organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2775-o2776

N-(1,4-Dioxo-1,4-di­hydro­naphthalen-2-yl)benzamide

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 2 July 2012; accepted 31 July 2012; online 25 August 2012)

The title compound, C17H11NO3, was an inter­mediate synthesized during bis­acyl­ation of 2-amino-1,4-naphtho­quinone with benzoyl chloride. A mixture of block- and needle-shaped crystals were obtained after column chromatography. The block-shaped crystals were identified as the imide and the needles were the title amide. The naphtho­quinone scaffold is roughly planar (r.m.s. deviation = 0.047 Å for the C atoms). The N—H and C=O bonds of the amide group are anti to each other. A dihedral angle between the naphtho­quinone ring system and the amide group of 3.56 (3)°, accompanied by a dihedral angle between the amide group and the phenyl group of 9.51 (3)°, makes the naphtho­quinone ring essentially coplanar with the phenyl ring [dihedral angle = 7.12 (1)°]. In the crystal, molecules are linked by a weak N—H⋯O hydrogen bond and by two weak C—H⋯O interactions leading to the formation of zigzag chains along [010].

Related literature

For similar crystal structures, see: Brandy et al. (2009[Brandy, Y., Butcher, R. J., Adesiyun, T. A., Berhe, S. & Bakare, O. (2009). Acta Cryst. E65, o64.], 2012[Brandy, Y., Butcher, R. J. & Bakare, O. (2012). Acta Cryst. E68, o2379.]); Akinboye et al. (2009a[Akinboye, E. S., Butcher, R. J., Brandy, Y., Adesiyun, T. A. & Bakare, O. (2009a). Acta Cryst. E65, o24.],b[Akinboye, E. S., Butcher, R. J., Wright, D. A., Brandy, Y. & Bakare, O. (2009b). Acta Cryst. E65, o277.]). For the pharmacological properties of related compounds, see: Bakare et al. (2003[Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165-3170.]); Berhe et al. (2008[Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug. Des. Discov. 5, 485-488.]); Lien et al. (1997[Lien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem. 5, 2111-2120.]); Huang, et al. (2005[Huang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (2005). Bioorg. Med. Chem. 6, 2261-2269.]); Khraiwesh et al. (2011[Khraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2011). Arch. Pharm. Res. 35, 27-33.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11NO3

  • Mr = 277.27

  • Monoclinic, P 21 /n

  • a = 6.9433 (3) Å

  • b = 12.0112 (4) Å

  • c = 15.2129 (5) Å

  • β = 94.129 (3)°

  • V = 1265.42 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 123 K

  • 0.67 × 0.12 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.819, Tmax = 1.000

  • 4550 measured reflections

  • 2553 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.148

  • S = 1.05

  • 2553 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.88 2.65 3.3299 (19) 135
C4—H4A⋯O3i 0.95 2.49 3.149 (2) 127
C17—H17A⋯O2i 0.95 2.57 3.404 (2) 146
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amido and imidonaphthoquinones are known for their anti-inflammatory, antiplatelet, antiallergic, antiparasitic and anticancer activities (Lien et al.(1997); Huang et al. (2005); Bakare et al. (2003), Khraiwesh et al. (2011)). During imide synthesis (2-N-bis(benzoyl)amino-1,4-naphthoquinone (Brandy et al. (2012)), we obtained the intermediate amido analog, 2-N-benzoylamino-1,4-naphthoquinone. In order to eventually perform an anticancer SAR (structure-activity relationship) study, these intermediate amido analogs were isolated, crystallized and subjected to an X-ray diffraction study.

This showed that the naphthoquinone scaffold was planar with N—H and C=O bonds anti to each other. A dihedral angle between the naphthoquinone ring and the amide group of -2.6 (3)°, accompanied with the dihedral angle between the amide group and the phenyl group of -8.8 (2)° makes the naphthoquinone ring coplanar to the phenyl group. The bond distances and angles are similar to those found in related structures (Brandy et al., 2009, 2012; Akinboye et al., 2009a, 2009b). The crystal packing pattern results from N—H···O hydrogen bonds along with two weak intermolecular C—H···O interactions.

Related literature top

For similar crystal structures, see: Brandy et al. (2009, 2012); Akinboye et al. (2009a,b). For the pharmacological properties of related compounds, see: Bakare et al. (2003); Berhe et al. (2008); Lien et al. (1997); Huang, et al. (2005); Khraiwesh et al. (2011).

Experimental top

2-Amino-1,4-naphthoquinone (318 mg, 1.83 mmol) was dissolved in freshly distilled THF (15 ml). NaH (115 mg, 4.78 mmol) was added and the mixture was stirred at room temperature for 15 min. The appropriate benzoyl chloride (0.55 ml, 4.74 mmol) was added, drop wise, and the mixture was stirred for 24 h. THF was evaporated under vacuum and the mixture was washed with ice-water (10 g ice in 10 ml water). The ice-water mixture was extracted with CH2Cl2 (30 ml, 20 ml consecutively) and the combined organic phase washed with water (3 x 20 ml), saturated NaCl solution (20 ml), then dried over anhydrous MgSO4. The crude was purified via triturating in ethanol (2 ml) and column chromatography with an eluent mixture of ethyl acetate and hexane to furnish the amide (39 mg, 7.7%). A mixure of block and needle crystals were obtained from column chromatography. The block crystals were identified as the imide (Brandy et al., 2012) and the needles were identified as the amide. The needle crystals were hand-picked from the mixture and analyzed by X-ray diffraction.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H = 0.88Å and C—H = 0.95Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. Diagram of C17H11NO3 showing the atom labeling. Displacement ellipsoids are at the 30% probability level.

Fig. 2. The molecular packing for C17H11NO3 viewed along the a axis.
N-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)benzamide top
Crystal data top
C17H11NO3F(000) = 576
Mr = 277.27Dx = 1.455 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 6.9433 (3) ÅCell parameters from 1585 reflections
b = 12.0112 (4) Åθ = 2.9–75.6°
c = 15.2129 (5) ŵ = 0.83 mm1
β = 94.129 (3)°T = 123 K
V = 1265.42 (8) Å3Needle, pale yellow orange
Z = 40.67 × 0.12 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2553 independent reflections
Radiation source: Enhance (Cu) X-ray Source2123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 4.7°
ω scansh = 78
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1414
Tmin = 0.819, Tmax = 1.000l = 1818
4550 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0937P)2]
where P = (Fo2 + 2Fc2)/3
2553 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H11NO3V = 1265.42 (8) Å3
Mr = 277.27Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.9433 (3) ŵ = 0.83 mm1
b = 12.0112 (4) ÅT = 123 K
c = 15.2129 (5) Å0.67 × 0.12 × 0.08 mm
β = 94.129 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2553 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2123 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 1.000Rint = 0.037
4550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
2553 reflectionsΔρmin = 0.25 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4411 (2)0.09807 (11)0.24463 (8)0.0373 (3)
O20.3847 (2)0.51857 (10)0.13486 (8)0.0348 (3)
O30.3674 (2)0.41588 (11)0.43416 (8)0.0354 (3)
N10.3825 (2)0.24883 (12)0.36581 (9)0.0273 (3)
H1A0.38210.17630.37410.033*
C10.3905 (2)0.28621 (14)0.27989 (10)0.0253 (4)
C20.4119 (2)0.19196 (14)0.21661 (10)0.0269 (4)
C30.3957 (2)0.21822 (14)0.12102 (10)0.0252 (4)
C40.3886 (2)0.13177 (15)0.05992 (11)0.0299 (4)
H4A0.39600.05660.07930.036*
C50.3707 (2)0.15588 (15)0.02938 (11)0.0314 (4)
H5A0.36290.09710.07130.038*
C60.3641 (2)0.26586 (16)0.05777 (11)0.0320 (4)
H6A0.35470.28200.11910.038*
C70.3713 (2)0.35219 (15)0.00297 (11)0.0290 (4)
H7A0.36700.42720.01680.035*
C80.3848 (2)0.32888 (14)0.09291 (10)0.0251 (4)
C90.3872 (2)0.42102 (14)0.15843 (10)0.0266 (4)
C100.3855 (2)0.39248 (14)0.25204 (10)0.0270 (4)
H10A0.38070.45060.29420.032*
C110.3750 (2)0.31531 (14)0.43956 (10)0.0261 (3)
C120.3814 (2)0.25771 (14)0.52731 (10)0.0252 (4)
C130.4058 (2)0.32638 (15)0.60106 (11)0.0294 (4)
H13A0.41420.40470.59380.035*
C140.4181 (3)0.28079 (16)0.68528 (11)0.0324 (4)
H14A0.43530.32790.73540.039*
C150.4050 (2)0.16642 (16)0.69612 (11)0.0316 (4)
H15A0.41370.13520.75360.038*
C160.3794 (2)0.09777 (15)0.62296 (11)0.0308 (4)
H16A0.36940.01950.63060.037*
C170.3681 (2)0.14279 (15)0.53839 (11)0.0286 (4)
H17A0.35140.09540.48840.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0618 (8)0.0246 (7)0.0265 (6)0.0064 (6)0.0101 (5)0.0045 (5)
O20.0576 (7)0.0236 (6)0.0238 (6)0.0019 (5)0.0080 (5)0.0045 (5)
O30.0604 (8)0.0235 (6)0.0221 (6)0.0007 (5)0.0030 (5)0.0025 (5)
N10.0412 (7)0.0216 (7)0.0196 (7)0.0017 (5)0.0047 (5)0.0045 (5)
C10.0299 (7)0.0271 (8)0.0192 (7)0.0005 (6)0.0037 (5)0.0022 (6)
C20.0352 (7)0.0234 (8)0.0226 (8)0.0011 (6)0.0057 (6)0.0038 (6)
C30.0302 (7)0.0258 (8)0.0202 (7)0.0002 (6)0.0059 (5)0.0011 (6)
C40.0380 (8)0.0253 (8)0.0271 (8)0.0008 (6)0.0084 (6)0.0007 (6)
C50.0392 (8)0.0315 (9)0.0241 (8)0.0001 (7)0.0060 (6)0.0057 (7)
C60.0365 (8)0.0393 (10)0.0208 (7)0.0005 (7)0.0057 (6)0.0008 (7)
C70.0369 (8)0.0294 (9)0.0211 (8)0.0007 (7)0.0054 (6)0.0035 (6)
C80.0288 (7)0.0260 (9)0.0208 (7)0.0001 (6)0.0042 (5)0.0025 (6)
C90.0349 (7)0.0239 (8)0.0214 (7)0.0006 (6)0.0043 (6)0.0037 (6)
C100.0378 (8)0.0250 (8)0.0184 (7)0.0014 (6)0.0041 (6)0.0010 (6)
C110.0325 (7)0.0265 (8)0.0195 (7)0.0004 (6)0.0027 (6)0.0029 (6)
C120.0289 (7)0.0270 (8)0.0201 (8)0.0007 (6)0.0037 (6)0.0046 (6)
C130.0373 (8)0.0286 (9)0.0227 (8)0.0001 (6)0.0045 (6)0.0017 (6)
C140.0403 (9)0.0382 (10)0.0191 (7)0.0006 (7)0.0048 (6)0.0015 (6)
C150.0351 (8)0.0412 (10)0.0187 (7)0.0001 (7)0.0032 (6)0.0077 (7)
C160.0390 (8)0.0287 (9)0.0247 (8)0.0003 (7)0.0034 (6)0.0070 (7)
C170.0373 (8)0.0282 (9)0.0202 (7)0.0002 (6)0.0024 (6)0.0017 (6)
Geometric parameters (Å, º) top
O1—C21.217 (2)C7—C81.393 (2)
O2—C91.225 (2)C7—H7A0.9500
O3—C111.212 (2)C8—C91.489 (2)
N1—C111.381 (2)C9—C101.466 (2)
N1—C11.3869 (19)C10—H10A0.9500
N1—H1A0.8800C11—C121.501 (2)
C1—C101.345 (2)C12—C131.393 (2)
C1—C21.500 (2)C12—C171.394 (2)
C2—C31.484 (2)C13—C141.390 (2)
C3—C41.392 (2)C13—H13A0.9500
C3—C81.397 (2)C14—C151.387 (3)
C4—C51.386 (2)C14—H14A0.9500
C4—H4A0.9500C15—C161.386 (3)
C5—C61.390 (3)C15—H15A0.9500
C5—H5A0.9500C16—C171.393 (2)
C6—C71.387 (2)C16—H16A0.9500
C6—H6A0.9500C17—H17A0.9500
C11—N1—C1125.79 (14)O2—C9—C10120.48 (15)
C11—N1—H1A117.1O2—C9—C8121.05 (14)
C1—N1—H1A117.1C10—C9—C8118.44 (14)
C10—C1—N1127.04 (15)C1—C10—C9121.76 (15)
C10—C1—C2121.04 (14)C1—C10—H10A119.1
N1—C1—C2111.90 (14)C9—C10—H10A119.1
O1—C2—C3122.60 (16)O3—C11—N1121.69 (14)
O1—C2—C1119.73 (14)O3—C11—C12121.20 (15)
C3—C2—C1117.67 (14)N1—C11—C12117.10 (15)
C4—C3—C8120.45 (15)C13—C12—C17119.61 (14)
C4—C3—C2119.49 (15)C13—C12—C11115.94 (15)
C8—C3—C2120.05 (15)C17—C12—C11124.45 (15)
C5—C4—C3119.67 (16)C14—C13—C12120.32 (16)
C5—C4—H4A120.2C14—C13—H13A119.8
C3—C4—H4A120.2C12—C13—H13A119.8
C4—C5—C6120.13 (16)C15—C14—C13119.96 (16)
C4—C5—H5A119.9C15—C14—H14A120.0
C6—C5—H5A119.9C13—C14—H14A120.0
C7—C6—C5120.31 (15)C16—C15—C14119.95 (15)
C7—C6—H6A119.8C16—C15—H15A120.0
C5—C6—H6A119.8C14—C15—H15A120.0
C6—C7—C8120.04 (16)C15—C16—C17120.41 (17)
C6—C7—H7A120.0C15—C16—H16A119.8
C8—C7—H7A120.0C17—C16—H16A119.8
C7—C8—C3119.36 (16)C16—C17—C12119.75 (16)
C7—C8—C9120.32 (15)C16—C17—H17A120.1
C3—C8—C9120.32 (14)C12—C17—H17A120.1
C11—N1—C1—C102.6 (3)C3—C8—C9—O2177.33 (15)
C11—N1—C1—C2175.82 (14)C7—C8—C9—C10175.06 (14)
C10—C1—C2—O1170.53 (16)C3—C8—C9—C104.8 (2)
N1—C1—C2—O18.0 (2)N1—C1—C10—C9177.44 (15)
C10—C1—C2—C39.6 (2)C2—C1—C10—C94.3 (2)
N1—C1—C2—C3171.88 (13)O2—C9—C10—C1179.15 (15)
O1—C2—C3—C48.5 (2)C8—C9—C10—C13.0 (2)
C1—C2—C3—C4171.42 (14)C1—N1—C11—O32.9 (3)
O1—C2—C3—C8172.50 (15)C1—N1—C11—C12175.70 (14)
C1—C2—C3—C87.6 (2)O3—C11—C12—C138.8 (2)
C8—C3—C4—C50.1 (2)N1—C11—C12—C13169.78 (14)
C2—C3—C4—C5179.07 (15)O3—C11—C12—C17172.36 (16)
C3—C4—C5—C61.4 (3)N1—C11—C12—C179.0 (2)
C4—C5—C6—C71.4 (2)C17—C12—C13—C140.4 (2)
C5—C6—C7—C80.1 (2)C11—C12—C13—C14178.52 (15)
C6—C7—C8—C31.6 (2)C12—C13—C14—C150.3 (2)
C6—C7—C8—C9178.34 (14)C13—C14—C15—C160.2 (3)
C4—C3—C8—C71.5 (2)C14—C15—C16—C170.5 (3)
C2—C3—C8—C7179.46 (14)C15—C16—C17—C120.5 (2)
C4—C3—C8—C9178.37 (14)C13—C12—C17—C160.0 (2)
C2—C3—C8—C90.6 (2)C11—C12—C17—C16178.79 (15)
C7—C8—C9—O22.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882.653.3299 (19)135
C4—H4A···O3i0.952.493.149 (2)127
C17—H17A···O2i0.952.573.404 (2)146
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H11NO3
Mr277.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)6.9433 (3), 12.0112 (4), 15.2129 (5)
β (°) 94.129 (3)
V3)1265.42 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.83
Crystal size (mm)0.67 × 0.12 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.819, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4550, 2553, 2123
Rint0.037
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.148, 1.05
No. of reflections2553
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882.653.3299 (19)135.3
C4—H4A···O3i0.952.493.149 (2)126.7
C17—H17A···O2i0.952.573.404 (2)146.4
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. We also acknowledge MRI grant No. CHE-1126533 from the National Science Foundation for the purchase of a TOF LC/MS system used in this study and also funded in part by grant No. 5-U54—CA914–31 (Howard University/Johns Hopkins Cancer Center Partnership).

References

First citationAkinboye, E. S., Butcher, R. J., Brandy, Y., Adesiyun, T. A. & Bakare, O. (2009a). Acta Cryst. E65, o24.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkinboye, E. S., Butcher, R. J., Wright, D. A., Brandy, Y. & Bakare, O. (2009b). Acta Cryst. E65, o277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165–3170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBerhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug. Des. Discov. 5, 485–488.  CrossRef CAS Google Scholar
First citationBrandy, Y., Butcher, R. J., Adesiyun, T. A., Berhe, S. & Bakare, O. (2009). Acta Cryst. E65, o64.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandy, Y., Butcher, R. J. & Bakare, O. (2012). Acta Cryst. E68, o2379.  CSD CrossRef IUCr Journals Google Scholar
First citationHuang, L., Chang, F., Lee, K., Wang, J., Teng, C. & Kuo, S. (2005). Bioorg. Med. Chem. 6, 2261–2269.  Web of Science CrossRef Google Scholar
First citationKhraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2011). Arch. Pharm. Res. 35, 27–33.  Web of Science CrossRef Google Scholar
First citationLien, J., Huang, L., Wang, J., Teng, C., Lee, K. & Kuo, S. (1997). Bioorg. Med. Chem. 5, 2111–2120.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2775-o2776
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds