organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2662-o2663

tert-But­yl(2-hy­dr­oxy­eth­yl)aza­nium 4-[(1,3-thia­zol-2-yl­aza­nid­yl)sulfon­yl]aniline

aDepartment of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 1 August 2012; accepted 2 August 2012; online 8 August 2012)

Two pairs of independent cations and anions comprise the asymmetric unit of the title salt, C6H16NO+·C9H8N3O2S2. The cations are virtually superimposable and each exhibits a gauche disposition of the hy­droxy O and ammonium N atoms [the O—C—C—N torsion angles are 55.5 (3) and 57.5 (3)°]. Significant differences are seen in the mol­ecular structures of the anions as seen in the S—N—C—S [1.1 (3) and 32.9 (3)°] and C—S—N—C [−69.7 (2) and 91.4 (2)°] torsion angles. Despite the variations in conformation, intra­molecular hypervalent S⋯O inter­actions persist in each anion [3.078 (2) and 2.8730 (19) Å]. In the crystal, supra­molecular double layers are formed in the bc plane, being sustained by O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonding. These are connected along the a axis via C—H⋯O inter­actions.

Related literature

For structural studies of sulfathia­zole and derivatives, see: Bingham et al. (2001[Bingham, A. L., Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Tavener, S. & Threlfall, T. L. (2001). Chem. Commun. pp. 603-604.]); Caira (2007[Caira, M. R. (2007). Mol. Pharm. 4, 310-316.]). For previous crystal engineering studies, see: Arman, Kaulgud, Miller, Poplaukhin et al. (2012[Arman, H. D., Kaulgud, T., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2012). J. Chem. Crystallogr. 42, 673-679.]); Arman, Kaulgud, Miller & Tiekink (2012[Arman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. 227, 227-232.]). For hypervalent S⋯O inter­actions, see: O'Leary & Wallis (2007[O'Leary, J. & Wallis, J. D. (2007). CrystEngComm, 9, 941-950.]). For the structure of a related aza­nide, see: Brennan et al. (1971[Brennan, T. F., Shefter, E. & Sackman, P. (1971). Chem. Pharm. Bull. 19, 1919-1924.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16NO+·C9H8N3O2S2

  • Mr = 372.50

  • Monoclinic, P 21 /c

  • a = 13.893 (3) Å

  • b = 11.771 (3) Å

  • c = 22.191 (5) Å

  • β = 91.401 (4)°

  • V = 3627.9 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 98 K

  • 0.35 × 0.30 × 0.07 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • 18273 measured reflections

  • 8255 independent reflections

  • 7234 reflections with I > 2σ(I)

  • Rint = 0.056

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.136

  • S = 1.08

  • 8255 reflections

  • 451 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H21o⋯N1 0.84 (3) 1.90 (3) 2.739 (3) 177 (2)
O31—H31o⋯N2 0.83 (1) 1.97 (1) 2.796 (3) 174 (3)
N3—H2n⋯O12i 0.88 (2) 2.19 (2) 3.027 (3) 161 (3)
N13—H11n⋯O2ii 0.89 (2) 2.34 (2) 3.201 (3) 164 (2)
N13—H12n⋯O1iii 0.88 (2) 2.25 (2) 3.098 (3) 160 (2)
N21—H21n⋯N12 0.92 1.91 2.832 (3) 178
N21—H22n⋯O31 0.92 1.94 2.862 (3) 176
N31—H31n⋯N11 0.92 1.89 2.802 (3) 175
N31—H32n⋯O21 0.92 2.02 2.934 (3) 174
C2—H2⋯O11iv 0.95 2.43 3.356 (3) 164
C6—H6⋯O12i 0.95 2.50 3.263 (3) 137
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: Crystal­Clear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfathiazole and derivatives are well known to form polymorphs, co-crystals and solvates (Bingham et al., 2001; Caira, 2007) and attracted our interest in the context of previous crystal engineering studies conducted by our group (Arman, Kaulgud, Miller, Poplaukhin et al., 2012; Arman, Kaulgud, Miller & Tiekink, 2012). Herein, the crystal and molecular structure of the title salt, (I), is described.

Two independent cations, Figs 1 and 2, and two independent anions, Figs 3 and 4, comprise the asymmetric unit of (I). The cations are virtually super-imposable, Fig. 5. The key feature of the molecular structure of each cation is the gauche-disposition of the hydroxyl-O and ammonium-N atoms as seen in the values of the O21—C21—C22—N21 and O31—C31—C32—N31 torsion angles of 55.5 (3) and 57.5 (3)°, respectively A greater disparity is noted in the molecular structures of the anions. Thus, while the S2—N2—C1—S1 torsion angle is 1.1 (3)°, the comparable S12—N12—C11—S11 angle of 32.9 (3)° indicates a significant twist. There is also a twist about the S—N bond as seen in the values of the C4—S2—N2—C1 and C14—S12—N12—C11 torsion angles of -69.7 (2) and 91.4 (2)°, respectively. The dihedral angle between the respective five- and six-membered rings in each molecule is 86.46 (12) and 76.91 (11)°. Despite the variations in orientation, intramolecular hypervalent S···O interactions (O'Leary & Wallis, 2007) persist, i.e. 3.078 (2) and 2.8730 (19) Å, respectively. A similar contact of 3.01 Å was noted previously for the azanide anion isolated as its (4-sulfamoylphenyl)methanaminium salt (Brennan et al., 1971).

As expected from the composition, significant hydrogen bonding is apparent in the crystal structure of (I). Thus, O—H···N, N—H···O and N—H···N interactions lead to supramolecular double layers in the bc plane, Fig. 6 and Table 1. Both of the independent hydroxyl groups hydrogen bonds to a single anion, i.e. O21—H to the thiazole-N1, and O31—H to the azanide-N2. The ammonium cations are connected to each other via NH···O(hydroxyl) hydrogen bonds with the remaining ammonium-H atom on each cation connected to the same anion, via N21—H···N12-azanide and N31–H···N11(thiazole) hydrogen bonds. This results in the formation of two cation plus two anion aggregates. These are connected into a two dimensional sheet via aniline-NH···O(sulfonyl) hydrogen bonds. The sheet thus formed is connected into a double layer via aniline-N31–H···O2(sulfonyl) hydrogen bonds, indicated by '(x)' in Fig. 6, leading to 12-membered {···HNH···OSO···}2 synthons. The N3—H1n atom, labelled with '(y)' in Fig. 6, does not participate in a formal hydrogen bond. The closest potential acceptor atom, i.e. a symmetry-related O21(hydroxyl), is proximate at 3.472 (3) Å but, the intervention of a methyl group precludes the formation of a significant hydrogen bonding interaction. In addition to C–H···O interactions that contribute to the stability of the double layer, further C2–H···O11 contacts occur between layers that stack along the a direction, Fig. 7.

Related literature top

For structural studies of sulfathiazole and derivatives, see: Bingham et al. (2001); Caira (2007). For previous crystal engineering studies, see: Arman, Kaulgud, Miller, Poplaukhin et al. (2012); Arman, Kaulgud, Miller & Tiekink (2012). For hypervalent S···O interactions, see: O'Leary & Wallis (2007). For the structure of a related azanide, see: Brennan et al. (1971).

Experimental top

Sulfathiazole (Sigma-Aldrich) and tert-butyl(2-hydroxyethyl)amine (Sigma-Aldrich) were used as delivered. Single crystals of (I) were harvested from a 1:1 methanol/tetrahydrofuran (10 ml) solution of the amine and a stoichiometric amount of sulfathiazole (25 mg) that had been let to stand for about a week; M.pt 443–448 K.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The ammonium-H atoms were included in their idealized positions with N—H = 0.92 Å and with Uiso(H) set to 1.5Ueq(N). The O– and remaining N-bound H-atoms were located in a difference Fourier map and refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å (with H···H = 1.52±0.02 Å), and with Uiso(H) = 1.2(N)-1.5(O)Ueq(N, O).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the first independent cation of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of the second independent cation of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Molecular structure of the first independent anion of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 4] Fig. 4. Molecular structure of the second independent anion of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 5] Fig. 5. Superimposition of the two independent cations in (I). The C—N—C fragments have been superimposed. The N21 and and N31-containing molecules are shown as red and blue images, respectively.
[Figure 6] Fig. 6. Supramolecular layer in the bc plane in (I). The arrays are mediated by O–H···N, N—H···O and N—H···N hydrogen bonds which are shown as orange, purple and blue dashed lines, respectively. See text for the meaning of (x) and (y).
[Figure 7] Fig. 7. Unit-cell contents in (I) viewed in projection down the b axis. One double-layer is presented in space-filling mode.
tert-Butyl(2-hydroxyethyl)azanium 4-[(1,3-thiazol-2-ylazanidyl)sulfonyl]aniline top
Crystal data top
C6H16NO+·C9H8N3O2S2F(000) = 1584
Mr = 372.50Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 24162 reflections
a = 13.893 (3) Åθ = 2.4–40.3°
b = 11.771 (3) ŵ = 0.32 mm1
c = 22.191 (5) ÅT = 98 K
β = 91.401 (4)°Plate, colourless
V = 3627.9 (15) Å30.35 × 0.30 × 0.07 mm
Z = 8
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
7234 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 27.5°, θmin = 2.4°
ω scansh = 1718
18273 measured reflectionsk = 155
8255 independent reflectionsl = 2328
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0435P)2 + 3.8739P]
where P = (Fo2 + 2Fc2)/3
8255 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.36 e Å3
8 restraintsΔρmin = 0.45 e Å3
Crystal data top
C6H16NO+·C9H8N3O2S2V = 3627.9 (15) Å3
Mr = 372.50Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.893 (3) ŵ = 0.32 mm1
b = 11.771 (3) ÅT = 98 K
c = 22.191 (5) Å0.35 × 0.30 × 0.07 mm
β = 91.401 (4)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
7234 reflections with I > 2σ(I)
18273 measured reflectionsRint = 0.056
8255 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0558 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.36 e Å3
8255 reflectionsΔρmin = 0.45 e Å3
451 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16821 (5)0.10093 (5)0.47147 (3)0.02469 (14)
S20.36615 (4)0.23512 (5)0.50339 (3)0.01958 (13)
O10.38569 (13)0.11406 (15)0.50058 (8)0.0254 (4)
O20.45054 (12)0.30808 (16)0.50206 (8)0.0243 (4)
N10.15549 (15)0.26042 (19)0.39238 (10)0.0236 (4)
N20.29650 (14)0.27894 (17)0.45040 (9)0.0192 (4)
N30.16937 (17)0.3130 (2)0.73461 (10)0.0282 (5)
H1n0.174 (2)0.261 (2)0.7627 (11)0.042*
H2n0.153 (2)0.3833 (12)0.7421 (14)0.042*
C10.21311 (17)0.2228 (2)0.43601 (11)0.0196 (5)
C20.07372 (18)0.1937 (2)0.38592 (12)0.0261 (5)
H20.02510.20920.35620.031*
C30.06738 (19)0.1054 (2)0.42428 (12)0.0269 (5)
H30.01520.05330.42520.032*
C40.30798 (17)0.2583 (2)0.57212 (10)0.0187 (4)
C50.26187 (17)0.3620 (2)0.58306 (11)0.0203 (5)
H50.26140.41960.55310.024*
C60.21712 (17)0.3812 (2)0.63700 (11)0.0211 (5)
H60.18660.45200.64410.025*
C70.21672 (17)0.2954 (2)0.68182 (11)0.0221 (5)
C80.26184 (18)0.1920 (2)0.67037 (11)0.0236 (5)
H80.26150.13360.69990.028*
C90.30725 (18)0.1737 (2)0.61606 (11)0.0221 (5)
H90.33800.10300.60880.027*
S110.28142 (5)0.98598 (5)0.32531 (3)0.02459 (14)
S120.14994 (4)0.80923 (5)0.23655 (3)0.01828 (13)
O110.06213 (12)0.74301 (16)0.23845 (8)0.0230 (4)
O120.13976 (12)0.93223 (15)0.23321 (8)0.0224 (4)
N110.35743 (15)0.79060 (18)0.34885 (9)0.0222 (4)
N120.21478 (14)0.76971 (17)0.29279 (9)0.0197 (4)
N130.37494 (17)0.6429 (2)0.02991 (11)0.0298 (5)
H11n0.4289 (15)0.676 (2)0.0189 (15)0.045*
H12n0.364 (2)0.5731 (14)0.0170 (15)0.045*
C110.28445 (16)0.8372 (2)0.31912 (10)0.0174 (4)
C120.41351 (18)0.8728 (2)0.37772 (11)0.0235 (5)
H120.46900.85360.40150.028*
C130.38494 (19)0.9815 (2)0.37019 (11)0.0258 (5)
H130.41691.04590.38700.031*
C140.21076 (17)0.7648 (2)0.17170 (10)0.0189 (4)
C150.28885 (17)0.8281 (2)0.15081 (11)0.0214 (5)
H150.30470.89880.16910.026*
C160.34297 (18)0.7878 (2)0.10361 (11)0.0223 (5)
H160.39540.83160.08970.027*
C170.32109 (17)0.6825 (2)0.07608 (11)0.0212 (5)
C180.24137 (17)0.6213 (2)0.09704 (11)0.0213 (5)
H180.22430.55110.07850.026*
C190.18755 (17)0.6616 (2)0.14420 (11)0.0206 (5)
H190.13450.61860.15790.025*
O210.20607 (12)0.43422 (15)0.31746 (8)0.0221 (4)
H21o0.190 (2)0.383 (2)0.3413 (12)0.033*
N210.12174 (14)0.62867 (17)0.37680 (9)0.0190 (4)
H21n0.15080.67390.34870.023*
H22n0.16990.59030.39740.023*
C210.11863 (18)0.4853 (2)0.29455 (11)0.0220 (5)
H21A0.07830.42600.27480.026*
H21B0.13470.54230.26360.026*
C220.06114 (17)0.5426 (2)0.34340 (11)0.0228 (5)
H22A0.00410.58050.32490.027*
H22B0.03830.48460.37200.027*
C230.07187 (17)0.7065 (2)0.42153 (11)0.0203 (5)
C240.15194 (18)0.7693 (2)0.45610 (12)0.0257 (5)
H24A0.18850.81580.42800.039*
H24B0.19510.71410.47580.039*
H24C0.12360.81850.48660.039*
C250.00759 (19)0.7910 (2)0.38651 (12)0.0268 (5)
H25A0.04710.83610.35950.040*
H25B0.02430.84150.41490.040*
H25C0.04120.74920.36280.040*
C260.0141 (2)0.6337 (2)0.46453 (12)0.0293 (6)
H26A0.03710.59390.44180.044*
H26B0.01460.68240.49510.044*
H26C0.05680.57800.48430.044*
O310.26830 (12)0.51401 (15)0.44630 (8)0.0220 (4)
H31o0.275 (2)0.4438 (9)0.4450 (14)0.033*
N310.38695 (14)0.55543 (17)0.34314 (9)0.0184 (4)
H31n0.37350.63190.34380.022*
H32n0.32930.51780.33780.022*
C310.36309 (17)0.5610 (2)0.45343 (11)0.0224 (5)
H31A0.39120.53720.49290.027*
H31B0.35880.64500.45330.027*
C320.42873 (17)0.5231 (2)0.40364 (11)0.0220 (5)
H32A0.49280.55890.40940.026*
H32B0.43730.43960.40560.026*
C330.44814 (17)0.5317 (2)0.28840 (11)0.0209 (5)
C340.46354 (19)0.4039 (2)0.28245 (12)0.0271 (5)
H34A0.50060.37610.31760.041*
H34B0.49890.38810.24570.041*
H34C0.40100.36550.28030.041*
C350.54298 (18)0.5966 (2)0.29574 (12)0.0282 (6)
H35A0.57960.56660.33060.042*
H35B0.52950.67740.30210.042*
H35C0.58070.58730.25930.042*
C360.39072 (18)0.5777 (2)0.23432 (11)0.0241 (5)
H36A0.38170.65980.23900.036*
H36B0.32770.54020.23190.036*
H36C0.42580.56260.19740.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0275 (3)0.0196 (3)0.0267 (3)0.0048 (2)0.0058 (2)0.0056 (2)
S20.0187 (3)0.0186 (3)0.0213 (3)0.0015 (2)0.0034 (2)0.0021 (2)
O10.0311 (10)0.0188 (9)0.0260 (9)0.0069 (7)0.0054 (7)0.0034 (7)
O20.0177 (8)0.0286 (10)0.0264 (9)0.0019 (7)0.0026 (7)0.0046 (7)
N10.0230 (10)0.0228 (11)0.0246 (11)0.0042 (8)0.0055 (8)0.0027 (8)
N20.0202 (10)0.0170 (10)0.0203 (10)0.0020 (7)0.0037 (7)0.0004 (8)
N30.0342 (12)0.0267 (12)0.0240 (11)0.0049 (9)0.0045 (9)0.0014 (9)
C10.0225 (11)0.0168 (11)0.0195 (11)0.0015 (9)0.0010 (9)0.0024 (9)
C20.0233 (12)0.0278 (13)0.0267 (13)0.0049 (10)0.0076 (10)0.0011 (10)
C30.0265 (13)0.0254 (13)0.0285 (13)0.0077 (10)0.0048 (10)0.0020 (10)
C40.0204 (11)0.0187 (11)0.0169 (11)0.0009 (8)0.0015 (8)0.0024 (9)
C50.0212 (11)0.0168 (11)0.0229 (11)0.0000 (9)0.0021 (9)0.0017 (9)
C60.0208 (11)0.0176 (11)0.0247 (12)0.0008 (8)0.0030 (9)0.0018 (9)
C70.0177 (11)0.0250 (13)0.0232 (12)0.0065 (9)0.0032 (9)0.0002 (10)
C80.0254 (12)0.0201 (12)0.0249 (12)0.0040 (9)0.0061 (9)0.0060 (10)
C90.0255 (12)0.0159 (11)0.0247 (12)0.0005 (9)0.0047 (9)0.0009 (9)
S110.0278 (3)0.0170 (3)0.0287 (3)0.0006 (2)0.0042 (2)0.0020 (2)
S120.0177 (3)0.0187 (3)0.0183 (3)0.0004 (2)0.0012 (2)0.0003 (2)
O110.0186 (8)0.0276 (10)0.0228 (9)0.0041 (7)0.0007 (6)0.0013 (7)
O120.0260 (9)0.0192 (9)0.0220 (8)0.0040 (7)0.0008 (7)0.0012 (7)
N110.0226 (10)0.0219 (11)0.0218 (10)0.0010 (8)0.0029 (8)0.0012 (8)
N120.0224 (10)0.0185 (10)0.0181 (10)0.0026 (8)0.0026 (7)0.0039 (8)
N130.0309 (12)0.0275 (12)0.0313 (12)0.0018 (9)0.0072 (9)0.0037 (10)
C110.0197 (11)0.0170 (11)0.0155 (10)0.0012 (8)0.0030 (8)0.0012 (8)
C120.0229 (12)0.0264 (13)0.0209 (12)0.0037 (9)0.0033 (9)0.0032 (10)
C130.0277 (13)0.0265 (13)0.0230 (12)0.0072 (10)0.0016 (10)0.0036 (10)
C140.0195 (11)0.0185 (11)0.0186 (11)0.0014 (8)0.0014 (8)0.0008 (9)
C150.0219 (11)0.0178 (11)0.0243 (12)0.0006 (9)0.0015 (9)0.0002 (9)
C160.0233 (12)0.0203 (12)0.0234 (12)0.0034 (9)0.0005 (9)0.0023 (9)
C170.0186 (11)0.0237 (12)0.0211 (11)0.0022 (9)0.0048 (9)0.0032 (9)
C180.0241 (12)0.0174 (11)0.0222 (12)0.0009 (9)0.0044 (9)0.0002 (9)
C190.0175 (11)0.0223 (12)0.0218 (11)0.0023 (8)0.0024 (9)0.0038 (9)
O210.0238 (9)0.0189 (9)0.0236 (9)0.0015 (7)0.0022 (7)0.0033 (7)
N210.0178 (9)0.0182 (10)0.0210 (10)0.0027 (7)0.0010 (7)0.0016 (8)
C210.0269 (12)0.0177 (11)0.0214 (12)0.0006 (9)0.0047 (9)0.0017 (9)
C220.0219 (12)0.0192 (12)0.0270 (12)0.0031 (9)0.0023 (9)0.0028 (10)
C230.0209 (11)0.0193 (12)0.0208 (11)0.0002 (9)0.0025 (9)0.0019 (9)
C240.0244 (12)0.0269 (13)0.0258 (13)0.0027 (10)0.0007 (10)0.0057 (10)
C250.0259 (13)0.0216 (13)0.0328 (14)0.0023 (10)0.0010 (10)0.0025 (10)
C260.0326 (14)0.0291 (14)0.0265 (13)0.0055 (11)0.0082 (10)0.0018 (11)
O310.0227 (8)0.0190 (9)0.0242 (9)0.0016 (7)0.0032 (7)0.0003 (7)
N310.0188 (9)0.0166 (10)0.0197 (10)0.0011 (7)0.0034 (7)0.0017 (7)
C310.0240 (12)0.0225 (12)0.0206 (11)0.0016 (9)0.0036 (9)0.0005 (9)
C320.0225 (12)0.0228 (12)0.0204 (12)0.0020 (9)0.0050 (9)0.0014 (9)
C330.0215 (11)0.0219 (12)0.0193 (11)0.0009 (9)0.0013 (9)0.0003 (9)
C340.0296 (13)0.0243 (13)0.0270 (13)0.0062 (10)0.0056 (10)0.0019 (10)
C350.0208 (12)0.0343 (15)0.0294 (13)0.0041 (10)0.0007 (10)0.0043 (11)
C360.0256 (12)0.0260 (13)0.0206 (12)0.0030 (10)0.0009 (9)0.0019 (10)
Geometric parameters (Å, º) top
S1—C31.729 (3)C18—H180.9500
S1—C11.758 (3)C19—H190.9500
S2—O11.4524 (18)O21—C211.437 (3)
S2—O21.4542 (18)O21—H21O0.835 (10)
S2—N21.590 (2)N21—C221.502 (3)
S2—C41.765 (2)N21—C231.529 (3)
N1—C11.318 (3)N21—H21N0.9200
N1—C21.386 (3)N21—H22N0.9200
N2—C11.365 (3)C21—C221.520 (3)
N3—C71.373 (3)C21—H21A0.9900
N3—H1N0.873 (10)C21—H21B0.9900
N3—H2N0.875 (10)C22—H22A0.9900
C2—C31.348 (4)C22—H22B0.9900
C2—H20.9500C23—C261.526 (3)
C3—H30.9500C23—C241.527 (3)
C4—C91.394 (3)C23—C251.535 (3)
C4—C51.402 (3)C24—H24A0.9800
C5—C61.381 (3)C24—H24B0.9800
C5—H50.9500C24—H24C0.9800
C6—C71.417 (3)C25—H25A0.9800
C6—H60.9500C25—H25B0.9800
C7—C81.395 (4)C25—H25C0.9800
C8—C91.391 (4)C26—H26A0.9800
C8—H80.9500C26—H26B0.9800
C9—H90.9500C26—H26C0.9800
S11—C131.730 (3)O31—C311.434 (3)
S11—C111.757 (2)O31—H31O0.833 (10)
S12—O111.4493 (17)N31—C321.499 (3)
S12—O121.4563 (18)N31—C331.525 (3)
S12—N121.591 (2)N31—H31N0.9200
S12—C141.766 (2)N31—H32N0.9200
N11—C111.316 (3)C31—C321.517 (3)
N11—C121.389 (3)C31—H31A0.9900
N12—C111.372 (3)C31—H31B0.9900
N13—C171.365 (3)C32—H32A0.9900
N13—H11N0.882 (10)C32—H32B0.9900
N13—H12N0.882 (10)C33—C361.524 (3)
C12—C131.348 (4)C33—C341.525 (3)
C12—H120.9500C33—C351.528 (3)
C13—H130.9500C34—H34A0.9800
C14—C191.394 (3)C34—H34B0.9800
C14—C151.404 (3)C34—H34C0.9800
C15—C161.388 (3)C35—H35A0.9800
C15—H150.9500C35—H35B0.9800
C16—C171.412 (4)C35—H35C0.9800
C16—H160.9500C36—H36A0.9800
C17—C181.410 (3)C36—H36B0.9800
C18—C191.385 (3)C36—H36C0.9800
C3—S1—C189.73 (12)C22—N21—H22N107.8
O1—S2—O2115.27 (11)C23—N21—H22N107.8
O1—S2—N2113.42 (11)H21N—N21—H22N107.2
O2—S2—N2105.65 (11)O21—C21—C22112.8 (2)
O1—S2—C4106.20 (11)O21—C21—H21A109.0
O2—S2—C4108.22 (11)C22—C21—H21A109.0
N2—S2—C4107.80 (11)O21—C21—H21B109.0
C1—N1—C2111.5 (2)C22—C21—H21B109.0
C1—N2—S2120.90 (17)H21A—C21—H21B107.8
C7—N3—H1N118 (2)N21—C22—C21110.69 (19)
C7—N3—H2N116 (2)N21—C22—H22A109.5
H1N—N3—H2N123 (2)C21—C22—H22A109.5
N1—C1—N2120.4 (2)N21—C22—H22B109.5
N1—C1—S1112.79 (18)C21—C22—H22B109.5
N2—C1—S1126.79 (18)H22A—C22—H22B108.1
C3—C2—N1116.0 (2)C26—C23—C24110.2 (2)
C3—C2—H2122.0C26—C23—N21108.8 (2)
N1—C2—H2122.0C24—C23—N21106.28 (19)
C2—C3—S1109.96 (19)C26—C23—C25111.8 (2)
C2—C3—H3125.0C24—C23—C25110.4 (2)
S1—C3—H3125.0N21—C23—C25109.06 (19)
C9—C4—C5119.3 (2)C23—C24—H24A109.5
C9—C4—S2120.35 (18)C23—C24—H24B109.5
C5—C4—S2120.34 (18)H24A—C24—H24B109.5
C6—C5—C4120.7 (2)C23—C24—H24C109.5
C6—C5—H5119.7H24A—C24—H24C109.5
C4—C5—H5119.7H24B—C24—H24C109.5
C5—C6—C7120.1 (2)C23—C25—H25A109.5
C5—C6—H6120.0C23—C25—H25B109.5
C7—C6—H6120.0H25A—C25—H25B109.5
N3—C7—C8120.9 (2)C23—C25—H25C109.5
N3—C7—C6120.1 (2)H25A—C25—H25C109.5
C8—C7—C6119.0 (2)H25B—C25—H25C109.5
C9—C8—C7120.6 (2)C23—C26—H26A109.5
C9—C8—H8119.7C23—C26—H26B109.5
C7—C8—H8119.7H26A—C26—H26B109.5
C8—C9—C4120.4 (2)C23—C26—H26C109.5
C8—C9—H9119.8H26A—C26—H26C109.5
C4—C9—H9119.8H26B—C26—H26C109.5
C13—S11—C1189.62 (12)C31—O31—H31O106 (2)
O11—S12—O12117.09 (11)C32—N31—C33117.09 (18)
O11—S12—N12106.30 (11)C32—N31—H31N108.0
O12—S12—N12112.52 (11)C33—N31—H31N108.0
O11—S12—C14106.52 (11)C32—N31—H32N108.0
O12—S12—C14107.51 (11)C33—N31—H32N108.0
N12—S12—C14106.24 (11)H31N—N31—H32N107.3
C11—N11—C12110.9 (2)O31—C31—C32111.9 (2)
C11—N12—S12123.00 (17)O31—C31—H31A109.2
C17—N13—H11N123 (2)C32—C31—H31A109.2
C17—N13—H12N118 (2)O31—C31—H31B109.2
H11N—N13—H12N117 (2)C32—C31—H31B109.2
N11—C11—N12119.9 (2)H31A—C31—H31B107.9
N11—C11—S11113.34 (18)N31—C32—C31110.55 (19)
N12—C11—S11126.35 (18)N31—C32—H32A109.5
C13—C12—N11116.3 (2)C31—C32—H32A109.5
C13—C12—H12121.8N31—C32—H32B109.5
N11—C12—H12121.8C31—C32—H32B109.5
C12—C13—S11109.79 (19)H32A—C32—H32B108.1
C12—C13—H13125.1C36—C33—C34110.7 (2)
S11—C13—H13125.1C36—C33—N31105.70 (19)
C19—C14—C15119.4 (2)C34—C33—N31109.4 (2)
C19—C14—S12120.32 (18)C36—C33—C35109.8 (2)
C15—C14—S12120.05 (19)C34—C33—C35112.3 (2)
C16—C15—C14120.3 (2)N31—C33—C35108.62 (19)
C16—C15—H15119.8C33—C34—H34A109.5
C14—C15—H15119.8C33—C34—H34B109.5
C15—C16—C17120.8 (2)H34A—C34—H34B109.5
C15—C16—H16119.6C33—C34—H34C109.5
C17—C16—H16119.6H34A—C34—H34C109.5
N13—C17—C18121.5 (2)H34B—C34—H34C109.5
N13—C17—C16120.6 (2)C33—C35—H35A109.5
C18—C17—C16118.0 (2)C33—C35—H35B109.5
C19—C18—C17121.1 (2)H35A—C35—H35B109.5
C19—C18—H18119.4C33—C35—H35C109.5
C17—C18—H18119.4H35A—C35—H35C109.5
C18—C19—C14120.4 (2)H35B—C35—H35C109.5
C18—C19—H19119.8C33—C36—H36A109.5
C14—C19—H19119.8C33—C36—H36B109.5
C21—O21—H21O107 (2)H36A—C36—H36B109.5
C22—N21—C23117.87 (18)C33—C36—H36C109.5
C22—N21—H21N107.8H36A—C36—H36C109.5
C23—N21—H21N107.8H36B—C36—H36C109.5
O1—S2—N2—C147.6 (2)S12—N12—C11—N11154.89 (18)
O2—S2—N2—C1174.80 (18)S12—N12—C11—S1132.9 (3)
C4—S2—N2—C169.7 (2)C13—S11—C11—N110.25 (19)
C2—N1—C1—N2178.3 (2)C13—S11—C11—N12172.9 (2)
C2—N1—C1—S10.2 (3)C11—N11—C12—C130.4 (3)
S2—N2—C1—N1179.38 (19)N11—C12—C13—S110.6 (3)
S2—N2—C1—S11.1 (3)C11—S11—C13—C120.5 (2)
C3—S1—C1—N10.5 (2)O11—S12—C14—C1918.3 (2)
C3—S1—C1—N2177.9 (2)O12—S12—C14—C19144.61 (19)
C1—N1—C2—C30.3 (3)N12—S12—C14—C1994.7 (2)
N1—C2—C3—S10.7 (3)O11—S12—C14—C15167.58 (19)
C1—S1—C3—C20.6 (2)O12—S12—C14—C1541.3 (2)
O1—S2—C4—C913.0 (2)N12—S12—C14—C1579.4 (2)
O2—S2—C4—C9111.3 (2)C19—C14—C15—C160.6 (4)
N2—S2—C4—C9134.9 (2)S12—C14—C15—C16173.55 (19)
O1—S2—C4—C5166.88 (19)C14—C15—C16—C170.5 (4)
O2—S2—C4—C568.8 (2)C15—C16—C17—N13179.6 (2)
N2—S2—C4—C545.0 (2)C15—C16—C17—C181.5 (4)
C9—C4—C5—C60.8 (4)N13—C17—C18—C19179.5 (2)
S2—C4—C5—C6179.28 (18)C16—C17—C18—C191.6 (4)
C4—C5—C6—C70.5 (4)C17—C18—C19—C140.6 (4)
C5—C6—C7—N3177.7 (2)C15—C14—C19—C180.5 (4)
C5—C6—C7—C80.2 (3)S12—C14—C19—C18173.60 (18)
N3—C7—C8—C9178.1 (2)C23—N21—C22—C21171.49 (19)
C6—C7—C8—C90.6 (4)O21—C21—C22—N2155.5 (3)
C7—C8—C9—C40.3 (4)C22—N21—C23—C2651.7 (3)
C5—C4—C9—C80.4 (4)C22—N21—C23—C24170.4 (2)
S2—C4—C9—C8179.69 (19)C22—N21—C23—C2570.6 (3)
O11—S12—N12—C11155.40 (19)C33—N31—C32—C31175.3 (2)
O12—S12—N12—C1126.0 (2)O31—C31—C32—N3157.5 (3)
C14—S12—N12—C1191.4 (2)C32—N31—C33—C36177.4 (2)
C12—N11—C11—N12173.1 (2)C32—N31—C33—C3463.4 (3)
C12—N11—C11—S110.0 (3)C32—N31—C33—C3559.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21o···N10.84 (3)1.90 (3)2.739 (3)177 (2)
O31—H31o···N20.83 (1)1.97 (1)2.796 (3)174 (3)
N3—H2n···O12i0.88 (2)2.19 (2)3.027 (3)161 (3)
N13—H11n···O2ii0.89 (2)2.34 (2)3.201 (3)164 (2)
N13—H12n···O1iii0.88 (2)2.25 (2)3.098 (3)160 (2)
N21—H21n···N120.921.912.832 (3)178
N21—H22n···O310.921.942.862 (3)176
N31—H31n···N110.921.892.802 (3)175
N31—H32n···O210.922.022.934 (3)174
C2—H2···O11iv0.952.433.356 (3)164
C6—H6···O12i0.952.503.263 (3)137
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H16NO+·C9H8N3O2S2
Mr372.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)13.893 (3), 11.771 (3), 22.191 (5)
β (°) 91.401 (4)
V3)3627.9 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.35 × 0.30 × 0.07
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18273, 8255, 7234
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.136, 1.08
No. of reflections8255
No. of parameters451
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.45

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O21—H21o···N10.84 (3)1.90 (3)2.739 (3)177 (2)
O31—H31o···N20.832 (11)1.967 (11)2.796 (3)174 (3)
N3—H2n···O12i0.875 (17)2.188 (15)3.027 (3)161 (3)
N13—H11n···O2ii0.89 (2)2.34 (2)3.201 (3)164 (2)
N13—H12n···O1iii0.882 (19)2.254 (18)3.098 (3)160 (2)
N21—H21n···N120.921.912.832 (3)178
N21—H22n···O310.921.942.862 (3)176
N31—H31n···N110.921.892.802 (3)175
N31—H32n···O210.922.022.934 (3)174
C2—H2···O11iv0.952.433.356 (3)164
C6—H6···O12i0.952.503.263 (3)137
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationArman, H. D., Kaulgud, T., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2012). J. Chem. Crystallogr. 42, 673–679.  Web of Science CSD CrossRef CAS Google Scholar
First citationArman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. 227, 227–232.  Web of Science CrossRef CAS Google Scholar
First citationBingham, A. L., Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Tavener, S. & Threlfall, T. L. (2001). Chem. Commun. pp. 603–604.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrennan, T. F., Shefter, E. & Sackman, P. (1971). Chem. Pharm. Bull. 19, 1919–1924.  CrossRef CAS Google Scholar
First citationCaira, M. R. (2007). Mol. Pharm. 4, 310–316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationO'Leary, J. & Wallis, J. D. (2007). CrystEngComm, 9, 941–950.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2662-o2663
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds