metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-N′-(5-bromo-3-meth­­oxy-2-oxido­benzyl­­idene)-2-hydroxybenzohydra­zidato]bis­[(N,N-di­methyl­formamide)­copper(II)]

aCollege of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, People's Republic of China, and bCollege of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: shshzhao@xust.edu.cn

(Received 5 August 2012; accepted 16 August 2012; online 25 August 2012)

The title compound, [Cu2(C15H11BrN2O4)2(C3H7NO)2], is derived from the reaction of N′-(5-bromo-2-hy­droxy-3-meth­oxy­benzyl­idene)-2-hy­droxy­benzohydrazide and copper nitrate in a dimethyl­formamide solution in the presence of sodium hydroxide. The compound can be regarded as a binuclear centrosymmetric complex. In the crystal, the CuII atom is fivefold surrounded and adopts a distorted square-pyramidal coordination environment. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation.

Related literature

For the synthesis of N′-(5-bromo-2-hy­droxy-3-meth­oxy­benzyl­idene)-2-hy­droxy­benzohydrazide and its crystal structure, see: Zhao et al. (2012[Zhao, S., Li, L., Liu, X., Feng, W. & Lü, X. (2012). Acta Cryst. E68, o2040.]). For the crystal structure of a complex with a similar coordination environment, see: Huang et al. (2010[Huang, S.-M., Jiang, F.-F., Chen, X.-H. & Wu, Q.-J. (2010). Acta Cryst. E66, m456.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C15H11BrN2O4)2(C3H7NO)2]

  • Mr = 999.61

  • Triclinic, [P \overline 1]

  • a = 8.3861 (17) Å

  • b = 9.5795 (19) Å

  • c = 12.275 (3) Å

  • α = 90.446 (3)°

  • β = 97.850 (3)°

  • γ = 101.688 (3)°

  • V = 956.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.27 mm−1

  • T = 296 K

  • 0.38 × 0.25 × 0.16 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.371, Tmax = 0.620

  • 5880 measured reflections

  • 4354 independent reflections

  • 2957 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.123

  • S = 0.99

  • 4354 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯N2 0.82 1.84 2.566 (3) 146

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Hydrazones attract the interest of researchers due to their various biological activities and their capacity for chelating to most kind of metals. As Fig. 1 shows, the CuII ion exists in a distorted square-pyramidal coordination geometry and it is located in the center of the coordination basal plane, which is defined by three donor atoms (O2, N1 and O3) of the hydrozone ligand and O5 atom from the DMF molecule with a mean plane deviation of 0.0367 (4) Å. The axial position is occupied by O3 atom from another asymmetric unit. The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1).

Related literature top

For the synthesis of N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzohydrazide and its crystal structure, see: Zhao et al. (2012). For the crystal structure of a complex with a similar coordination environment, see: Huang et al. (2010).

Experimental top

A solution of copper nitrate (186.2 mg, 1.0 mmol) in DMF (2 ml) was added to a solution of N'-(5-bromo-2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzohydrazide (361.5 mg, 1.0 mmol) in DMF (10 ml) and stirred at room temperature for 2 h before being filtered. The dark green filtrate was allow to evaperate slowly in the air for several days. Green crystals was collected by filtration and dried under vacumn, yield 59.3%.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å, O—H = 0.82 Å and with Uiso(H) = 1.2 Ueq(C,O) (1.5 for methyl groups and the hydroxyl group). The methyl groups bonded to N and the hydroxyl group were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Bis[µ-N'-(5-bromo-3-methoxy-2- oxidobenzylidene)-2-hydroxybenzohydrazidato]bis[(N,N- dimethylformamide)copper(II)] top
Crystal data top
[Cu2(C15H11BrN2O4)2(C3H7NO)2]Z = 1
Mr = 999.61F(000) = 502
Triclinic, P1Dx = 1.736 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3861 (17) ÅCell parameters from 3650 reflections
b = 9.5795 (19) Åθ = 1.8–26.5°
c = 12.275 (3) ŵ = 3.27 mm1
α = 90.446 (3)°T = 296 K
β = 97.850 (3)°Block, green
γ = 101.688 (3)°0.38 × 0.25 × 0.16 mm
V = 956.0 (3) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4354 independent reflections
Radiation source: fine-focus sealed tube2957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
thin–slice ω scansθmax = 29.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 109
Tmin = 0.371, Tmax = 0.620k = 139
5880 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.069P)2]
where P = (Fo2 + 2Fc2)/3
4354 reflections(Δ/σ)max = 0.001
256 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Cu2(C15H11BrN2O4)2(C3H7NO)2]γ = 101.688 (3)°
Mr = 999.61V = 956.0 (3) Å3
Triclinic, P1Z = 1
a = 8.3861 (17) ÅMo Kα radiation
b = 9.5795 (19) ŵ = 3.27 mm1
c = 12.275 (3) ÅT = 296 K
α = 90.446 (3)°0.38 × 0.25 × 0.16 mm
β = 97.850 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4354 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2957 reflections with I > 2σ(I)
Tmin = 0.371, Tmax = 0.620Rint = 0.022
5880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.99Δρmax = 0.59 e Å3
4354 reflectionsΔρmin = 0.58 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.08579 (5)0.69096 (4)1.00600 (3)0.04176 (15)
Br10.38768 (6)1.16095 (5)1.23139 (4)0.0821 (2)
O20.1023 (3)0.8271 (2)1.11968 (18)0.0456 (6)
O30.0529 (3)0.5575 (2)0.88176 (17)0.0472 (6)
N10.1145 (3)0.7314 (3)0.9327 (2)0.0383 (6)
C80.1977 (4)0.8182 (4)0.9650 (3)0.0435 (8)
H8A0.29200.82930.91940.052*
N20.1691 (3)0.6616 (3)0.8310 (2)0.0397 (6)
O40.3540 (3)0.5853 (3)0.6472 (2)0.0592 (7)
H4A0.32310.62950.70640.089*
O10.1737 (3)0.9882 (3)1.29675 (19)0.0532 (6)
C70.0064 (4)0.8995 (3)1.1382 (2)0.0373 (7)
C50.2652 (4)0.9817 (4)1.0956 (3)0.0473 (8)
H5A0.36180.98251.04850.057*
C20.0244 (4)0.9885 (4)1.2357 (3)0.0427 (8)
C150.0090 (4)0.4028 (4)0.6826 (3)0.0503 (9)
H15A0.08140.39480.73340.060*
C90.0709 (4)0.5740 (3)0.8131 (2)0.0378 (7)
C100.1099 (4)0.4926 (3)0.7074 (3)0.0404 (7)
C30.0851 (4)1.0652 (4)1.2625 (3)0.0463 (8)
H3A0.06341.12071.32740.056*
C130.1735 (5)0.3340 (5)0.5115 (3)0.0665 (11)
H13A0.19450.28050.44560.080*
C110.2471 (4)0.5005 (4)0.6306 (3)0.0442 (8)
C40.2312 (5)1.0593 (4)1.1908 (3)0.0501 (9)
C120.2778 (5)0.4198 (4)0.5330 (3)0.0595 (10)
H12A0.36950.42400.48220.071*
C60.1546 (4)0.8990 (3)1.0669 (3)0.0396 (7)
C140.0388 (5)0.3255 (5)0.5852 (3)0.0641 (11)
H14A0.03220.26760.56940.077*
O50.2998 (3)0.6509 (2)1.06249 (19)0.0480 (6)
N30.5109 (3)0.6665 (3)1.1985 (2)0.0469 (7)
C170.3796 (4)0.7041 (4)1.1530 (3)0.0456 (8)
H17A0.34140.77421.18860.055*
C160.6002 (5)0.7336 (5)1.3018 (3)0.0617 (11)
H16A0.54330.80231.32720.093*
H16B0.70900.78061.29070.093*
H16C0.60730.66221.35570.093*
C10.2101 (6)1.0583 (5)1.4017 (3)0.0672 (11)
H1A0.31781.04961.43510.101*
H1B0.13041.01541.44720.101*
H1C0.20661.15731.39410.101*
C180.5749 (5)0.5542 (5)1.1512 (4)0.0654 (11)
H18A0.48830.49371.10280.098*
H18B0.61710.49881.20890.098*
H18C0.66160.59551.11040.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0362 (2)0.0507 (3)0.0374 (2)0.01501 (18)0.00696 (16)0.00787 (17)
Br10.0733 (3)0.1088 (4)0.0734 (3)0.0549 (3)0.0096 (2)0.0330 (3)
O20.0385 (13)0.0546 (14)0.0435 (12)0.0180 (11)0.0066 (10)0.0112 (10)
O30.0419 (13)0.0591 (15)0.0408 (12)0.0209 (11)0.0079 (10)0.0123 (10)
N10.0389 (15)0.0411 (15)0.0336 (13)0.0104 (12)0.0023 (11)0.0008 (11)
C80.0374 (17)0.046 (2)0.0449 (18)0.0123 (15)0.0077 (14)0.0012 (15)
N20.0387 (15)0.0393 (15)0.0375 (14)0.0080 (12)0.0067 (11)0.0072 (11)
O40.0599 (16)0.0672 (18)0.0486 (15)0.0250 (14)0.0163 (12)0.0091 (12)
O10.0450 (14)0.0676 (17)0.0441 (13)0.0160 (12)0.0094 (11)0.0157 (12)
C70.0384 (17)0.0368 (17)0.0360 (16)0.0086 (14)0.0018 (13)0.0004 (13)
C50.0402 (19)0.059 (2)0.0440 (19)0.0185 (16)0.0023 (15)0.0039 (16)
C20.0405 (18)0.048 (2)0.0374 (17)0.0088 (15)0.0014 (14)0.0027 (14)
C150.043 (2)0.061 (2)0.047 (2)0.0170 (17)0.0022 (15)0.0081 (16)
C90.0331 (16)0.0435 (19)0.0334 (16)0.0037 (14)0.0015 (13)0.0015 (13)
C100.0389 (18)0.0436 (19)0.0354 (16)0.0040 (15)0.0006 (13)0.0007 (14)
C30.050 (2)0.049 (2)0.0398 (18)0.0120 (16)0.0042 (15)0.0070 (15)
C130.071 (3)0.083 (3)0.045 (2)0.020 (2)0.0027 (19)0.022 (2)
C110.046 (2)0.046 (2)0.0379 (17)0.0096 (16)0.0007 (15)0.0021 (14)
C40.048 (2)0.054 (2)0.051 (2)0.0195 (17)0.0041 (16)0.0053 (16)
C120.062 (3)0.069 (3)0.040 (2)0.009 (2)0.0111 (17)0.0053 (18)
C60.0348 (17)0.0389 (18)0.0440 (18)0.0088 (14)0.0004 (13)0.0017 (14)
C140.063 (3)0.076 (3)0.056 (2)0.024 (2)0.0040 (19)0.019 (2)
O50.0379 (13)0.0562 (15)0.0488 (13)0.0164 (11)0.0074 (10)0.0079 (11)
N30.0310 (14)0.0506 (18)0.0537 (17)0.0044 (12)0.0062 (12)0.0006 (13)
C170.0346 (18)0.049 (2)0.050 (2)0.0069 (15)0.0017 (15)0.0024 (16)
C160.047 (2)0.070 (3)0.060 (2)0.0083 (19)0.0155 (18)0.0032 (19)
C10.061 (3)0.077 (3)0.055 (2)0.010 (2)0.014 (2)0.022 (2)
C180.045 (2)0.076 (3)0.077 (3)0.026 (2)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
Cu1—O21.874 (2)C9—C101.470 (4)
Cu1—N11.907 (3)C10—C111.399 (4)
Cu1—O31.936 (2)C3—C41.398 (5)
Cu1—O51.948 (2)C3—H3A0.9300
Br1—C41.899 (4)C13—C141.364 (6)
O2—C71.294 (4)C13—C121.365 (6)
O3—C91.282 (4)C13—H13A0.9300
N1—C81.281 (4)C11—C121.385 (5)
N1—N21.386 (3)C12—H12A0.9300
C8—C61.429 (4)C14—H14A0.9300
C8—H8A0.9300O5—C171.262 (4)
N2—C91.326 (4)N3—C171.284 (4)
O4—C111.359 (4)N3—C181.446 (5)
O4—H4A0.8200N3—C161.454 (5)
O1—C21.369 (4)C17—H17A0.9300
O1—C11.414 (4)C16—H16A0.9600
C7—C61.418 (4)C16—H16B0.9600
C7—C21.426 (4)C16—H16C0.9600
C5—C41.345 (5)C1—H1A0.9600
C5—C61.412 (5)C1—H1B0.9600
C5—H5A0.9300C1—H1C0.9600
C2—C31.358 (5)C18—H18A0.9600
C15—C141.367 (5)C18—H18B0.9600
C15—C101.382 (5)C18—H18C0.9600
C15—H15A0.9300
O2—Cu1—N193.33 (10)O4—C11—C12117.5 (3)
O2—Cu1—O3174.87 (9)O4—C11—C10122.6 (3)
N1—Cu1—O381.62 (10)C12—C11—C10119.8 (3)
O2—Cu1—O591.67 (10)C5—C4—C3122.0 (3)
N1—Cu1—O5172.69 (11)C5—C4—Br1119.4 (3)
O3—Cu1—O593.28 (9)C3—C4—Br1118.7 (3)
C7—O2—Cu1127.5 (2)C13—C12—C11120.0 (4)
C9—O3—Cu1110.17 (19)C13—C12—H12A120.0
C8—N1—N2118.0 (3)C11—C12—H12A120.0
C8—N1—Cu1127.4 (2)C5—C6—C7119.7 (3)
N2—N1—Cu1114.56 (19)C5—C6—C8117.7 (3)
N1—C8—C6124.1 (3)C7—C6—C8122.6 (3)
N1—C8—H8A118.0C13—C14—C15119.5 (4)
C6—C8—H8A118.0C13—C14—H14A120.2
C9—N2—N1109.4 (2)C15—C14—H14A120.2
C11—O4—H4A109.5C17—O5—Cu1122.1 (2)
C2—O1—C1118.4 (3)C17—N3—C18121.9 (3)
O2—C7—C6124.4 (3)C17—N3—C16121.1 (3)
O2—C7—C2118.6 (3)C18—N3—C16117.0 (3)
C6—C7—C2117.0 (3)O5—C17—N3123.4 (3)
C4—C5—C6120.2 (3)O5—C17—H17A118.3
C4—C5—H5A119.9N3—C17—H17A118.3
C6—C5—H5A119.9N3—C16—H16A109.5
C3—C2—O1124.7 (3)N3—C16—H16B109.5
C3—C2—C7122.2 (3)H16A—C16—H16B109.5
O1—C2—C7113.1 (3)N3—C16—H16C109.5
C14—C15—C10121.6 (3)H16A—C16—H16C109.5
C14—C15—H15A119.2H16B—C16—H16C109.5
C10—C15—H15A119.2O1—C1—H1A109.5
O3—C9—N2123.8 (3)O1—C1—H1B109.5
O3—C9—C10119.6 (3)H1A—C1—H1B109.5
N2—C9—C10116.5 (3)O1—C1—H1C109.5
C15—C10—C11118.0 (3)H1A—C1—H1C109.5
C15—C10—C9119.2 (3)H1B—C1—H1C109.5
C11—C10—C9122.8 (3)N3—C18—H18A109.5
C2—C3—C4118.9 (3)N3—C18—H18B109.5
C2—C3—H3A120.6H18A—C18—H18B109.5
C4—C3—H3A120.6N3—C18—H18C109.5
C14—C13—C12120.9 (4)H18A—C18—H18C109.5
C14—C13—H13A119.6H18B—C18—H18C109.5
C12—C13—H13A119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N20.821.842.566 (3)146

Experimental details

Crystal data
Chemical formula[Cu2(C15H11BrN2O4)2(C3H7NO)2]
Mr999.61
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.3861 (17), 9.5795 (19), 12.275 (3)
α, β, γ (°)90.446 (3), 97.850 (3), 101.688 (3)
V3)956.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)3.27
Crystal size (mm)0.38 × 0.25 × 0.16
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.371, 0.620
No. of measured, independent and
observed [I > 2σ(I)] reflections
5880, 4354, 2957
Rint0.022
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.123, 0.99
No. of reflections4354
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.58

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N20.821.842.566 (3)146.4
 

Acknowledgements

This project was supported by the National Natural Science Foundation of China (program Nos. 21103135 and 21073139), the Natural Science Basic Research Plan in Shaanxi Province of China (program No. 2011JQ2011), the Foundation of Xi'an University of Science and Technology (program No. 2010QDJ030), the Scientific Research Program funded by Shaanxi Provincial Education Department (program No.12 J K0622) and the Open Foundation of the Laboratory of Space Materials Science and Technology of NWPU.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, S.-M., Jiang, F.-F., Chen, X.-H. & Wu, Q.-J. (2010). Acta Cryst. E66, m456.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, S., Li, L., Liu, X., Feng, W. & Lü, X. (2012). Acta Cryst. E68, o2040.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds