organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[2-(1-Methyl-2,2-dioxo-3,4-di­hydro-1H-2λ6,1-benzo­thia­zin-4-yl­­idene)hydrazin-1-yl­­idene]meth­yl}phenol

aDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: hafizshafique@hotmail.com

(Received 28 July 2012; accepted 31 July 2012; online 4 August 2012)

In the title compound, C16H15N3O3S, the dihedral angle between the aromatic rings is 8.18 (11)° and the C=N—N=C torsion angle is 178.59 (14)°. The conformation of the thia­zine ring is an envelope, with the S atom displaced by 0.8157 (18) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.045 Å). An intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, weak C—H⋯O inter­actions link the mol­ecules, with all three O atoms acting as acceptors.

Related literature

For the synthesis and biological activity of the title compound and related materials, see: Shafiq et al. (2011[Shafiq, M., Zia-Ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chilean Chem. Soc. 56, 527-531.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O3S

  • Mr = 329.37

  • Monoclinic, P 21 /n

  • a = 6.5530 (2) Å

  • b = 15.8719 (5) Å

  • c = 14.5804 (4) Å

  • β = 91.147 (1)°

  • V = 1516.18 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.40 × 0.05 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 14391 measured reflections

  • 3778 independent reflections

  • 3019 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 1.03

  • 3778 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N3 0.85 (2) 1.89 (2) 2.6574 (18) 151 (2)
C1—H1B⋯O3i 0.96 2.59 3.534 (3) 166
C3—H3A⋯O1ii 0.93 2.60 3.396 (2) 144
C9—H9A⋯O2i 0.97 2.44 3.138 (2) 129
C16—H16⋯O1iii 0.93 2.60 3.440 (2) 151
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]).

Supporting information


Related literature top

For the synthesis and biological activity of the title compound and related materials, see: Shafiq et al. (2011).

Experimental top

In the synthesis of title compound, 4-hydrazinylidene-1- methyl-3H-2λ6,1-benzothiazine-2,2-dione was subjected to react with 2-hydroxy benzaldehyde according to literature procedure ((Shafiq et al. (2011)). The product obtained was then recrystallized in ethylacetate under slow evaporation to obtain single crystals suitable for X-ray diffraction.

Refinement top

The O-bond H atom was located in a difference map and its position was freely refined. The C-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C) was applied.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: ORTEP-3 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level. The hydrogen bond is shown as a double-dashed line.
2-{[2-(1-Methyl-2,2-dioxo-3,4-dihydro-1H-2λ6,1-benzothiazin- 4-ylidene)hydrazin-1-ylidene]methyl}phenol top
Crystal data top
C16H15N3O3SF(000) = 688
Mr = 329.37Dx = 1.443 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6831 reflections
a = 6.5530 (2) Åθ = 2.8–28.2°
b = 15.8719 (5) ŵ = 0.23 mm1
c = 14.5804 (4) ÅT = 296 K
β = 91.147 (1)°Needle, yellow
V = 1516.18 (8) Å30.40 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3019 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.4°, θmin = 2.6°
ϕ and ω scansh = 88
14391 measured reflectionsk = 2120
3778 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.5143P]
where P = (Fo2 + 2Fc2)/3
3778 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H15N3O3SV = 1516.18 (8) Å3
Mr = 329.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.5530 (2) ŵ = 0.23 mm1
b = 15.8719 (5) ÅT = 296 K
c = 14.5804 (4) Å0.40 × 0.05 × 0.05 mm
β = 91.147 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3019 reflections with I > 2σ(I)
14391 measured reflectionsRint = 0.020
3778 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
3778 reflectionsΔρmin = 0.28 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5578 (3)0.63906 (15)0.45564 (14)0.0583 (5)
H1A0.55920.69230.42450.087*
H1B0.50770.59630.41440.087*
H1C0.69390.62500.47600.087*
C20.4661 (2)0.70248 (9)0.60704 (10)0.0323 (3)
C30.6391 (2)0.75336 (11)0.60255 (12)0.0418 (4)
H3A0.72280.74980.55190.050*
C40.6875 (3)0.80886 (11)0.67218 (12)0.0453 (4)
H40.80390.84200.66830.054*
C50.5651 (3)0.81578 (11)0.74765 (12)0.0436 (4)
H50.59730.85380.79420.052*
C60.3944 (2)0.76554 (10)0.75302 (11)0.0384 (3)
H60.31270.76990.80420.046*
C70.3401 (2)0.70828 (9)0.68407 (10)0.0318 (3)
C80.1578 (2)0.65501 (9)0.69491 (10)0.0323 (3)
C90.1241 (3)0.58446 (12)0.62738 (11)0.0470 (4)
H9A0.01770.56700.62800.056*
H9B0.20800.53660.64500.056*
C100.2398 (2)0.63187 (10)0.83713 (11)0.0375 (3)
H100.20250.67610.87580.045*
C110.4218 (2)0.58389 (10)0.85695 (10)0.0357 (3)
C120.4875 (2)0.51625 (10)0.80224 (11)0.0383 (3)
C130.6624 (3)0.47198 (12)0.82474 (13)0.0490 (4)
H130.70450.42630.78910.059*
C140.7732 (3)0.49541 (13)0.89940 (15)0.0566 (5)
H140.89050.46570.91380.068*
C150.7125 (3)0.56253 (13)0.95334 (14)0.0584 (5)
H150.78890.57821.00360.070*
C160.5388 (3)0.60604 (12)0.93243 (12)0.0474 (4)
H160.49790.65110.96910.057*
S10.18651 (6)0.61737 (3)0.51673 (2)0.03890 (13)
N10.42477 (18)0.64443 (9)0.53490 (9)0.0382 (3)
N20.03875 (19)0.67010 (8)0.76209 (9)0.0378 (3)
N30.12812 (19)0.61537 (8)0.76789 (9)0.0374 (3)
O10.06395 (19)0.68861 (10)0.49308 (9)0.0581 (4)
O20.1846 (2)0.54798 (10)0.45479 (9)0.0610 (4)
O30.3885 (2)0.49217 (9)0.72635 (9)0.0557 (4)
H30.285 (4)0.5240 (15)0.7235 (16)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (8)0.0874 (14)0.0524 (11)0.0090 (9)0.0175 (7)0.0246 (10)
C20.0275 (6)0.0353 (7)0.0342 (7)0.0008 (5)0.0019 (5)0.0000 (6)
C30.0329 (7)0.0478 (9)0.0448 (9)0.0081 (6)0.0076 (6)0.0008 (7)
C40.0379 (8)0.0441 (9)0.0537 (10)0.0121 (7)0.0005 (7)0.0002 (8)
C50.0475 (9)0.0395 (8)0.0437 (9)0.0083 (7)0.0031 (7)0.0046 (7)
C60.0411 (8)0.0380 (8)0.0363 (8)0.0042 (6)0.0048 (6)0.0022 (6)
C70.0294 (6)0.0327 (7)0.0335 (7)0.0012 (5)0.0025 (5)0.0028 (6)
C80.0323 (7)0.0351 (7)0.0297 (7)0.0033 (6)0.0024 (5)0.0026 (6)
C90.0585 (10)0.0508 (10)0.0323 (8)0.0227 (8)0.0126 (7)0.0050 (7)
C100.0363 (7)0.0381 (8)0.0383 (8)0.0018 (6)0.0072 (6)0.0000 (6)
C110.0341 (7)0.0371 (8)0.0362 (7)0.0011 (6)0.0087 (6)0.0045 (6)
C120.0389 (8)0.0383 (8)0.0381 (8)0.0004 (6)0.0059 (6)0.0039 (6)
C130.0463 (9)0.0464 (9)0.0543 (10)0.0108 (8)0.0046 (8)0.0018 (8)
C140.0418 (9)0.0618 (12)0.0668 (12)0.0125 (8)0.0164 (8)0.0091 (10)
C150.0516 (10)0.0650 (12)0.0598 (11)0.0021 (9)0.0295 (9)0.0004 (10)
C160.0485 (9)0.0491 (10)0.0453 (9)0.0028 (8)0.0171 (7)0.0049 (7)
S10.03155 (19)0.0558 (3)0.0296 (2)0.01232 (16)0.00564 (13)0.00418 (16)
N10.0279 (6)0.0499 (8)0.0371 (7)0.0062 (5)0.0078 (5)0.0085 (6)
N20.0333 (6)0.0401 (7)0.0403 (7)0.0054 (5)0.0083 (5)0.0013 (5)
N30.0331 (6)0.0396 (7)0.0397 (7)0.0053 (5)0.0084 (5)0.0011 (5)
O10.0377 (6)0.0885 (10)0.0479 (7)0.0080 (6)0.0021 (5)0.0094 (7)
O20.0638 (8)0.0775 (9)0.0423 (7)0.0335 (7)0.0167 (6)0.0228 (6)
O30.0623 (8)0.0551 (8)0.0505 (7)0.0147 (6)0.0214 (6)0.0147 (6)
Geometric parameters (Å, º) top
C1—N11.4641 (19)C9—H9B0.9700
C1—H1A0.9600C10—N31.286 (2)
C1—H1B0.9600C10—C111.449 (2)
C1—H1C0.9600C10—H100.9300
C2—C31.394 (2)C11—C161.399 (2)
C2—C71.4104 (19)C11—C121.400 (2)
C2—N11.4203 (19)C12—O31.349 (2)
C3—C41.376 (2)C12—C131.389 (2)
C3—H3A0.9300C13—C141.372 (3)
C4—C51.379 (2)C13—H130.9300
C4—H40.9300C14—C151.378 (3)
C5—C61.377 (2)C14—H140.9300
C5—H50.9300C15—C161.371 (3)
C6—C71.396 (2)C15—H150.9300
C6—H60.9300C16—H160.9300
C7—C81.4745 (19)S1—O21.4242 (13)
C8—N21.2870 (19)S1—O11.4252 (15)
C8—C91.504 (2)S1—N11.6358 (13)
C9—S11.7519 (16)N2—N31.4004 (17)
C9—H9A0.9700O3—H30.85 (2)
N1—C1—H1A109.5N3—C10—C11122.22 (15)
N1—C1—H1B109.5N3—C10—H10118.9
H1A—C1—H1B109.5C11—C10—H10118.9
N1—C1—H1C109.5C16—C11—C12118.29 (14)
H1A—C1—H1C109.5C16—C11—C10119.41 (15)
H1B—C1—H1C109.5C12—C11—C10122.30 (14)
C3—C2—C7119.28 (14)O3—C12—C13117.56 (16)
C3—C2—N1118.96 (13)O3—C12—C11122.50 (14)
C7—C2—N1121.73 (13)C13—C12—C11119.93 (15)
C4—C3—C2120.75 (15)C14—C13—C12120.17 (17)
C4—C3—H3A119.6C14—C13—H13119.9
C2—C3—H3A119.6C12—C13—H13119.9
C3—C4—C5120.71 (15)C13—C14—C15120.74 (16)
C3—C4—H4119.6C13—C14—H14119.6
C5—C4—H4119.6C15—C14—H14119.6
C6—C5—C4119.02 (15)C16—C15—C14119.59 (17)
C6—C5—H5120.5C16—C15—H15120.2
C4—C5—H5120.5C14—C15—H15120.2
C5—C6—C7122.12 (15)C15—C16—C11121.26 (17)
C5—C6—H6118.9C15—C16—H16119.4
C7—C6—H6118.9C11—C16—H16119.4
C6—C7—C2118.11 (13)O2—S1—O1117.53 (9)
C6—C7—C8119.44 (13)O2—S1—N1107.57 (8)
C2—C7—C8122.44 (13)O1—S1—N1111.25 (8)
N2—C8—C7118.66 (13)O2—S1—C9110.74 (8)
N2—C8—C9123.59 (13)O1—S1—C9108.58 (9)
C7—C8—C9117.74 (13)N1—S1—C999.72 (8)
C8—C9—S1110.29 (11)C2—N1—C1120.96 (13)
C8—C9—H9A109.6C2—N1—S1117.24 (10)
S1—C9—H9A109.6C1—N1—S1116.01 (11)
C8—C9—H9B109.6C8—N2—N3114.62 (13)
S1—C9—H9B109.6C10—N3—N2112.24 (13)
H9A—C9—H9B108.1C12—O3—H3105.7 (16)
C7—C2—C3—C40.0 (2)C11—C12—C13—C141.3 (3)
N1—C2—C3—C4178.31 (15)C12—C13—C14—C150.4 (3)
C2—C3—C4—C50.5 (3)C13—C14—C15—C160.4 (3)
C3—C4—C5—C60.8 (3)C14—C15—C16—C110.3 (3)
C4—C5—C6—C70.6 (3)C12—C11—C16—C150.6 (3)
C5—C6—C7—C20.1 (2)C10—C11—C16—C15179.69 (18)
C5—C6—C7—C8178.70 (15)C8—C9—S1—O2171.30 (12)
C3—C2—C7—C60.2 (2)C8—C9—S1—O158.26 (15)
N1—C2—C7—C6178.42 (14)C8—C9—S1—N158.19 (14)
C3—C2—C7—C8178.33 (14)C3—C2—N1—C11.5 (2)
N1—C2—C7—C80.1 (2)C7—C2—N1—C1179.75 (16)
C6—C7—C8—N28.8 (2)C3—C2—N1—S1153.63 (13)
C2—C7—C8—N2172.73 (14)C7—C2—N1—S128.14 (19)
C6—C7—C8—C9169.98 (15)O2—S1—N1—C2169.05 (12)
C2—C7—C8—C98.5 (2)O1—S1—N1—C260.90 (13)
N2—C8—C9—S1141.30 (14)C9—S1—N1—C253.51 (14)
C7—C8—C9—S140.03 (19)O2—S1—N1—C137.45 (16)
N3—C10—C11—C16178.83 (16)O1—S1—N1—C192.59 (15)
N3—C10—C11—C120.2 (2)C9—S1—N1—C1152.99 (15)
C16—C11—C12—O3177.69 (16)C7—C8—N2—N3178.86 (12)
C10—C11—C12—O31.4 (2)C9—C8—N2—N30.2 (2)
C16—C11—C12—C131.4 (2)C11—C10—N3—N2179.66 (14)
C10—C11—C12—C13179.55 (15)C8—N2—N3—C10178.59 (14)
O3—C12—C13—C14177.81 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N30.85 (2)1.89 (2)2.6574 (18)151 (2)
C1—H1B···O3i0.962.593.534 (3)166
C3—H3A···O1ii0.932.603.396 (2)144
C9—H9A···O2i0.972.443.138 (2)129
C16—H16···O1iii0.932.603.440 (2)151
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15N3O3S
Mr329.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.5530 (2), 15.8719 (5), 14.5804 (4)
β (°) 91.147 (1)
V3)1516.18 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.40 × 0.05 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14391, 3778, 3019
Rint0.020
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.03
No. of reflections3778
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N30.85 (2)1.89 (2)2.6574 (18)151 (2)
C1—H1B···O3i0.962.593.534 (3)166
C3—H3A···O1ii0.932.603.396 (2)144
C9—H9A···O2i0.972.443.138 (2)129
C16—H16···O1iii0.932.603.440 (2)151
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

MS acknowledges Higher Education commission of Pakistan for supporting PhD studies and the provision of a grant to strengthen the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-Ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chilean Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds