organic compounds
N-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)benzamide
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, C17H11NO3, was an intermediate synthesized during bisacylation of 2-amino-1,4-naphthoquinone with benzoyl chloride. A mixture of block- and needle-shaped crystals were obtained after The block-shaped crystals were identified as the imide and the needles were the title amide. The naphthoquinone scaffold is roughly planar (r.m.s. deviation = 0.047 Å for the C atoms). The N—H and C=O bonds of the amide group are anti to each other. A dihedral angle between the naphthoquinone ring system and the amide group of 3.56 (3)°, accompanied by a dihedral angle between the amide group and the phenyl group of 9.51 (3)°, makes the naphthoquinone ring essentially coplanar with the phenyl ring [dihedral angle = 7.12 (1)°]. In the crystal, molecules are linked by a weak N—H⋯O hydrogen bond and by two weak C—H⋯O interactions leading to the formation of zigzag chains along [010].
Related literature
For similar crystal structures, see: Brandy et al. (2009, 2012); Akinboye et al. (2009a,b). For the pharmacological properties of related compounds, see: Bakare et al. (2003); Berhe et al. (2008); Lien et al. (1997); Huang, et al. (2005); Khraiwesh et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812034150/bt5965sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812034150/bt5965Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812034150/bt5965Isup3.cml
2-Amino-1,4-naphthoquinone (318 mg, 1.83 mmol) was dissolved in freshly distilled THF (15 ml). NaH (115 mg, 4.78 mmol) was added and the mixture was stirred at room temperature for 15 min. The appropriate benzoyl chloride (0.55 ml, 4.74 mmol) was added, drop wise, and the mixture was stirred for 24 h. THF was evaporated under vacuum and the mixture was washed with ice-water (10 g ice in 10 ml water). The ice-water mixture was extracted with CH2Cl2 (30 ml, 20 ml consecutively) and the combined organic phase washed with water (3 x 20 ml), saturated NaCl solution (20 ml), then dried over anhydrous MgSO4. The crude was purified via triturating in ethanol (2 ml) and
with an mixture of ethyl acetate and hexane to furnish the amide (39 mg, 7.7%). A mixure of block and needle crystals were obtained from The block crystals were identified as the imide (Brandy et al., 2012) and the needles were identified as the amide. The needle crystals were hand-picked from the mixture and analyzed by X-ray diffraction.H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H = 0.88Å and C—H = 0.95Å and Uiso(H) = 1.2Ueq(C,N).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Diagram of C17H11NO3 showing the atom labeling. Displacement ellipsoids are at the 30% probability level. Fig. 2. The molecular packing for C17H11NO3 viewed along the a axis. |
C17H11NO3 | F(000) = 576 |
Mr = 277.27 | Dx = 1.455 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 6.9433 (3) Å | Cell parameters from 1585 reflections |
b = 12.0112 (4) Å | θ = 2.9–75.6° |
c = 15.2129 (5) Å | µ = 0.83 mm−1 |
β = 94.129 (3)° | T = 123 K |
V = 1265.42 (8) Å3 | Needle, pale yellow orange |
Z = 4 | 0.67 × 0.12 × 0.08 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2553 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2123 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 75.7°, θmin = 4.7° |
ω scans | h = −7→8 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | k = −14→14 |
Tmin = 0.819, Tmax = 1.000 | l = −18→18 |
4550 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0937P)2] where P = (Fo2 + 2Fc2)/3 |
2553 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C17H11NO3 | V = 1265.42 (8) Å3 |
Mr = 277.27 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 6.9433 (3) Å | µ = 0.83 mm−1 |
b = 12.0112 (4) Å | T = 123 K |
c = 15.2129 (5) Å | 0.67 × 0.12 × 0.08 mm |
β = 94.129 (3)° |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2553 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) | 2123 reflections with I > 2σ(I) |
Tmin = 0.819, Tmax = 1.000 | Rint = 0.037 |
4550 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.25 e Å−3 |
2553 reflections | Δρmin = −0.25 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4411 (2) | 0.09807 (11) | 0.24463 (8) | 0.0373 (3) | |
O2 | 0.3847 (2) | 0.51857 (10) | 0.13486 (8) | 0.0348 (3) | |
O3 | 0.3674 (2) | 0.41588 (11) | 0.43416 (8) | 0.0354 (3) | |
N1 | 0.3825 (2) | 0.24883 (12) | 0.36581 (9) | 0.0273 (3) | |
H1A | 0.3821 | 0.1763 | 0.3741 | 0.033* | |
C1 | 0.3905 (2) | 0.28621 (14) | 0.27989 (10) | 0.0253 (4) | |
C2 | 0.4119 (2) | 0.19196 (14) | 0.21661 (10) | 0.0269 (4) | |
C3 | 0.3957 (2) | 0.21822 (14) | 0.12102 (10) | 0.0252 (4) | |
C4 | 0.3886 (2) | 0.13177 (15) | 0.05992 (11) | 0.0299 (4) | |
H4A | 0.3960 | 0.0566 | 0.0793 | 0.036* | |
C5 | 0.3707 (2) | 0.15588 (15) | −0.02938 (11) | 0.0314 (4) | |
H5A | 0.3629 | 0.0971 | −0.0713 | 0.038* | |
C6 | 0.3641 (2) | 0.26586 (16) | −0.05777 (11) | 0.0320 (4) | |
H6A | 0.3547 | 0.2820 | −0.1191 | 0.038* | |
C7 | 0.3713 (2) | 0.35219 (15) | 0.00297 (11) | 0.0290 (4) | |
H7A | 0.3670 | 0.4272 | −0.0168 | 0.035* | |
C8 | 0.3848 (2) | 0.32888 (14) | 0.09291 (10) | 0.0251 (4) | |
C9 | 0.3872 (2) | 0.42102 (14) | 0.15843 (10) | 0.0266 (4) | |
C10 | 0.3855 (2) | 0.39248 (14) | 0.25204 (10) | 0.0270 (4) | |
H10A | 0.3807 | 0.4506 | 0.2942 | 0.032* | |
C11 | 0.3750 (2) | 0.31531 (14) | 0.43956 (10) | 0.0261 (3) | |
C12 | 0.3814 (2) | 0.25771 (14) | 0.52731 (10) | 0.0252 (4) | |
C13 | 0.4058 (2) | 0.32638 (15) | 0.60106 (11) | 0.0294 (4) | |
H13A | 0.4142 | 0.4047 | 0.5938 | 0.035* | |
C14 | 0.4181 (3) | 0.28079 (16) | 0.68528 (11) | 0.0324 (4) | |
H14A | 0.4353 | 0.3279 | 0.7354 | 0.039* | |
C15 | 0.4050 (2) | 0.16642 (16) | 0.69612 (11) | 0.0316 (4) | |
H15A | 0.4137 | 0.1352 | 0.7536 | 0.038* | |
C16 | 0.3794 (2) | 0.09777 (15) | 0.62296 (11) | 0.0308 (4) | |
H16A | 0.3694 | 0.0195 | 0.6306 | 0.037* | |
C17 | 0.3681 (2) | 0.14279 (15) | 0.53839 (11) | 0.0286 (4) | |
H17A | 0.3514 | 0.0954 | 0.4884 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0618 (8) | 0.0246 (7) | 0.0265 (6) | 0.0064 (6) | 0.0101 (5) | 0.0045 (5) |
O2 | 0.0576 (7) | 0.0236 (6) | 0.0238 (6) | −0.0019 (5) | 0.0080 (5) | 0.0045 (5) |
O3 | 0.0604 (8) | 0.0235 (6) | 0.0221 (6) | 0.0007 (5) | 0.0030 (5) | 0.0025 (5) |
N1 | 0.0412 (7) | 0.0216 (7) | 0.0196 (7) | 0.0017 (5) | 0.0047 (5) | 0.0045 (5) |
C1 | 0.0299 (7) | 0.0271 (8) | 0.0192 (7) | 0.0005 (6) | 0.0037 (5) | 0.0022 (6) |
C2 | 0.0352 (7) | 0.0234 (8) | 0.0226 (8) | 0.0011 (6) | 0.0057 (6) | 0.0038 (6) |
C3 | 0.0302 (7) | 0.0258 (8) | 0.0202 (7) | −0.0002 (6) | 0.0059 (5) | 0.0011 (6) |
C4 | 0.0380 (8) | 0.0253 (8) | 0.0271 (8) | −0.0008 (6) | 0.0084 (6) | −0.0007 (6) |
C5 | 0.0392 (8) | 0.0315 (9) | 0.0241 (8) | 0.0001 (7) | 0.0060 (6) | −0.0057 (7) |
C6 | 0.0365 (8) | 0.0393 (10) | 0.0208 (7) | 0.0005 (7) | 0.0057 (6) | 0.0008 (7) |
C7 | 0.0369 (8) | 0.0294 (9) | 0.0211 (8) | 0.0007 (7) | 0.0054 (6) | 0.0035 (6) |
C8 | 0.0288 (7) | 0.0260 (9) | 0.0208 (7) | 0.0001 (6) | 0.0042 (5) | 0.0025 (6) |
C9 | 0.0349 (7) | 0.0239 (8) | 0.0214 (7) | −0.0006 (6) | 0.0043 (6) | 0.0037 (6) |
C10 | 0.0378 (8) | 0.0250 (8) | 0.0184 (7) | −0.0014 (6) | 0.0041 (6) | 0.0010 (6) |
C11 | 0.0325 (7) | 0.0265 (8) | 0.0195 (7) | 0.0004 (6) | 0.0027 (6) | 0.0029 (6) |
C12 | 0.0289 (7) | 0.0270 (8) | 0.0201 (8) | 0.0007 (6) | 0.0037 (6) | 0.0046 (6) |
C13 | 0.0373 (8) | 0.0286 (9) | 0.0227 (8) | 0.0001 (6) | 0.0045 (6) | 0.0017 (6) |
C14 | 0.0403 (9) | 0.0382 (10) | 0.0191 (7) | −0.0006 (7) | 0.0048 (6) | −0.0015 (6) |
C15 | 0.0351 (8) | 0.0412 (10) | 0.0187 (7) | 0.0001 (7) | 0.0032 (6) | 0.0077 (7) |
C16 | 0.0390 (8) | 0.0287 (9) | 0.0247 (8) | −0.0003 (7) | 0.0034 (6) | 0.0070 (7) |
C17 | 0.0373 (8) | 0.0282 (9) | 0.0202 (7) | 0.0002 (6) | 0.0024 (6) | 0.0017 (6) |
O1—C2 | 1.217 (2) | C7—C8 | 1.393 (2) |
O2—C9 | 1.225 (2) | C7—H7A | 0.9500 |
O3—C11 | 1.212 (2) | C8—C9 | 1.489 (2) |
N1—C11 | 1.381 (2) | C9—C10 | 1.466 (2) |
N1—C1 | 1.3869 (19) | C10—H10A | 0.9500 |
N1—H1A | 0.8800 | C11—C12 | 1.501 (2) |
C1—C10 | 1.345 (2) | C12—C13 | 1.393 (2) |
C1—C2 | 1.500 (2) | C12—C17 | 1.394 (2) |
C2—C3 | 1.484 (2) | C13—C14 | 1.390 (2) |
C3—C4 | 1.392 (2) | C13—H13A | 0.9500 |
C3—C8 | 1.397 (2) | C14—C15 | 1.387 (3) |
C4—C5 | 1.386 (2) | C14—H14A | 0.9500 |
C4—H4A | 0.9500 | C15—C16 | 1.386 (3) |
C5—C6 | 1.390 (3) | C15—H15A | 0.9500 |
C5—H5A | 0.9500 | C16—C17 | 1.393 (2) |
C6—C7 | 1.387 (2) | C16—H16A | 0.9500 |
C6—H6A | 0.9500 | C17—H17A | 0.9500 |
C11—N1—C1 | 125.79 (14) | O2—C9—C10 | 120.48 (15) |
C11—N1—H1A | 117.1 | O2—C9—C8 | 121.05 (14) |
C1—N1—H1A | 117.1 | C10—C9—C8 | 118.44 (14) |
C10—C1—N1 | 127.04 (15) | C1—C10—C9 | 121.76 (15) |
C10—C1—C2 | 121.04 (14) | C1—C10—H10A | 119.1 |
N1—C1—C2 | 111.90 (14) | C9—C10—H10A | 119.1 |
O1—C2—C3 | 122.60 (16) | O3—C11—N1 | 121.69 (14) |
O1—C2—C1 | 119.73 (14) | O3—C11—C12 | 121.20 (15) |
C3—C2—C1 | 117.67 (14) | N1—C11—C12 | 117.10 (15) |
C4—C3—C8 | 120.45 (15) | C13—C12—C17 | 119.61 (14) |
C4—C3—C2 | 119.49 (15) | C13—C12—C11 | 115.94 (15) |
C8—C3—C2 | 120.05 (15) | C17—C12—C11 | 124.45 (15) |
C5—C4—C3 | 119.67 (16) | C14—C13—C12 | 120.32 (16) |
C5—C4—H4A | 120.2 | C14—C13—H13A | 119.8 |
C3—C4—H4A | 120.2 | C12—C13—H13A | 119.8 |
C4—C5—C6 | 120.13 (16) | C15—C14—C13 | 119.96 (16) |
C4—C5—H5A | 119.9 | C15—C14—H14A | 120.0 |
C6—C5—H5A | 119.9 | C13—C14—H14A | 120.0 |
C7—C6—C5 | 120.31 (15) | C16—C15—C14 | 119.95 (15) |
C7—C6—H6A | 119.8 | C16—C15—H15A | 120.0 |
C5—C6—H6A | 119.8 | C14—C15—H15A | 120.0 |
C6—C7—C8 | 120.04 (16) | C15—C16—C17 | 120.41 (17) |
C6—C7—H7A | 120.0 | C15—C16—H16A | 119.8 |
C8—C7—H7A | 120.0 | C17—C16—H16A | 119.8 |
C7—C8—C3 | 119.36 (16) | C16—C17—C12 | 119.75 (16) |
C7—C8—C9 | 120.32 (15) | C16—C17—H17A | 120.1 |
C3—C8—C9 | 120.32 (14) | C12—C17—H17A | 120.1 |
C11—N1—C1—C10 | −2.6 (3) | C3—C8—C9—O2 | 177.33 (15) |
C11—N1—C1—C2 | 175.82 (14) | C7—C8—C9—C10 | 175.06 (14) |
C10—C1—C2—O1 | 170.53 (16) | C3—C8—C9—C10 | −4.8 (2) |
N1—C1—C2—O1 | −8.0 (2) | N1—C1—C10—C9 | −177.44 (15) |
C10—C1—C2—C3 | −9.6 (2) | C2—C1—C10—C9 | 4.3 (2) |
N1—C1—C2—C3 | 171.88 (13) | O2—C9—C10—C1 | −179.15 (15) |
O1—C2—C3—C4 | 8.5 (2) | C8—C9—C10—C1 | 3.0 (2) |
C1—C2—C3—C4 | −171.42 (14) | C1—N1—C11—O3 | 2.9 (3) |
O1—C2—C3—C8 | −172.50 (15) | C1—N1—C11—C12 | −175.70 (14) |
C1—C2—C3—C8 | 7.6 (2) | O3—C11—C12—C13 | −8.8 (2) |
C8—C3—C4—C5 | 0.1 (2) | N1—C11—C12—C13 | 169.78 (14) |
C2—C3—C4—C5 | 179.07 (15) | O3—C11—C12—C17 | 172.36 (16) |
C3—C4—C5—C6 | 1.4 (3) | N1—C11—C12—C17 | −9.0 (2) |
C4—C5—C6—C7 | −1.4 (2) | C17—C12—C13—C14 | 0.4 (2) |
C5—C6—C7—C8 | −0.1 (2) | C11—C12—C13—C14 | −178.52 (15) |
C6—C7—C8—C3 | 1.6 (2) | C12—C13—C14—C15 | −0.3 (2) |
C6—C7—C8—C9 | −178.34 (14) | C13—C14—C15—C16 | −0.2 (3) |
C4—C3—C8—C7 | −1.5 (2) | C14—C15—C16—C17 | 0.5 (3) |
C2—C3—C8—C7 | 179.46 (14) | C15—C16—C17—C12 | −0.5 (2) |
C4—C3—C8—C9 | 178.37 (14) | C13—C12—C17—C16 | 0.0 (2) |
C2—C3—C8—C9 | −0.6 (2) | C11—C12—C17—C16 | 178.79 (15) |
C7—C8—C9—O2 | −2.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.88 | 2.65 | 3.3299 (19) | 135 |
C4—H4A···O3i | 0.95 | 2.49 | 3.149 (2) | 127 |
C17—H17A···O2i | 0.95 | 2.57 | 3.404 (2) | 146 |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H11NO3 |
Mr | 277.27 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 123 |
a, b, c (Å) | 6.9433 (3), 12.0112 (4), 15.2129 (5) |
β (°) | 94.129 (3) |
V (Å3) | 1265.42 (8) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.83 |
Crystal size (mm) | 0.67 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.819, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4550, 2553, 2123 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.629 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.148, 1.05 |
No. of reflections | 2553 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.25 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.88 | 2.65 | 3.3299 (19) | 135.3 |
C4—H4A···O3i | 0.95 | 2.49 | 3.149 (2) | 126.7 |
C17—H17A···O2i | 0.95 | 2.57 | 3.404 (2) | 146.4 |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. We also acknowledge MRI grant No. CHE-1126533 from the National Science Foundation for the purchase of a TOF LC/MS system used in this study and also funded in part by grant No. 5-U54—CA914–31 (Howard University/Johns Hopkins Cancer Center Partnership).
References
Akinboye, E. S., Butcher, R. J., Brandy, Y., Adesiyun, T. A. & Bakare, O. (2009a). Acta Cryst. E65, o24. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akinboye, E. S., Butcher, R. J., Wright, D. A., Brandy, Y. & Bakare, O. (2009b). Acta Cryst. E65, o277. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165–3170. Web of Science CrossRef PubMed CAS Google Scholar
Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug. Des. Discov. 5, 485–488. CrossRef CAS Google Scholar
Brandy, Y., Butcher, R. J., Adesiyun, T. A., Berhe, S. & Bakare, O. (2009). Acta Cryst. E65, o64. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandy, Y., Butcher, R. J. & Bakare, O. (2012). Acta Cryst. E68, o2379. CSD CrossRef IUCr Journals Google Scholar
Huang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (2005). Bioorg. Med. Chem. 6, 2261–2269. Web of Science CrossRef Google Scholar
Khraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2011). Arch. Pharm. Res. 35, 27–33. Web of Science CrossRef Google Scholar
Lien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem. 5, 2111–2120. Web of Science CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Amido and imidonaphthoquinones are known for their anti-inflammatory, antiplatelet, antiallergic, antiparasitic and anticancer activities (Lien et al.(1997); Huang et al. (2005); Bakare et al. (2003), Khraiwesh et al. (2011)). During imide synthesis (2-N-bis(benzoyl)amino-1,4-naphthoquinone (Brandy et al. (2012)), we obtained the intermediate amido analog, 2-N-benzoylamino-1,4-naphthoquinone. In order to eventually perform an anticancer SAR (structure-activity relationship) study, these intermediate amido analogs were isolated, crystallized and subjected to an X-ray diffraction study.
This showed that the naphthoquinone scaffold was planar with N—H and C=O bonds anti to each other. A dihedral angle between the naphthoquinone ring and the amide group of -2.6 (3)°, accompanied with the dihedral angle between the amide group and the phenyl group of -8.8 (2)° makes the naphthoquinone ring coplanar to the phenyl group. The bond distances and angles are similar to those found in related structures (Brandy et al., 2009, 2012; Akinboye et al., 2009a, 2009b). The crystal packing pattern results from N—H···O hydrogen bonds along with two weak intermolecular C—H···O interactions.