organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2721-o2722

2-[7-(3,5-Di­bromo-2-hy­dr­oxy­phen­yl)-6-eth­­oxy­carbonyl-2-oxo-5H-2,3,6,7-tetra­hydro­thio­pyrano[2,3-d][1,3]thia­zol-6-yl]acetic acid ethanol monosolvate

aDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine, and cFaculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
*Correspondence e-mail: akgzella@ump.edu.pl

(Received 6 August 2012; accepted 9 August 2012; online 15 August 2012)

The title compound, C17H15Br2NO6S2·C2H5OH, is the esterification reaction product of 2-(8,10-dibromo-2,6-dioxo-3,5,5a,11b-tetra­hydro-2H,6H-chromeno[4′,3′:4,5]thio­pyrano[2,3-d]thia­zol-5a-yl)acetic acid. Cleavage of the lactone ring and formation of eth­oxy­carbonyl and hy­droxy groups from its structural elements were observed. On the other hand, the carb­oxy­methyl group was not esterified. The H atom and carb­oxy­methyl group, both at stereogenic centres, show a cis conformation. The six-membered dihydro­thio­pyran ring adopts a half-chair conformation. All NH and OH groups participate in the three-dimensional hydrogen-bond network, which is additionally strengthened by C—H⋯O and C—H⋯S inter­actions. Intramolecular O—H⋯Br and C—H⋯O interactions also occur.

Related literature

For the biological activity of 4-thia­zolidinone and thio­pyrano[2,3-d]thia­zole-2-one derivatives, see: Lesyk & Zimenkovsky (2004[Lesyk, R. B. & Zimenkovsky, B. S. (2004). Curr. Org. Chem. 8, 1547-1577.]); Lesyk et al. (2011[Lesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havrylyuk, D. Ya., Atamanyuk, D. V., Subtel'na, I. Yu. & Khyluk, D. V. (2011). Biopolym. Cell, 27, 107-117.]); Kaminskyy et al. (2011[Kaminskyy, D., Vasylenko, O., Atamanyuk, D., Gzella, A. & Lesyk, R. (2011). Synlett, 10, 1385-1388.]); Matiychuk et al. (2008[Matiychuk, V., Lesyk, R., Obushak, M., Gzella, A., Atamanyuk, D., Ostapiuk, Yu. & Kryshchyshyn, A. (2008). Tetrahedron Lett. 49, 4648-4651.]); Lesyk et al. (2006[Lesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kieć-Kononowicz, K. & Gzella, A. (2006). Bioorg. Med. Chem. 14, 5230-5240.]); Atamanyuk et al. (2008[Atamanyuk, D., Zimenkovsky, B. & Lesyk, R. (2008). J. Sulfur Chem. 29, 151-162.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15Br2NO6S2·C2H6O

  • Mr = 599.31

  • Monoclinic, P 21 /n

  • a = 16.8176 (9) Å

  • b = 8.1654 (4) Å

  • c = 18.3841 (9) Å

  • β = 113.303 (6)°

  • V = 2318.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.72 mm−1

  • T = 130 K

  • 0.45 × 0.40 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.761, Tmax = 1.000

  • 15312 measured reflections

  • 5539 independent reflections

  • 4500 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.073

  • S = 1.09

  • 5539 reflections

  • 298 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O26—H26⋯Br1 0.98 (3) 2.55 (3) 3.1181 (15) 117 (2)
C6—H6A⋯O13 0.97 2.44 3.033 (2) 119
N3—H3⋯O27i 0.89 (2) 1.83 (2) 2.713 (2) 171 (3)
O14—H14⋯O13ii 0.85 (3) 1.80 (3) 2.645 (2) 171 (3)
O26—H26⋯O16iii 0.98 (3) 1.96 (3) 2.7800 (19) 139 (2)
O27—H27⋯O10 0.87 (3) 1.86 (3) 2.724 (2) 174 (2)
C6—H6A⋯S1iv 0.97 2.75 3.5659 (17) 142
C23—H23⋯O10v 0.93 2.36 3.253 (2) 161
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y-1, z; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The prominent success in thiazolidinone field is related to 4-thiazolidinone derivatives. Anticonvulsant, sedative, antidepressant, anti-inflammatory, antihypertensive, antihistaminic and anticancer activities are a few among many other biological responses shown by this scaffold (Lesyk & Zimenkovsky, 2004; Lesyk et al., 2011). Among mentioned heterocycles fused heterocyclic systems, particularly thiopyrano[2,3-d]thiazole-2-ones possess a special interest as cyclic isosteric mimics of their synthetic precursors namely 4-thiazolidones without Michael accepting functionalities (Kaminskyy et al., 2011; Matiychuk et al., 2008). Fixation of highly active 5-arylidene-4-thiazolidinone in thiopyranothiazole system usually allows save the activity vector and opens up new possibilities of obtained derivatives optimization. Following the fact of anticancer activity discovery for various thiopyrano[2,3-d]thiazole-2-ones (Lesyk et al., 2006; Atamanyuk et al., 2008) the introduction of exocyclic carboxylic group into the mentioned heterocycles can be considered as on the way of lead-structures optimization. This prompted us to synthesize title compound, (I).

The molecular structure of compound (I) and the atom-labelling scheme is illustrated in Fig. 1.

The X-ray analysis showed that the crystal exists as ethanolic solvate. The asymmetric part of the unit cell contains one molecule of the compound (I) (solute) and one molecule of ethanol (solvent).

The studies on the structure of (I) showed that refluxing of 2-(8,10-dibromo-2,6-dioxo-3,5,5a,11b-tetrahydro-2H,6H-chromeno[4',3':4,5]thiopyrano[2,3-d]thiazol-5a-yl)acetic acid for three hours in ethanol resulted in the cleavage of the lactone ring and formation of an ethoxycarbonyl moiety from its structural elements. On the other hand, the carboxymethyl group was not esterified under these conditions.

Investigations of the geometry of dihydrothiopyrano[2,3-d]thiazol-2-one showed that the six-membered dihydrothiopyran ring has a half-chair conformation [Cremer & Pople (1975) puckering parameters: Q = 0.5136 (19) Å, Θ = 49.7 (2)°, ϕ = 268.5 (2)°].

The C4C9 bond length of 1.342 (2) Å confirmed the presence of a double bond between these carbons.

The C2—N3 interatomic distance of 1.356 (3) Å in the thiazol-2-one moiety is lengthened of about 7σ relative to the normal (O )C—NH bond length [1.331 (2) Å] of secondary amide group of γ-lactam (Allen et al., 1987).

The carboxymethyl and ethoxycarbonyl groups at C7 atom of dihydrothiopyran ring are in an axial and equatorial positions, respectively, while the 3,4-dibromo-2-hydroxyphenyl substituent at C8 atom is in a pseudoaxial position.

The carboxymethyl and ethoxycarbonyl groups are trans and cis, respectively, relative to the 3,4-dibromo-2-hydroxyphenyl substituent. The torsion angles C11—C7—C8—C20 and C15—C7—C8—C20 are 159.65 (15) and 45.32 (19)°, respectively.

The planar carboxymethyl and phenyl groups are approximately perpendicular to the least squares plane of the dihydrothiopyran ring; the dihedral angles are 83.10 (6) and 86.47 (6)°, respectively. The C12O13 carbonyl group of the carboxymethyl substituent is synperiplanar (+sp) relative to the C7—C11 bond [torsion angle C7—C11—C12—O13: 2.3 (2)°]. On the other hand, the C11—C12 bond is antiperiplanar (-ap) in relation to the C7—C8 bond [torsion angle: C8—C7—C11—C12: -168.91 (14)°]. The C21 atom of the 3,4-dibromo-2-hydroxyphenyl substituent, at which the hydroxy group is attached, is anticlinal relative to the C7—C8 bond (-ac) [torsion angle C7—C8—C20—C21: -108.48 (18)°].

The flat fragment of the ethoxycarbonyl group, consisted of C15,O16,O17, and C18 atoms, forms a 55.18 (6)° dihedral angle with the best plane of dihydrothiopyran ring. The remaining C19 atom of the ethoxycarbonyl group, projected away of 1.367 (4) Å from the above atoms plane, is synclinal relative to the C15—O17 bond [torsion angle C15—O17—C18—C19: -81.1 (2)°]. Moreover, the C15O16 carbonyl group is synclinal in relation to the C7—C8 bond [torsion angle C8—C7—C15—O16: 76.5 (2)°]. However, the torsion angles C15—O17—C18—C19 and C8—C7—C15—O16 are of different signs.

The molecules of (I) are interconnected with a screw axis and are linked by hydrogen bonds O26—H26···O16iii in chains (Table 1, Fig. 2). The neighbouring chains exist in antiparallel arrangement and are connected by hydrogen bonds O14—H14···.O13ii in layers growing parallel to the (-101) plane (Table 1, Fig. 2). The ethanol molecules form hydrogen bonding O27—H27···O10 and N3—H3···O27i (Table 1, Fig. 2) being both proton donors and acceptors. They link the molecules from neighbouring layers that results in formation of a three-dimensional lattice of hydrogen bonds in the crystal.

Related literature top

For the biological activity of 4-thiazolidinone and thiopyrano[2,3-d]thiazole-2-one derivatives, see: Lesyk & Zimenkovsky (2004); Lesyk et al. (2011); Kaminskyy et al. (2011); Matiychuk et al. (2008); Lesyk et al. (2006); Atamanyuk et al. (2008). For ring conformation analysis, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

An equimolar mixture of 5-(2-hydroxy-3,5-dibromobenzylidene)-4-thioxo-2-thiazolidinone, itaconic anhydride and pinch of hydroquinone (2–3 mg, for preventing of polymerization) in acetic acid was refluxed for 2 hrs. The product formed was filtered, washed, dried and re-crystallized from mixture DMF–AcOH. Obtained 2-(8,10-dibromo-2,6-dioxo-3,5,5a,11b-tetrahydro-2H,6H-chromeno[4',3':4,5]thiopyrano[2,3-d]thiazol-5a-yl)acetic acid was refluxed in ethanol for 3 hrs. The product formed was filtered, washed, dried and recrystallized from ethanol.

Refinement top

Except for the amide and hydroxy H atoms which were refined freely the remaining H atoms were positioned into the idealized positions and were refined within the riding model approximation: Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97 Å, Cmethine—H = 0.98 Å, C(sp2)—H = 0.93 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H. The methyl groups were refined as rigid groups which were allowed to rotate. The largest peaks and holes in the ΔF Fourier map are within 1.0 Å of the Br1 and Br2 atom sites.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of (I) showing the atomic labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids; H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The hydrogen bonding in the title crystal structure. Symmetry codes: (i) 1.5–x, -1/2+y, 0.5–z; (ii) 1–x, –y, 1–z; (iii) 1.5–x, 1/2+y, 1.5–z. H atoms not involved in hydrogen bonds have been ommitted for clarity.
2-[7-(3,5-Dibromo-2-hydroxyphenyl)-6-ethoxycarbonyl-2-oxo-5H-2,3,6,7- tetrahydrothiopyrano[2,3-d][1,3]thiazol-6-yl]acetic acid ethanol monosolvate top
Crystal data top
C17H15Br2NO6S2·C2H6OF(000) = 1200
Mr = 599.31Dx = 1.717 Mg m3
Monoclinic, P21/nMelting point = 510–512 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 16.8176 (9) ÅCell parameters from 6534 reflections
b = 8.1654 (4) Åθ = 2.4–29.1°
c = 18.3841 (9) ŵ = 3.72 mm1
β = 113.303 (6)°T = 130 K
V = 2318.6 (2) Å3Block, colourless
Z = 40.45 × 0.40 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur Atlas
diffractometer
5539 independent reflections
Radiation source: Enhance (Mo) X-ray Source4500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 29.1°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 2222
Tmin = 0.761, Tmax = 1.000k = 1011
15312 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.044P)2]
where P = (Fo2 + 2Fc2)/3
5539 reflections(Δ/σ)max = 0.002
298 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
C17H15Br2NO6S2·C2H6OV = 2318.6 (2) Å3
Mr = 599.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.8176 (9) ŵ = 3.72 mm1
b = 8.1654 (4) ÅT = 130 K
c = 18.3841 (9) Å0.45 × 0.40 × 0.25 mm
β = 113.303 (6)°
Data collection top
Oxford Diffraction Xcalibur Atlas
diffractometer
5539 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4500 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 1.000Rint = 0.022
15312 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.08 e Å3
5539 reflectionsΔρmin = 0.87 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.996319 (13)0.62878 (3)0.839566 (12)0.03491 (8)
Br21.074501 (12)0.35750 (3)0.592151 (13)0.02712 (7)
S10.75077 (3)0.80961 (6)0.48078 (3)0.01618 (11)
C20.71841 (11)0.8163 (2)0.37660 (11)0.0157 (4)
N30.69780 (10)0.66259 (19)0.34724 (9)0.0148 (3)
H30.6864 (14)0.639 (3)0.2971 (14)0.017 (6)*
C40.70683 (11)0.5421 (2)0.40400 (10)0.0126 (4)
S50.68259 (3)0.33898 (6)0.37237 (3)0.01932 (11)
C60.72417 (12)0.2434 (2)0.46983 (11)0.0144 (4)
H6A0.70100.13320.46470.017*
H6B0.78660.23450.48840.017*
C70.70239 (11)0.3352 (2)0.53289 (10)0.0115 (3)
C80.74732 (10)0.5062 (2)0.55304 (10)0.0104 (3)
H80.71830.56820.58120.013*
C90.73311 (11)0.5980 (2)0.47848 (10)0.0115 (4)
O100.71500 (8)0.94164 (17)0.33849 (8)0.0213 (3)
C110.60359 (11)0.3610 (2)0.50519 (11)0.0140 (4)
H11A0.59270.43310.54220.017*
H11B0.58160.41400.45380.017*
C120.55580 (11)0.2028 (2)0.49939 (11)0.0156 (4)
O130.59224 (8)0.07109 (16)0.51734 (8)0.0178 (3)
O140.47090 (8)0.22172 (18)0.47434 (9)0.0224 (3)
H140.4454 (16)0.132 (3)0.4748 (16)0.037 (8)*
C150.73196 (11)0.2392 (2)0.61104 (11)0.0132 (4)
O160.70277 (8)0.26568 (16)0.66029 (7)0.0182 (3)
O170.79311 (8)0.12991 (15)0.61807 (8)0.0171 (3)
C180.82447 (13)0.0290 (3)0.69041 (12)0.0246 (5)
H18A0.85010.07060.68070.030*
H18B0.77590.00160.70330.030*
C190.89052 (17)0.1187 (3)0.75959 (15)0.0419 (7)
H19A0.86330.20950.77380.063*
H19B0.93610.15830.74520.063*
H19C0.91430.04550.80380.063*
C200.84402 (11)0.4998 (2)0.60762 (10)0.0112 (3)
C210.87065 (11)0.5535 (2)0.68594 (10)0.0133 (4)
C220.95879 (12)0.5481 (3)0.73445 (10)0.0186 (4)
C231.02008 (11)0.4888 (3)0.70848 (11)0.0202 (4)
H231.07830.48370.74230.024*
C240.99208 (12)0.4375 (2)0.63082 (12)0.0173 (4)
C250.90546 (11)0.4444 (2)0.58003 (11)0.0143 (4)
H250.88830.41220.52750.017*
O260.80868 (9)0.61034 (17)0.70964 (8)0.0207 (3)
H260.8325 (17)0.644 (3)0.7654 (17)0.046 (8)*
O270.84716 (10)1.0647 (2)0.30489 (9)0.0325 (4)
H270.8036 (16)1.032 (3)0.3155 (15)0.041 (7)*
C280.91066 (14)1.1225 (3)0.37811 (13)0.0307 (5)
H28A0.90571.06340.42190.037*
H28B0.90161.23800.38450.037*
C290.99888 (15)1.0965 (3)0.37809 (17)0.0432 (7)
H29A1.00850.98150.37440.065*
H29B1.04191.13920.42620.065*
H29C1.00271.15230.33360.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01994 (11)0.0685 (2)0.01402 (10)0.00743 (10)0.00428 (8)0.01027 (10)
Br20.01891 (11)0.03218 (14)0.03580 (13)0.00589 (9)0.01672 (9)0.00288 (10)
S10.0194 (2)0.0091 (2)0.0160 (2)0.00223 (18)0.00270 (18)0.00152 (18)
C20.0100 (8)0.0176 (10)0.0185 (9)0.0012 (7)0.0047 (7)0.0051 (8)
N30.0163 (8)0.0157 (8)0.0126 (7)0.0013 (6)0.0059 (6)0.0032 (6)
C40.0135 (8)0.0123 (9)0.0132 (8)0.0003 (7)0.0064 (7)0.0008 (7)
S50.0323 (3)0.0126 (2)0.0124 (2)0.0027 (2)0.00818 (19)0.00275 (18)
C60.0185 (9)0.0100 (9)0.0158 (8)0.0028 (7)0.0079 (7)0.0002 (7)
C70.0128 (8)0.0092 (8)0.0132 (8)0.0004 (7)0.0057 (7)0.0013 (7)
C80.0116 (8)0.0093 (9)0.0109 (8)0.0008 (7)0.0051 (6)0.0008 (7)
C90.0108 (8)0.0076 (8)0.0153 (8)0.0006 (7)0.0045 (7)0.0007 (7)
O100.0198 (7)0.0173 (7)0.0241 (7)0.0006 (6)0.0058 (6)0.0102 (6)
C110.0137 (8)0.0120 (9)0.0165 (9)0.0002 (7)0.0062 (7)0.0002 (7)
C120.0138 (8)0.0191 (10)0.0140 (8)0.0025 (8)0.0057 (7)0.0006 (8)
O130.0160 (6)0.0110 (7)0.0258 (7)0.0024 (5)0.0076 (5)0.0003 (6)
O140.0144 (7)0.0158 (7)0.0340 (8)0.0040 (6)0.0064 (6)0.0028 (6)
C150.0130 (8)0.0094 (9)0.0164 (8)0.0032 (7)0.0050 (7)0.0008 (7)
O160.0245 (7)0.0170 (7)0.0161 (6)0.0012 (6)0.0114 (6)0.0035 (5)
O170.0189 (6)0.0149 (7)0.0186 (7)0.0055 (5)0.0087 (5)0.0077 (5)
C180.0277 (11)0.0191 (11)0.0273 (11)0.0066 (9)0.0112 (9)0.0122 (9)
C190.0368 (13)0.0460 (16)0.0305 (13)0.0038 (11)0.0001 (11)0.0122 (11)
C200.0132 (8)0.0084 (8)0.0120 (8)0.0019 (7)0.0051 (7)0.0016 (7)
C210.0147 (8)0.0132 (9)0.0139 (8)0.0030 (7)0.0075 (7)0.0007 (7)
C220.0176 (9)0.0250 (11)0.0104 (8)0.0043 (8)0.0024 (7)0.0002 (8)
C230.0123 (9)0.0271 (11)0.0183 (9)0.0019 (8)0.0028 (7)0.0053 (8)
C240.0141 (8)0.0182 (10)0.0227 (9)0.0013 (8)0.0106 (7)0.0036 (8)
C250.0158 (9)0.0120 (9)0.0160 (8)0.0018 (7)0.0072 (7)0.0000 (7)
O260.0204 (7)0.0289 (8)0.0149 (7)0.0018 (6)0.0091 (6)0.0064 (6)
O270.0262 (8)0.0515 (11)0.0188 (7)0.0123 (8)0.0079 (6)0.0049 (7)
C280.0312 (12)0.0357 (14)0.0252 (11)0.0081 (10)0.0111 (9)0.0066 (10)
C290.0270 (12)0.0459 (16)0.0511 (16)0.0037 (11)0.0094 (11)0.0067 (13)
Geometric parameters (Å, º) top
Br1—C221.8980 (18)C15—O171.329 (2)
Br2—C241.9061 (19)O17—C181.473 (2)
S1—C91.7510 (18)C18—C191.507 (3)
S1—C21.773 (2)C18—H18A0.9700
C2—O101.229 (2)C18—H18B0.9700
C2—N31.356 (3)C19—H19A0.9600
N3—C41.398 (2)C19—H19B0.9600
N3—H30.88 (2)C19—H19C0.9600
C4—C91.342 (2)C20—C251.394 (3)
C4—S51.7515 (19)C20—C211.398 (2)
S5—C61.8212 (19)C21—O261.361 (2)
C6—C71.541 (3)C21—C221.396 (2)
C6—H6A0.9700C22—C231.383 (3)
C6—H6B0.9700C23—C241.380 (3)
C7—C151.536 (2)C23—H230.9300
C7—C111.548 (2)C24—C251.386 (2)
C7—C81.561 (2)C25—H250.9300
C8—C91.496 (2)O26—H260.98 (3)
C8—C201.537 (2)O27—C281.427 (3)
C8—H80.9800O27—H270.87 (3)
C11—C121.503 (3)C28—C291.499 (3)
C11—H11A0.9700C28—H28A0.9700
C11—H11B0.9700C28—H28B0.9700
C12—O131.217 (2)C29—H29A0.9600
C12—O141.325 (2)C29—H29B0.9600
O14—H140.85 (3)C29—H29C0.9600
C15—O161.208 (2)
C9—S1—C291.59 (9)C15—O17—C18116.76 (15)
O10—C2—N3126.65 (18)O17—C18—C19111.79 (18)
O10—C2—S1124.54 (16)O17—C18—H18A109.3
N3—C2—S1108.81 (14)C19—C18—H18A109.3
C2—N3—C4114.77 (16)O17—C18—H18B109.3
C2—N3—H3122.1 (14)C19—C18—H18B109.3
C4—N3—H3122.6 (14)H18A—C18—H18B107.9
C9—C4—N3114.66 (17)C18—C19—H19A109.5
C9—C4—S5126.90 (15)C18—C19—H19B109.5
N3—C4—S5118.44 (13)H19A—C19—H19B109.5
C4—S5—C697.51 (8)C18—C19—H19C109.5
C7—C6—S5114.75 (12)H19A—C19—H19C109.5
C7—C6—H6A108.6H19B—C19—H19C109.5
S5—C6—H6A108.6C25—C20—C21119.64 (15)
C7—C6—H6B108.6C25—C20—C8121.24 (15)
S5—C6—H6B108.6C21—C20—C8119.12 (15)
H6A—C6—H6B107.6O26—C21—C22124.10 (16)
C15—C7—C6111.71 (14)O26—C21—C20117.57 (15)
C15—C7—C11106.57 (14)C22—C21—C20118.33 (16)
C6—C7—C11111.24 (14)C23—C22—C21122.58 (17)
C15—C7—C8106.69 (13)C23—C22—Br1118.67 (13)
C6—C7—C8112.13 (14)C21—C22—Br1118.74 (14)
C11—C7—C8108.21 (14)C24—C23—C22117.86 (16)
C9—C8—C20111.07 (14)C24—C23—H23121.1
C9—C8—C7110.11 (14)C22—C23—H23121.1
C20—C8—C7114.34 (13)C23—C24—C25121.48 (18)
C9—C8—H8107.0C23—C24—Br2119.28 (14)
C20—C8—H8107.0C25—C24—Br2119.23 (15)
C7—C8—H8107.0C24—C25—C20120.06 (17)
C4—C9—C8129.31 (16)C24—C25—H25120.0
C4—C9—S1110.15 (14)C20—C25—H25120.0
C8—C9—S1120.54 (13)C21—O26—H26112.4 (16)
C12—C11—C7112.39 (15)C28—O27—H27105.8 (17)
C12—C11—H11A109.1O27—C28—C29108.9 (2)
C7—C11—H11A109.1O27—C28—H28A109.9
C12—C11—H11B109.1C29—C28—H28A109.9
C7—C11—H11B109.1O27—C28—H28B109.9
H11A—C11—H11B107.9C29—C28—H28B109.9
O13—C12—O14123.74 (17)H28A—C28—H28B108.3
O13—C12—C11122.87 (16)C28—C29—H29A109.5
O14—C12—C11113.39 (16)C28—C29—H29B109.5
C12—O14—H14112.1 (17)H29A—C29—H29B109.5
O16—C15—O17125.14 (17)C28—C29—H29C109.5
O16—C15—C7122.17 (16)H29A—C29—H29C109.5
O17—C15—C7112.67 (15)H29B—C29—H29C109.5
C9—S1—C2—O10178.68 (17)C7—C11—C12—O132.3 (3)
C9—S1—C2—N30.71 (14)C7—C11—C12—O14178.81 (15)
O10—C2—N3—C4179.39 (17)C6—C7—C15—O16160.59 (16)
S1—C2—N3—C40.01 (19)C11—C7—C15—O1638.9 (2)
C2—N3—C4—C91.0 (2)C8—C7—C15—O1676.5 (2)
C2—N3—C4—S5179.55 (13)C6—C7—C15—O1720.9 (2)
C9—C4—S5—C610.25 (18)C11—C7—C15—O17142.56 (15)
N3—C4—S5—C6170.43 (14)C8—C7—C15—O17102.00 (16)
C4—S5—C6—C741.76 (14)O16—C15—O17—C182.8 (3)
S5—C6—C7—C15174.57 (12)C7—C15—O17—C18178.74 (15)
S5—C6—C7—C1155.62 (17)C15—O17—C18—C1981.1 (2)
S5—C6—C7—C865.71 (16)C9—C8—C20—C2552.6 (2)
C15—C7—C8—C9171.17 (14)C7—C8—C20—C2572.8 (2)
C6—C7—C8—C948.57 (19)C9—C8—C20—C21126.18 (18)
C11—C7—C8—C974.49 (18)C7—C8—C20—C21108.48 (18)
C15—C7—C8—C2045.32 (19)C25—C20—C21—O26178.33 (16)
C6—C7—C8—C2077.29 (18)C8—C20—C21—O260.5 (2)
C11—C7—C8—C20159.65 (15)C25—C20—C21—C220.7 (3)
N3—C4—C9—C8178.26 (16)C8—C20—C21—C22179.45 (16)
S5—C4—C9—C81.1 (3)O26—C21—C22—C23179.74 (18)
N3—C4—C9—S11.5 (2)C20—C21—C22—C231.3 (3)
S5—C4—C9—S1179.11 (11)O26—C21—C22—Br11.4 (3)
C20—C8—C9—C4111.4 (2)C20—C21—C22—Br1177.50 (14)
C7—C8—C9—C416.3 (3)C21—C22—C23—C241.7 (3)
C20—C8—C9—S168.83 (18)Br1—C22—C23—C24177.11 (15)
C7—C8—C9—S1163.48 (12)C22—C23—C24—C250.1 (3)
C2—S1—C9—C41.28 (14)C22—C23—C24—Br2179.24 (15)
C2—S1—C9—C8178.54 (14)C23—C24—C25—C201.8 (3)
C15—C7—C11—C1254.49 (19)Br2—C24—C25—C20178.81 (14)
C6—C7—C11—C1267.49 (19)C21—C20—C25—C242.2 (3)
C8—C7—C11—C12168.91 (14)C8—C20—C25—C24179.02 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O26—H26···Br10.98 (3)2.55 (3)3.1181 (15)117 (2)
C6—H6A···O130.972.443.033 (2)119
N3—H3···O27i0.89 (2)1.83 (2)2.713 (2)171 (3)
O14—H14···O13ii0.85 (3)1.80 (3)2.645 (2)171 (3)
O26—H26···O16iii0.98 (3)1.96 (3)2.7800 (19)139 (2)
O27—H27···O100.87 (3)1.86 (3)2.724 (2)174 (2)
C6—H6A···S1iv0.972.753.5659 (17)142
C23—H23···O10v0.932.363.253 (2)161
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x, y1, z; (v) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15Br2NO6S2·C2H6O
Mr599.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)130
a, b, c (Å)16.8176 (9), 8.1654 (4), 18.3841 (9)
β (°) 113.303 (6)
V3)2318.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.72
Crystal size (mm)0.45 × 0.40 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.761, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15312, 5539, 4500
Rint0.022
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.073, 1.09
No. of reflections5539
No. of parameters298
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.08, 0.87

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O26—H26···Br10.98 (3)2.55 (3)3.1181 (15)117 (2)
C6—H6A···O130.972.443.033 (2)119
N3—H3···O27i0.89 (2)1.83 (2)2.713 (2)171 (3)
O14—H14···O13ii0.85 (3)1.80 (3)2.645 (2)171 (3)
O26—H26···O16iii0.98 (3)1.96 (3)2.7800 (19)139 (2)
O27—H27···O100.87 (3)1.86 (3)2.724 (2)174 (2)
C6—H6A···S1iv0.972.753.5659 (17)142
C23—H23···O10v0.932.363.253 (2)161
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+3/2; (iv) x, y1, z; (v) x+1/2, y+3/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtamanyuk, D., Zimenkovsky, B. & Lesyk, R. (2008). J. Sulfur Chem. 29, 151–162.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKaminskyy, D., Vasylenko, O., Atamanyuk, D., Gzella, A. & Lesyk, R. (2011). Synlett, 10, 1385–1388.  Google Scholar
First citationLesyk, R. B. & Zimenkovsky, B. S. (2004). Curr. Org. Chem. 8, 1547–1577.  Web of Science CrossRef CAS Google Scholar
First citationLesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kieć-Kononowicz, K. & Gzella, A. (2006). Bioorg. Med. Chem. 14, 5230–5240.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLesyk, R. B., Zimenkovsky, B. S., Kaminskyy, D. V., Kryshchyshyn, A. P., Havrylyuk, D. Ya., Atamanyuk, D. V., Subtel'na, I. Yu. & Khyluk, D. V. (2011). Biopolym. Cell, 27, 107–117.  CrossRef CAS Google Scholar
First citationMatiychuk, V., Lesyk, R., Obushak, M., Gzella, A., Atamanyuk, D., Ostapiuk, Yu. & Kryshchyshyn, A. (2008). Tetrahedron Lett. 49, 4648–4651.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2721-o2722
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds