc. pp. 2766–73.  Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaulmann, C., van Koningsbruggen, P. J., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1990). Acta Cryst. C46, 2357–2360.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des. E65, 695–700.  Web of Science CSD CrossRef Google Scholar
First citationLin, J. B., Lin, R. B., Cheng, X. N., Zhang, J. P. & Chen, X. M. (2010). Chem. Commun. 47, 9185–9187.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, D. X., Lin, J. B., Zhang, J. P. & Chen, X. M. (2009). CrystEngComm, 11, 183–188.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1182-m1183
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds