organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2612-o2613

(1R,4R,5aS,7S,9aS)-7,9a-Di­methyl-6-methyl­ene-3-oxo-1,3,4,5,5a,6,7,8,9,9a-deca­hydro­naphtho­[1,2-c]furan-1,4-diyl di­acetate

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 16 July 2012; accepted 25 July 2012; online 1 August 2012)

The title compound, C19H24O6, is a sesquiterpene lactone isolated from the Kenyan plant Warburgia ugandensis. Ring A adopts a chair conformation, ring B is in a C2 twist conformation and the lactone ring is nearly planar with maximum deviation 0.007 (1) Å. The reported absolute configuration is based on that of the similar compound bromo-parasiticolide A and is supported by analysis of Bijvoet differences from light atoms in Mo Kα radiation.

Related literature

For related structures, see: Fukuyama et al. (1975[Fukuyama, K., Kawai, H., Tsukihara, T., Katsube, Y., Hamasaki, T., Hatsuda, Y. & Kuwano, H. (1975). Bull. Chem. Soc. Jpn, 48, 2949-2950.]) (Bromo-parasiticolide A; PARASB); Ikhiri et al. (1995[Ikhiri, K., Mahaman, I., Ahond, A., Chiaroni, A., Poupat, C., Riche, C. & Potier, P. (1995). J. Nat. Prod. 58, 1136-1138.]) (ZOXLIH); Aranda et al. (2001[Aranda, G., Moreno, L., Cortes, M., Prange, T., Maurs, M. & Azerad, R. (2001). Tetrahedron, 57, 6051-6056.]) (ABUKIR); King et al. (1973[King, T. J., Roberts, J. C. & Thompson, D. J. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 78-80.]) (PRPRDE); Rossmann & Lipscomb (1958[Rossmann, M. G. & Lipscomb, W. N. (1958). Tetrahedron, 4, 275-293.]) (IRSBBZ); Rahbaek et al. (1997[Rahbaek, L., Christophersen, C., Frisvad, J., Bengaard, H. S., Larsen, S. & Rassing, B. R. (1997). J. Nat. Prod. 60, 811-813.]) (NEYKOR), Zhang et al. (2006[Zhang, Y.-X., Jackson, S. H., Rajab, M. S., Fronczek, F. R. & Watkins, S. F. (2006). Acta Cryst. C62, o219-o221.]) (UCOLAA, UCOKUT); Harinantenaina et al. (2007[Harinantenaina, L., Asakawa, Y. & De Clercq, E. (2007). J. Nat. Prod. 70, 277-282.]) (NIDJUG); McCorkindale et al. (1981[McCorkindale, N. J., Calzadilla, C. H., Hutchinson, S. A., Kitson, D. H., Ferguson, G. & Campbell, I. M. (1981). Tetrahedron, 37, 649-653.]) (PEBRLD); Hayashi et al. (2010[Hayashi, N., Yamamoto, K., Minowa, N., Mitomi, M. & Nakada, M. (2010). Org. Biomol. Chem. 8, 1821-1825.]) (VUTCIX). For the absolute configuration of sesquiterpene lactones, see: Fischer et al. (1979[Fischer, N. H., Olivier, E. J. & Fischer, H. D. (1979). Progress in the Chemistry of Organic Natural Products, Vol. 38, edited by W. Hertz, H. Grisebach & G. W. Kirby. Vienna: Springer.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the absolute configuration from Bijvoet pairs, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For compounds from Warburgia ugandensis, see: Wube et al. (2005[Wube, A. A., Bucar, F., Gibbons, S. & Asres, K. (2005). Phytochemistry, 66, 2309-2315.]) and for related compounds, see: Garland (1969[Garland, M. T. (1969). An. Fac. Quim. Farm. U. Chile, 21, 108-110.]); Kokwaro (1976[Kokwaro, J. O. (1976). Medicinal Plants of East Africa, p. 45. Nairobi: East African Lit. Bureau.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24O6

  • Mr = 348.38

  • Tetragonal, P 43 21 2

  • a = 13.014 (2) Å

  • c = 21.167 (3) Å

  • V = 3584.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.37 × 0.25 × 0.25 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.966, Tmax = 0.977

  • 11378 measured reflections

  • 6507 independent reflections

  • 5934 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.02

  • 6507 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]). 2776 Bijvoet pairs

  • Flack parameter: 0.4 (6)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Coloratanolide and drimanolide sesquiterpene lactones, such as title compound I, have been isolated from the stem bark of Warburgia ugandensis Sprague (Canellaceae) as described by Wube et al. (2005). Plants of the genus Warburgia are of interest because of their use by herbalists in Kenya for the treatment of a number of parasitic diseases (Kokwaro, 1976). Compound I is the first sesquiterpene lactone to be crystallographically characterized which has the coloratanolide skeleton, (CAS 60306–54-9). The absolute configuration reported herein is based on the configuration of bromo-parasiticolide A (Fukuyama et al., 1975), CCDC refcode PARASB (Allen, 2002), and supported by analysis of 2776 Bijvoet pairs.

Related literature top

For related structures, see: Fukuyama et al. (1975) (Bromo-parasiticolide A; PARASB); Ikhiri et al. (1995) (ZOXLIH); Aranda et al. (2001) (ABUKIR); King et al. (1973) (PRPRDE); Rossmann & Lipscomb (1958) (IRSBBZ); Rahbaek et al. (1997) (NEYKOR), Zhang et al. (2006) (UCOLAA, UCOKUT); Harinantenaina et al. (2007) (NIDJUG); McCorkindale et al. (1981) (PEBRLD); Hayashi et al. (2010) (VUTCIX). For the absolute configuration of sesquiterpene lactones, see: Fischer et al. (1979). For a description of the Cambridge Structural Database, see: Allen (2002). For the absolute configuration from Bijvoet pairs, see: Hooft et al. (2008). For compounds from Warburgia ugandensis, see: Wube et al. (2005) and for elated compounds, see: Garland (1969); Kokwaro (1976).

Experimental top

Compound I was isolated from the stem bark of Warburgia ugandensis Sprague (Canellaceae) collected in Eldoret, Uasin Gishu District, Kenya. Crystals suitable for diffraction were grown from acetone/hexane/ethyl ether.

Refinement top

H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95–1.00 Å, Uiso = 1.2Ueq of the attached carbon atom (1.5 for methyl), and thereafter treated as riding. A torsional parameter was refined for each methyl group.

The absolute configuration and space group assignment were established in part by analysis of 2776 Bijvoet pairs. Although the refined Flack parameter x = 0.4 (6) (Flack, 1983) is not definitive, the Hooft parameter y = 0.1 (3) and Hooft P2(true) = 0.998 (Hooft et al., 2008) are strong indicators that the reported configuration is correct. This configuration is consistent with that of bromo-parasiticolide A (Fukuyama et al., 1975), CCDC refcode PARASB (Allen, 2002) and with the accepted configuration of sesquiterpene lactones from higher plants (Fischer et al., 1979).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids)
(1R,4R,5aS,7S,9aS)-7,9a-Dimethyl- 6-methylene-3-oxo-1,3,4,5,5a,6,7,8,9,9a- decahydronaphtho[1,2-c]furan-1,4-diyl diacetate top
Crystal data top
C19H24O6Dx = 1.291 Mg m3
Mr = 348.38Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 6310 reflections
Hall symbol: P 4nw 2abwθ = 2.5–32.6°
a = 13.014 (2) ŵ = 0.10 mm1
c = 21.167 (3) ÅT = 100 K
V = 3584.9 (9) Å3Prism, colorless
Z = 80.37 × 0.25 × 0.25 mm
F(000) = 1488
Data collection top
Nonius KappaCCD
diffractometer
6507 independent reflections
Radiation source: sealed tube5934 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.021
Detector resolution: 9 pixels mm-1θmax = 32.6°, θmin = 3.1°
ϕ and ω scansh = 1919
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.966, Tmax = 0.977l = 3031
11378 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.548P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6507 reflectionsΔρmax = 0.28 e Å3
231 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983). 2776 Bijvoet pairs
0 constraintsAbsolute structure parameter: 0.4 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H24O6Z = 8
Mr = 348.38Mo Kα radiation
Tetragonal, P43212µ = 0.10 mm1
a = 13.014 (2) ÅT = 100 K
c = 21.167 (3) Å0.37 × 0.25 × 0.25 mm
V = 3584.9 (9) Å3
Data collection top
Nonius KappaCCD
diffractometer
6507 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
5934 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.977Rint = 0.021
11378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.28 e Å3
S = 1.02Δρmin = 0.21 e Å3
6507 reflectionsAbsolute structure: Flack (1983). 2776 Bijvoet pairs
231 parametersAbsolute structure parameter: 0.4 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.99387 (7)0.15194 (7)0.38460 (4)0.01487 (16)
C21.10097 (8)0.17487 (8)0.41219 (5)0.01852 (17)
H2A1.12160.24540.40010.022*
H2B1.09720.1720.45890.022*
C31.18311 (8)0.09896 (9)0.38923 (5)0.02218 (19)
H3A1.24830.11310.41170.027*
H3B1.19520.110.34360.027*
C41.15268 (8)0.01396 (8)0.40011 (5)0.02003 (18)
H41.14510.02380.44670.024*
C51.04822 (8)0.03292 (8)0.37083 (4)0.01737 (17)
C60.96687 (7)0.03709 (7)0.39832 (4)0.01477 (15)
H60.97170.02880.44520.018*
C70.85545 (7)0.01232 (8)0.38106 (4)0.01717 (17)
H7A0.84330.06240.38550.021*
H7B0.84250.03150.33650.021*
C80.78177 (8)0.07130 (7)0.42426 (4)0.01629 (17)
H80.7110.07140.40580.02*
C90.81884 (7)0.17881 (7)0.43274 (4)0.01617 (16)
C100.75719 (8)0.26445 (8)0.45837 (5)0.01949 (18)
C110.91383 (8)0.32891 (8)0.42864 (5)0.01760 (17)
H110.92610.36850.38890.021*
C120.91114 (7)0.21474 (7)0.41591 (4)0.01502 (16)
C130.99210 (8)0.17746 (8)0.31324 (4)0.02007 (18)
H13A0.92240.16750.29670.03*
H13B1.03980.13190.29080.03*
H13C1.0130.24910.30690.03*
C141.23690 (9)0.08734 (10)0.37789 (6)0.0301 (2)
H14A1.2160.15830.38650.045*
H14B1.30080.07220.40050.045*
H14C1.24780.07850.33240.045*
C151.02974 (9)0.10108 (9)0.32528 (5)0.0227 (2)
H15A0.96250.10760.30830.027*
H15B1.08380.14310.30980.027*
C161.02993 (9)0.44956 (8)0.47234 (5)0.02094 (19)
C171.10061 (10)0.46776 (9)0.52658 (5)0.0266 (2)
H17A1.1390.53150.51960.04*
H17B1.14870.41010.53020.04*
H17C1.06050.47360.56560.04*
C180.71756 (8)0.05724 (8)0.49413 (5)0.02047 (18)
C190.72455 (9)0.10197 (10)0.55937 (5)0.0262 (2)
H19A0.65520.11380.57590.039*
H19B0.76110.0540.58710.039*
H19C0.76190.16730.55770.039*
O11.00912 (8)0.50921 (7)0.43108 (4)0.0327 (2)
O20.98905 (6)0.35231 (6)0.47497 (3)0.01904 (14)
O30.81477 (6)0.35250 (6)0.45508 (4)0.02120 (15)
O40.67051 (6)0.26478 (7)0.47800 (4)0.02641 (17)
O50.78024 (6)0.02495 (6)0.48730 (3)0.01794 (14)
O60.66441 (8)0.09022 (8)0.45248 (4)0.0323 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0147 (4)0.0157 (4)0.0142 (4)0.0010 (3)0.0002 (3)0.0010 (3)
C20.0154 (4)0.0190 (4)0.0212 (4)0.0020 (3)0.0014 (3)0.0006 (4)
C30.0148 (4)0.0253 (5)0.0265 (5)0.0002 (4)0.0006 (4)0.0006 (4)
C40.0184 (4)0.0222 (5)0.0195 (4)0.0046 (3)0.0007 (3)0.0013 (3)
C50.0191 (4)0.0171 (4)0.0159 (4)0.0011 (3)0.0017 (3)0.0018 (3)
C60.0154 (4)0.0153 (4)0.0137 (4)0.0006 (3)0.0001 (3)0.0005 (3)
C70.0178 (4)0.0176 (4)0.0161 (4)0.0031 (3)0.0002 (3)0.0014 (3)
C80.0149 (4)0.0186 (4)0.0154 (4)0.0019 (3)0.0008 (3)0.0012 (3)
C90.0158 (4)0.0168 (4)0.0160 (4)0.0010 (3)0.0007 (3)0.0002 (3)
C100.0187 (4)0.0206 (4)0.0192 (4)0.0020 (3)0.0018 (3)0.0011 (3)
C110.0185 (4)0.0165 (4)0.0178 (4)0.0004 (3)0.0019 (3)0.0008 (3)
C120.0162 (4)0.0152 (4)0.0137 (4)0.0005 (3)0.0020 (3)0.0008 (3)
C130.0241 (5)0.0214 (4)0.0147 (4)0.0002 (4)0.0017 (3)0.0038 (3)
C140.0222 (5)0.0337 (6)0.0342 (6)0.0087 (4)0.0005 (4)0.0060 (5)
C150.0255 (5)0.0218 (5)0.0208 (4)0.0002 (4)0.0027 (4)0.0028 (4)
C160.0249 (5)0.0159 (4)0.0220 (4)0.0026 (4)0.0036 (4)0.0028 (3)
C170.0311 (6)0.0235 (5)0.0253 (5)0.0089 (4)0.0024 (4)0.0033 (4)
C180.0191 (4)0.0222 (4)0.0202 (4)0.0040 (4)0.0008 (4)0.0028 (4)
C190.0248 (5)0.0304 (6)0.0233 (5)0.0026 (4)0.0003 (4)0.0089 (4)
O10.0492 (6)0.0191 (4)0.0299 (4)0.0068 (4)0.0052 (4)0.0050 (3)
O20.0226 (4)0.0154 (3)0.0191 (3)0.0040 (3)0.0034 (3)0.0015 (2)
O30.0197 (3)0.0178 (3)0.0261 (3)0.0027 (3)0.0010 (3)0.0020 (3)
O40.0181 (3)0.0295 (4)0.0316 (4)0.0029 (3)0.0022 (3)0.0046 (3)
O50.0172 (3)0.0207 (3)0.0159 (3)0.0035 (3)0.0009 (2)0.0027 (3)
O60.0364 (5)0.0361 (5)0.0243 (4)0.0189 (4)0.0047 (4)0.0026 (3)
Geometric parameters (Å, º) top
C1—C121.5054 (14)C10—O31.3709 (13)
C1—C21.5403 (14)C11—O21.4187 (12)
C1—C131.5468 (13)C11—O31.4386 (13)
C1—C61.5627 (13)C11—C121.5104 (14)
C2—C31.5346 (15)C11—H111
C2—H2A0.99C13—H13A0.98
C2—H2B0.99C13—H13B0.98
C3—C41.5393 (16)C13—H13C0.98
C3—H3A0.99C14—H14A0.98
C3—H3B0.99C14—H14B0.98
C4—C51.5143 (14)C14—H14C0.98
C4—C141.5279 (15)C15—H15A0.95
C4—H41C15—H15B0.95
C5—C151.3321 (14)C16—O11.1994 (14)
C5—C61.5131 (13)C16—O21.3740 (12)
C6—C71.5297 (14)C16—C171.4902 (15)
C6—H61C17—H17A0.98
C7—C81.5313 (14)C17—H17B0.98
C7—H7A0.99C17—H17C0.98
C7—H7B0.99C18—O61.2000 (13)
C8—O51.4646 (12)C18—O51.3529 (12)
C8—C91.4908 (14)C18—C191.5013 (15)
C8—H81C19—H19A0.98
C9—C121.3373 (14)C19—H19B0.98
C9—C101.4766 (14)C19—H19C0.98
C10—O41.2021 (13)
C12—C1—C2112.03 (8)O4—C10—O3121.84 (10)
C12—C1—C13107.62 (8)O4—C10—C9129.76 (10)
C2—C1—C13110.01 (8)O3—C10—C9108.37 (8)
C12—C1—C6106.06 (7)O2—C11—O3107.67 (8)
C2—C1—C6108.56 (8)O2—C11—C12110.52 (8)
C13—C1—C6112.55 (8)O3—C11—C12104.98 (8)
C3—C2—C1112.68 (8)O2—C11—H11111.1
C3—C2—H2A109.1O3—C11—H11111.1
C1—C2—H2A109.1C12—C11—H11111.1
C3—C2—H2B109.1C9—C12—C1124.74 (9)
C1—C2—H2B109.1C9—C12—C11108.49 (9)
H2A—C2—H2B107.8C1—C12—C11126.58 (9)
C2—C3—C4112.83 (8)C1—C13—H13A109.5
C2—C3—H3A109C1—C13—H13B109.5
C4—C3—H3A109H13A—C13—H13B109.5
C2—C3—H3B109C1—C13—H13C109.5
C4—C3—H3B109H13A—C13—H13C109.5
H3A—C3—H3B107.8H13B—C13—H13C109.5
C5—C4—C14114.59 (9)C4—C14—H14A109.5
C5—C4—C3108.98 (8)C4—C14—H14B109.5
C14—C4—C3111.47 (9)H14A—C14—H14B109.5
C5—C4—H4107.1C4—C14—H14C109.5
C14—C4—H4107.1H14A—C14—H14C109.5
C3—C4—H4107.1H14B—C14—H14C109.5
C15—C5—C6123.58 (9)C5—C15—H15A120
C15—C5—C4124.53 (9)C5—C15—H15B120
C6—C5—C4111.88 (8)H15A—C15—H15B120
C5—C6—C7116.39 (8)O1—C16—O2122.57 (10)
C5—C6—C1110.31 (8)O1—C16—C17126.69 (10)
C7—C6—C1111.73 (8)O2—C16—C17110.74 (9)
C5—C6—H6105.9C16—C17—H17A109.5
C7—C6—H6105.9C16—C17—H17B109.5
C1—C6—H6105.9H17A—C17—H17B109.5
C6—C7—C8110.20 (8)C16—C17—H17C109.5
C6—C7—H7A109.6H17A—C17—H17C109.5
C8—C7—H7A109.6H17B—C17—H17C109.5
C6—C7—H7B109.6O6—C18—O5123.49 (10)
C8—C7—H7B109.6O6—C18—C19124.89 (10)
H7A—C7—H7B108.1O5—C18—C19111.61 (9)
O5—C8—C9106.34 (7)C18—C19—H19A109.5
O5—C8—C7110.25 (8)C18—C19—H19B109.5
C9—C8—C7109.86 (8)H19A—C19—H19B109.5
O5—C8—H8110.1C18—C19—H19C109.5
C9—C8—H8110.1H19A—C19—H19C109.5
C7—C8—H8110.1H19B—C19—H19C109.5
C12—C9—C10108.79 (9)C16—O2—C11115.91 (8)
C12—C9—C8125.92 (9)C10—O3—C11109.35 (8)
C10—C9—C8125.23 (9)C18—O5—C8115.54 (8)
C12—C1—C2—C3170.06 (8)C8—C9—C10—O41.98 (17)
C13—C1—C2—C370.28 (11)C12—C9—C10—O31.20 (11)
C6—C1—C2—C353.28 (10)C8—C9—C10—O3176.04 (9)
C1—C2—C3—C453.11 (12)C10—C9—C12—C1176.62 (8)
C2—C3—C4—C553.61 (11)C8—C9—C12—C10.59 (15)
C2—C3—C4—C14178.93 (9)C10—C9—C12—C111.26 (10)
C14—C4—C5—C155.67 (16)C8—C9—C12—C11175.95 (9)
C3—C4—C5—C15120.00 (11)C2—C1—C12—C9137.96 (10)
C14—C4—C5—C6175.82 (9)C13—C1—C12—C9100.99 (11)
C3—C4—C5—C658.51 (10)C6—C1—C12—C919.68 (12)
C15—C5—C6—C711.94 (14)C2—C1—C12—C1147.52 (12)
C4—C5—C6—C7169.54 (8)C13—C1—C12—C1173.53 (11)
C15—C5—C6—C1116.70 (11)C6—C1—C12—C11165.80 (8)
C4—C5—C6—C161.83 (10)O2—C11—C12—C9116.73 (9)
C12—C1—C6—C5177.79 (7)O3—C11—C12—C90.90 (10)
C2—C1—C6—C557.24 (9)O2—C11—C12—C168.02 (12)
C13—C1—C6—C564.78 (10)O3—C11—C12—C1176.15 (8)
C12—C1—C6—C751.08 (9)O1—C16—O2—C114.93 (15)
C2—C1—C6—C7171.64 (8)C17—C16—O2—C11174.94 (9)
C13—C1—C6—C766.34 (10)O3—C11—O2—C1692.25 (10)
C5—C6—C7—C8166.12 (8)C12—C11—O2—C16153.62 (8)
C1—C6—C7—C865.93 (10)O4—C10—O3—C11178.80 (10)
C6—C7—C8—O574.35 (10)C9—C10—O3—C110.60 (11)
C6—C7—C8—C942.52 (10)O2—C11—O3—C10117.91 (9)
O5—C8—C9—C12107.52 (10)C12—C11—O3—C100.14 (10)
C7—C8—C9—C1211.78 (13)O6—C18—O5—C81.47 (15)
O5—C8—C9—C1075.71 (11)C19—C18—O5—C8177.62 (9)
C7—C8—C9—C10164.99 (9)C9—C8—O5—C18158.03 (8)
C12—C9—C10—O4179.22 (11)C7—C8—O5—C1882.93 (10)

Experimental details

Crystal data
Chemical formulaC19H24O6
Mr348.38
Crystal system, space groupTetragonal, P43212
Temperature (K)100
a, c (Å)13.014 (2), 21.167 (3)
V3)3584.9 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.25 × 0.25
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.966, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
11378, 6507, 5934
Rint0.021
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.02
No. of reflections6507
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.21
Absolute structureFlack (1983). 2776 Bijvoet pairs
Absolute structure parameter0.4 (6)

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

Purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAranda, G., Moreno, L., Cortes, M., Prange, T., Maurs, M. & Azerad, R. (2001). Tetrahedron, 57, 6051–6056.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFischer, N. H., Olivier, E. J. & Fischer, H. D. (1979). Progress in the Chemistry of Organic Natural Products, Vol. 38, edited by W. Hertz, H. Grisebach & G. W. Kirby. Vienna: Springer.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFukuyama, K., Kawai, H., Tsukihara, T., Katsube, Y., Hamasaki, T., Hatsuda, Y. & Kuwano, H. (1975). Bull. Chem. Soc. Jpn, 48, 2949–2950.  CrossRef CAS Web of Science Google Scholar
First citationGarland, M. T. (1969). An. Fac. Quim. Farm. U. Chile, 21, 108–110.  Google Scholar
First citationHarinantenaina, L., Asakawa, Y. & De Clercq, E. (2007). J. Nat. Prod. 70, 277–282.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHayashi, N., Yamamoto, K., Minowa, N., Mitomi, M. & Nakada, M. (2010). Org. Biomol. Chem. 8, 1821–1825.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIkhiri, K., Mahaman, I., Ahond, A., Chiaroni, A., Poupat, C., Riche, C. & Potier, P. (1995). J. Nat. Prod. 58, 1136–1138.  CSD CrossRef CAS Web of Science Google Scholar
First citationKing, T. J., Roberts, J. C. & Thompson, D. J. (1973). J. Chem. Soc. Perkin Trans. 1, pp. 78–80.  CSD CrossRef CAS Web of Science Google Scholar
First citationKokwaro, J. O. (1976). Medicinal Plants of East Africa, p. 45. Nairobi: East African Lit. Bureau.  Google Scholar
First citationMcCorkindale, N. J., Calzadilla, C. H., Hutchinson, S. A., Kitson, D. H., Ferguson, G. & Campbell, I. M. (1981). Tetrahedron, 37, 649–653.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRahbaek, L., Christophersen, C., Frisvad, J., Bengaard, H. S., Larsen, S. & Rassing, B. R. (1997). J. Nat. Prod. 60, 811–813.  CSD CrossRef Web of Science Google Scholar
First citationRossmann, M. G. & Lipscomb, W. N. (1958). Tetrahedron, 4, 275–293.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWube, A. A., Bucar, F., Gibbons, S. & Asres, K. (2005). Phytochemistry, 66, 2309–2315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Y.-X., Jackson, S. H., Rajab, M. S., Fronczek, F. R. & Watkins, S. F. (2006). Acta Cryst. C62, o219–o221.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2612-o2613
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds