organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-2-Hy­dr­oxy-5-iodo­benzyl­­idene]-4-methyl­benzene­sulfono­hydrazide

aDepartment of Chemistry, Faculty of Science, University of Zanjan, 45371-38791 Zanjan, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: m_ghorbanloo@yahoo.com

(Received 1 August 2012; accepted 14 August 2012; online 23 August 2012)

In the title mol­ecule, C14H13IN2O3S, the dihedral angle between the planes of the benzene and toluene rings is 84.3 (3)°. The mol­ecule displays a trans conformation with respect to the C=N bond. There is an intra­molecular O—H⋯N hydrogen bond with the azomethine N atom as acceptor. In the crystal, N—H⋯O hydrogen bonds connect the mol­ecules into chains running along the b axis.

Related literature

For background to sulfonamides, see: Kayser et al. (2004[Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1-20. Berlin: Thieme Medical.]). For related structures and their applications, see: Shahverdizadeh et al. (2011[Shahverdizadeh, G. H., Bikas, R., Eivazi, M., Mahboubi Anarjan, P. & Notash, B. (2011). Acta Cryst. E67, o713.]); Ali et al. (2007[Ali, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617-o1618.]); Tierney et al. (2006[Tierney, M., McPhee, S. Jr & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1-50. New York: McGraw-Hill Medical.]); Silva et al. (2006[Silva, L. L., Oliveira, K. N. & Nunes, R. J. (2006). ARKIVOC, 13, 124-129.]). For polymorphism in sulfono­hydrazides, see: Kia et al. (2008[Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2341.]); Tai et al. (2009[Tai, X. & Feng, Y. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25, 41-42.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13IN2O3S

  • Mr = 416.23

  • Monoclinic, P 21

  • a = 6.2467 (12) Å

  • b = 10.394 (2) Å

  • c = 11.971 (2) Å

  • β = 92.42 (3)°

  • V = 776.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.405, Tmax = 0.667

  • 6035 measured reflections

  • 3841 independent reflections

  • 2791 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.114

  • S = 0.92

  • 3841 reflections

  • 197 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.99 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1641 Friedel pairs

  • Flack parameter: −0.06 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 (2) 1.91 (5) 2.589 (6) 139 (7)
N2—H2A⋯O1i 0.86 (2) 2.05 (2) 2.914 (6) 173 (6)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfonyl hydrazones are found to exhibit large medicinal applications. Similar to sulfonamides, sulfonyl hydrazones also have various biological activities (Kayser et al., 2004). For example, imidosulfonylhydrazones have antibacterial and antineociceptive properties (Silva et al., 2006). Acidic sulfonyl hydrazone derivatives have analgesic and anti-inflammatory activities. On the other hand, polymorphism is a phenomenon wherein the same substances exhibits different crystal packing arrangements and is of practical importance e.g., pharmaceutical processes where different physical properties of polymorphic forms can substantially alter the viability and quality of product. Plymorphism is another interesting subject in sulfonyl hydrazones. sulfonyl hydrazones derived from the condensation of O-hydroxy aldehydes and sulfonyl acid hydrazides can form different polymorphs. Kia et al. (2008) and Tai et al. (2009) have reported two polymorph of these type of compounds.

We report here the crystal structure of (E)-N'-(2-hydroxy-5-iodobenzylidene)-4-methylbenzenesulfonohydrazide. The asymmetric unit of the title compound contains one molecule, which is shown in Fig. 1. Bond distances and bond angles are in the normal range of similar compounds (Shahverdizadeh et al., 2011; Ali et al., 2007; Tierney et al., 2006). The molecule displays trans configuration with respect to the C=N bond. The packing diagram of the title compound is shown in Fig. 2. In the title compound, the dihedral angle between the planes of benzene and toluene rings is 84.3 (3)°. There is an intramolecular O—H···N hydrogen bond in which the nitrogen of the azomethine group (–C=N–) acting as hydrogen bond acceptor. Intermolecular N—H···O hydrogen bond stabilize the crystal structure (Fig. 2 & Table 1).

Related literature top

For background to sulfonamides, see: Kayser et al. (2004). For related structures and their applications, see: Shahverdizadeh et al. (2011); Ali et al. (2007); Tierney et al. (2006); Silva et al. (2006). For polymorphism in sulfonohydrazides, see: Kia et al. (2008); Tai et al. (2009).

Experimental top

For preparing the title compound, a methanol (10 ml) solution of 2-hydroxy-5-iodobenzaldehyde (2 mmol) was dropwise added to a methanol solution (10 ml) of 4-methyl-benzenesulfonic acid hydrazide (2 mmol), and the mixture was refluxed for 3 hrs. Then the solution was evaporated on a steam bath to 5 ml and cooled to room temperature. A white precipitate of the title compound was separated and filtered off, washed with 5 ml of cooled methanol and then dried in air. X-ray quality crystals of the title compound were obtained from methanol by slow solvent evaporation. Yield: 90%. Selected IR (cm-1): 3464 (w, broad), 3140 (m), 1619 (s), 1481 (vs), 1359 (s), 1329 (vs), 1264 (vs), 1177 (s), 1087 (s), 956 (vs), 869 (vs) 772 (s), 666 (s), 545 (s), 458 (m).

Refinement top

The hydrogen atoms bonded to O and N atoms were found in difference Fourier map and there coordinates were refined with Uiso(H) = 1.2 Ueq(O,N). The O—H and N—H distances were restrained to 0.82 (2)Å and 0.86 (2)Å, respectively. H atoms bonded to C were positioned geometrically and refined as riding atoms with C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for the methyl group and C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for the other H atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
The molecular structure of the title compound with atom labels. Anisotropic displacement ellipsoids drawn at 30% probability level for non-H atoms.

The packing diagram of the title compound. Hydrogen bonds are shown as blue dashed line.
N'-[(E)-2-Hydroxy-5-iodobenzylidene]-4- methylbenzenesulfonohydrazide top
Crystal data top
C14H13IN2O3SF(000) = 408
Mr = 416.23Dx = 1.780 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3841 reflections
a = 6.2467 (12) Åθ = 1.7–29.2°
b = 10.394 (2) ŵ = 2.21 mm1
c = 11.971 (2) ÅT = 298 K
β = 92.42 (3)°Plate, colorless
V = 776.6 (3) Å30.50 × 0.40 × 0.20 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
3841 independent reflections
Radiation source: fine-focus sealed tube2791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 1.7°
rotation method scansh = 78
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
k = 1413
Tmin = 0.405, Tmax = 0.667l = 1616
6035 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
3841 reflectionsΔρmax = 0.88 e Å3
197 parametersΔρmin = 0.99 e Å3
3 restraintsAbsolute structure: Flack (1983), 1641 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (3)
Crystal data top
C14H13IN2O3SV = 776.6 (3) Å3
Mr = 416.23Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.2467 (12) ŵ = 2.21 mm1
b = 10.394 (2) ÅT = 298 K
c = 11.971 (2) Å0.50 × 0.40 × 0.20 mm
β = 92.42 (3)°
Data collection top
Stoe IPDS 2
diffractometer
3841 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
2791 reflections with I > 2σ(I)
Tmin = 0.405, Tmax = 0.667Rint = 0.059
6035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114Δρmax = 0.88 e Å3
S = 0.92Δρmin = 0.99 e Å3
3841 reflectionsAbsolute structure: Flack (1983), 1641 Friedel pairs
197 parametersAbsolute structure parameter: 0.06 (3)
3 restraints
Special details top

Experimental. shape of crystal determined optically

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.80088 (6)0.64270 (4)0.32973 (4)0.07048 (17)
S10.2369 (2)0.51804 (13)0.17826 (10)0.0423 (3)
O10.2908 (7)0.3287 (4)0.0117 (4)0.0493 (9)
O20.1752 (7)0.3869 (4)0.1850 (4)0.0584 (11)
O30.4564 (6)0.5561 (4)0.1806 (4)0.0566 (10)
N10.0354 (7)0.5237 (4)0.0251 (3)0.0387 (9)
N20.1570 (7)0.5714 (4)0.0580 (4)0.0427 (10)
C10.6247 (8)0.5391 (5)0.2153 (4)0.0437 (12)
C20.6906 (8)0.4168 (6)0.1848 (4)0.0452 (12)
H20.81030.38060.21610.054*
C30.5781 (9)0.3485 (5)0.1074 (5)0.0455 (12)
H30.62450.26720.08490.055*
C40.3963 (8)0.4012 (5)0.0633 (4)0.0377 (10)
C50.3257 (8)0.5256 (5)0.0950 (4)0.0369 (10)
C60.4431 (8)0.5934 (5)0.1716 (4)0.0406 (11)
H60.39990.67550.19370.049*
C70.1345 (8)0.5822 (5)0.0518 (4)0.0374 (10)
H70.08370.66050.07950.045*
C80.0891 (8)0.6054 (5)0.2828 (4)0.0420 (12)
C90.1739 (10)0.7173 (5)0.3242 (5)0.0456 (12)
H90.30880.74570.29920.055*
C100.0552 (11)0.7865 (6)0.4035 (5)0.0543 (15)
H100.11160.86200.43170.065*
C110.1458 (11)0.7461 (6)0.4418 (5)0.0543 (14)
C120.2764 (15)0.8255 (10)0.5268 (7)0.082 (2)
H12A0.29100.77910.59600.123*
H12B0.20490.90580.53900.123*
H12C0.41580.84190.49910.123*
C130.2264 (9)0.6346 (9)0.3970 (5)0.0598 (14)
H130.36180.60650.42140.072*
C140.1134 (10)0.5641 (6)0.3177 (5)0.0532 (14)
H140.17170.48990.28800.064*
H10.173 (6)0.359 (7)0.024 (6)0.064*
H2A0.186 (11)0.649 (3)0.037 (6)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0614 (2)0.0783 (3)0.0737 (3)0.0046 (3)0.02653 (18)0.0203 (3)
S10.0421 (7)0.0388 (6)0.0469 (6)0.0040 (5)0.0134 (5)0.0008 (5)
O10.057 (2)0.0328 (19)0.060 (2)0.0003 (17)0.019 (2)0.0067 (16)
O20.070 (3)0.042 (2)0.064 (3)0.007 (2)0.012 (2)0.0030 (18)
O30.040 (2)0.063 (2)0.068 (2)0.0066 (18)0.0153 (18)0.008 (2)
N10.041 (2)0.036 (2)0.040 (2)0.0023 (18)0.0073 (17)0.0028 (17)
N20.044 (2)0.041 (2)0.044 (2)0.002 (2)0.0133 (19)0.0004 (19)
C10.042 (3)0.050 (3)0.039 (2)0.008 (2)0.008 (2)0.001 (2)
C20.038 (3)0.047 (3)0.050 (3)0.002 (2)0.007 (2)0.008 (2)
C30.044 (3)0.037 (3)0.056 (3)0.004 (2)0.007 (2)0.004 (2)
C40.042 (3)0.030 (2)0.041 (2)0.005 (2)0.005 (2)0.0026 (19)
C50.038 (2)0.037 (3)0.035 (2)0.006 (2)0.0018 (19)0.002 (2)
C60.045 (3)0.035 (2)0.042 (2)0.002 (2)0.005 (2)0.0055 (19)
C70.043 (3)0.029 (2)0.041 (2)0.001 (2)0.004 (2)0.0008 (18)
C80.039 (3)0.044 (3)0.044 (2)0.004 (2)0.015 (2)0.0020 (19)
C90.046 (3)0.043 (3)0.048 (3)0.004 (2)0.005 (2)0.004 (2)
C100.067 (4)0.047 (3)0.051 (3)0.002 (3)0.018 (3)0.007 (2)
C110.060 (4)0.064 (4)0.040 (3)0.014 (3)0.011 (2)0.001 (3)
C120.086 (6)0.099 (6)0.059 (4)0.000 (5)0.008 (4)0.013 (4)
C130.047 (3)0.077 (4)0.055 (3)0.011 (4)0.005 (2)0.011 (4)
C140.050 (3)0.052 (3)0.059 (3)0.007 (3)0.013 (3)0.003 (3)
Geometric parameters (Å, º) top
I1—C12.092 (5)C5—C71.447 (7)
S1—O21.418 (5)C6—H60.9300
S1—O31.429 (4)C7—H70.9300
S1—N21.640 (4)C8—C91.379 (7)
S1—C81.774 (5)C8—C141.384 (8)
O1—C41.364 (6)C9—C101.381 (9)
O1—H10.82 (2)C9—H90.9300
N1—C71.283 (6)C10—C111.384 (9)
N1—N21.373 (6)C10—H100.9300
N2—H2A0.86 (2)C11—C131.380 (11)
C1—C21.380 (8)C11—C121.521 (11)
C1—C61.389 (7)C12—H12A0.9600
C2—C31.382 (8)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.385 (7)C13—C141.371 (10)
C3—H30.9300C13—H130.9300
C4—C51.413 (7)C14—H140.9300
C5—C61.390 (6)
O2—S1—O3121.6 (3)C5—C6—H6119.9
O2—S1—N2106.4 (2)N1—C7—C5119.6 (4)
O3—S1—N2104.6 (3)N1—C7—H7120.2
O2—S1—C8108.7 (3)C5—C7—H7120.2
O3—S1—C8108.4 (2)C9—C8—C14120.9 (5)
N2—S1—C8106.1 (2)C9—C8—S1119.3 (4)
C4—O1—H1111 (5)C14—C8—S1119.7 (4)
C7—N1—N2119.3 (4)C8—C9—C10118.9 (6)
N1—N2—S1115.6 (3)C8—C9—H9120.6
N1—N2—H2A115 (5)C10—C9—H9120.6
S1—N2—H2A120 (5)C9—C10—C11121.5 (6)
C2—C1—C6120.9 (5)C9—C10—H10119.2
C2—C1—I1119.2 (4)C11—C10—H10119.2
C6—C1—I1119.8 (4)C13—C11—C10117.8 (6)
C1—C2—C3119.7 (5)C13—C11—C12121.4 (7)
C1—C2—H2120.1C10—C11—C12120.7 (7)
C3—C2—H2120.1C11—C12—H12A109.5
C2—C3—C4120.0 (5)C11—C12—H12B109.5
C2—C3—H3120.0H12A—C12—H12B109.5
C4—C3—H3120.0C11—C12—H12C109.5
O1—C4—C3117.3 (5)H12A—C12—H12C109.5
O1—C4—C5121.9 (4)H12B—C12—H12C109.5
C3—C4—C5120.8 (5)C14—C13—C11122.1 (6)
C6—C5—C4118.3 (4)C14—C13—H13118.9
C6—C5—C7119.8 (5)C11—C13—H13118.9
C4—C5—C7122.0 (4)C13—C14—C8118.7 (6)
C1—C6—C5120.3 (5)C13—C14—H14120.6
C1—C6—H6119.9C8—C14—H14120.6
C7—N1—N2—S1162.9 (4)C6—C5—C7—N1174.8 (5)
O2—S1—N2—N136.8 (5)C4—C5—C7—N16.4 (7)
O3—S1—N2—N1166.7 (4)O2—S1—C8—C9153.8 (4)
C8—S1—N2—N178.8 (4)O3—S1—C8—C919.8 (5)
C6—C1—C2—C31.7 (8)N2—S1—C8—C992.0 (4)
I1—C1—C2—C3178.6 (4)O2—S1—C8—C1429.4 (5)
C1—C2—C3—C41.9 (8)O3—S1—C8—C14163.4 (4)
C2—C3—C4—O1179.3 (5)N2—S1—C8—C1484.8 (5)
C2—C3—C4—C51.1 (8)C14—C8—C9—C101.5 (8)
O1—C4—C5—C6179.7 (5)S1—C8—C9—C10178.3 (4)
C3—C4—C5—C60.1 (7)C8—C9—C10—C110.1 (8)
O1—C4—C5—C71.5 (7)C9—C10—C11—C130.9 (9)
C3—C4—C5—C7179.0 (5)C9—C10—C11—C12178.4 (6)
C2—C1—C6—C50.7 (8)C10—C11—C13—C140.5 (9)
I1—C1—C6—C5179.6 (4)C12—C11—C13—C14177.9 (7)
C4—C5—C6—C10.1 (7)C11—C13—C14—C80.9 (10)
C7—C5—C6—C1178.8 (5)C9—C8—C14—C131.9 (8)
N2—N1—C7—C5173.7 (4)S1—C8—C14—C13178.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (2)1.91 (5)2.589 (6)139 (7)
N2—H2A···O1i0.86 (2)2.05 (2)2.914 (6)173 (6)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H13IN2O3S
Mr416.23
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.2467 (12), 10.394 (2), 11.971 (2)
β (°) 92.42 (3)
V3)776.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.405, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
6035, 3841, 2791
Rint0.059
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.114, 0.92
No. of reflections3841
No. of parameters197
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.99
Absolute structureFlack (1983), 1641 Friedel pairs
Absolute structure parameter0.06 (3)

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (2)1.91 (5)2.589 (6)139 (7)
N2—H2A···O1i0.86 (2)2.05 (2)2.914 (6)173 (6)
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

The authors are grateful to the University of Zanjan for financial support.

References

First citationAli, H. M., Laila, M., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1617–o1618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.  Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahverdizadeh, G. H., Bikas, R., Eivazi, M., Mahboubi Anarjan, P. & Notash, B. (2011). Acta Cryst. E67, o713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, L. L., Oliveira, K. N. & Nunes, R. J. (2006). ARKIVOC, 13, 124–129.  CrossRef Google Scholar
First citationStoe & Cie (2005). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTai, X. & Feng, Y. (2009). Anal. Sci. X-ray Struct. Anal. Online, 25, 41–42.  CSD CrossRef CAS Google Scholar
First citationTierney, M., McPhee, S. Jr & Papadakis, M. A. (2006). Current Medical Diagnosis & Treatment, 45th ed., pp. 1–50. New York: McGraw–Hill Medical.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds