organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2797-o2798

meso-5,10,15,20-Tetra­kis(4-hy­dr­oxy-3-meth­­oxy­phen­yl)porphyrin propionic acid monosolvate

aInstitute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland, bInstitute of Materials Science, University of Silesia, Bankowa 12, 40-007 Katowice, Poland, and cInstitute of Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland
*Correspondence e-mail: joachim.kusz@us.edu.pl

(Received 10 August 2012; accepted 21 August 2012; online 25 August 2012)

In the title compound, C48H38N4O8·C3H6O2, the porphyrin mol­ecule is centrosymmetric. The propionic acid solvent mol­ecule is disordered over two sets of sites with equal occupancy factors. The porphyrin central core is almost planar, with an r.m.s. deviation of the fitted atoms of 0.045 Å. The substituent benzene rings make dihedral angles of 70.37 (4) and 66.95 (4)° with respect to the porphyrin core plane. The crystal structure is stabilized by an inter­esting network of hydrogen bonds. Porphyrin mol­ecules are connected by O—H⋯O hydrogen bonds creating ribbons running along the [101] direction. Weak C—H⋯O hydrogen bonds connect separate mol­ecular ribbons in the [110] direction, creating (-111) layers. Intra­molecular N—H⋯N hydrogen bonds also occur. The propionic acid molecules are connected by pairs of —H⋯O hydrogen bonds, creating dimers.

Related literature

For the biological activity and potential applications of porphyrin mol­ecules, see: Allison et al. (2004[Allison, R. R., Downie, G. H., Cuenca, R., Hu, X., Childs, C. J. & Sibata, C. H. (2004). Photodiagn. Photodyn. Ther. 1, 27-42.]); Dougherty et al. (1998[Dougherty, T. J., Henderson, B. W., Gomer, C. J., Jori, G., Kessel, D., Korbelik, M., Moan, J. & Peng, Q. (1998). J. Natl Cancer. Inst. 90, 889-905.]); Agostinis et al. (2011[Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., Hahn, S. M., Hamblin, M. R., Juzeniene, A., Kessel, D., Korbelik, M., Moan, J., Mroz, P., Nowis, D., Piette, J., Wilson, B. C. & Golab, J. (2011). CA Cancer J. Clin. 61, 250-284.]); Szurko et al. (2009[Szurko, A., Rams, M., Sochanik, A., Sieron-Stoltny, K., Kozielec, A. M., Montforts, F. P., Wrzalik, R. & Ratuszna, A. (2009). Bioorg. Med. Chem. 17, 8197-8205.]). For spectroscopic data, see Bonar-Law (1996[Bonar-Law, R. P. (1996). J. Org. Chem. 61, 3623-3634.]).

[Scheme 1]

Experimental

Crystal data
  • C48H38N4O8·C3H6O2

  • Mr = 872.90

  • Triclinic, [P \overline 1]

  • a = 6.8715 (5) Å

  • b = 12.0783 (7) Å

  • c = 14.3772 (10) Å

  • α = 112.850 (6)°

  • β = 98.560 (5)°

  • γ = 97.480 (5)°

  • V = 1063.97 (12) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 100 K

  • 0.10 × 0.03 × 0.02 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Techniologies, Yarnton, England.]) Tmin = 0.926, Tmax = 0.985

  • 9919 measured reflections

  • 3688 independent reflections

  • 3098 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.03

  • 3688 reflections

  • 339 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2 0.85 (2) 2.392 (19) 2.9286 (19) 121.4 (15)
N1—H1N⋯N2i 0.85 (2) 2.377 (19) 2.9121 (19) 121.2 (15)
O1—H1O⋯O3 0.84 (2) 2.17 (2) 2.6655 (17) 117.4 (19)
O2—H2O⋯O4 0.90 (2) 2.18 (2) 2.6726 (16) 113.8 (18)
O2—H2O⋯O1ii 0.90 (2) 2.03 (2) 2.8588 (17) 151 (2)
C10—H10⋯O3iii 0.98 (2) 2.46 (2) 3.4085 (19) 162.0 (16)
C23—H23B⋯O3ii 0.99 (3) 2.51 (3) 3.383 (2) 147.3 (19)
C23—H23C⋯O5ii 1.00 (3) 2.43 (3) 3.189 (5) 132.3 (19)
O5—H5A⋯O6ii 0.84 1.77 2.608 (9) 173
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x-1, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Techniologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Photodynamic therapy (PDT) for cancer treatment is still developed method. PDT process is result of the photochemistry reactions, where the photosensitizers are activated by the light and during the deactivation their energy is used to excite molecular O2 to the singlet state 1O2*. The excited oxygen as well as the other species (ROS) are highly toxic and oxidize organic substrates found within tumour cells, leading to its destruction. Effectiveness of this technique is determined by the properties exhibited by the photosensitizers. For this reason we try to obtain a well defined compounds, which should have among the others: chemical purity, stability, good solubility in water or fat, lack of aggregation, optimal quantum yield of fluorescence and long lifetime of triplet states [Allison et al., 2004; Dougherty et al., 1998; Agostinis et al., 2011; Szurko et al., 2009]. Promising compounds for application in PDT are the porhyrins, due to their photosensibilization properties.

This paper presents the crystal structure of meso-tetra(4-hydroxy-3-methoxyphenyl)porphyrin (I), which is good a candidate as a starting material for synthesis of a new potential anticancer photosensitizer. Compound (I) crystallizes in triclinic system with one porphyrin molecule in the unit cell. Crystal structure contains also one propionic acid solvent molecule per one porphyrin molecule (Fig.1). The solvent molecule is disordered and can occupy two positions in the unit cell with equal occupancy factors. Porphyrin molecule is centrosymmetric with two sets of benzene rings orientations. Central core of porphyrin molecule is approximately planar with r.m.s. deviation of fitted atoms equal to 0.045 Å. The largest distance from one atom (N1) to the average plane is 0.1057 (13) Å. The angles of substituent benzene rings with the porphyrin core plane are 70.37 (4)° and 66.95 (4)°. Porphyrin molecules occupy (596) planes creating π-π stacking structure. The distance between centroids of two pyrrolide ring and pyrrole rings is 4.232 Å. Two sets of methylene groups are almost coplanar with benzene rings with largest distance to average plane equal to 0.0982 (34) Å and 0.1053 (31) Å for atoms C23 and C24 respectively. The two torsion angles are as follows: C5—C6—O3—C24 = -4.5 (2)° and C22—C21—O4—C23 = 4.4 (2)°.

Propionic acid molecules are connected by two O5—H5A···O6ii [symmetry codes: (ii) 1 - x,1 - y,1 - z] hydrogen bonds creating dimmers along [100] direction. Porphyrin molecules are connected by O2—H2O···O1ii hydrogen bonds creating ribbons running along [101] directions. Weak C10—H10···O3iii [symmetry codes: (iii) -1 - x, -y,-z] hydrogen bonds connect separated molecular ribbons in [110] direction creating (111) layers. Ribbons of porphyrin molecules are intersecting with direction of propionic acid molecules dimmers and additional C23—H23B···O3ii and C23—H23C···O5ii hydrogen bonds are created (Fig.2). π-π stacking and interactions with propionic acid molecules stabilize the crystal structure of presented compound. Two types of intramolecular hydrogen bonds O1—H1O···O3 and O2—H2O···O4 are present connecting methylene group and oxygen atom connected to benzene rings. Detailed information regarding hydrogen bonds in the compound are stated in Table 1.

Related literature top

For the biological activity and potential applications of porphyrin molecules, see: Allison et al. (2004); Dougherty et al. (1998); Agostinis et al. (2011); Szurko et al. (2009). For spectroscopic data, see Bonar-Law, (1996).

Experimental top

Chemicals and solvents were purchased from commercial sources and used as received. Synthesis of meso-tetra(4-hydroxy-3-methoxyphenyl)porphyrin (I) was performed as fallows. 8.8 g (0.072 m) of vanillin was added into 300 ml of propionic acid. The mixture was boiled until the all aldehyde was dissolved. After this 5 ml (0.072 m) of pyrrole was added and the solution was boiled for 1.5 h. Then about 200 ml of propionic acid was distilled off, the residue was cooled to ambient temperature and neutralized with saturated solution of NaHCO3. The precipitate was filtered and washed with chloroform until the filtrate was colourless. The product of the reaction was purified by column chromatography (silica gel/chloroform:ethyl acetate).

The single crystals of (I) were obtained directly from precipitate after reaction procedure (before column chromatography purification).

All spectroscopic data were in accordance with literature [Bonar-Law, 1996].

Refinement top

Non-hydrogen atoms were refined with anisotropic displacement parameters. The aromatic, methyl and hydroxyl hydrogen atoms were treated as "riding" on their parent carbon atoms with C—H = 0.96 Å, C—H = 0.98 Å and C—H = 0.84 Å respectively. Atomic displacement parameters of hydrogen atoms equal to 1.2 times the value of the equivalent atomic displacement parameters of the parent carbon atom (Uiso(H) = 1.2Ueq(C)) for aromatic hydrogen atoms and 1.5 times the value of the equivalent atomic displacement parameters of the parent carbon atom (Uiso(H) = 1.5Ueq(C)) for methyl and hydroxyl hydrogen atoms. Hydrogen atoms, which take part in hydrogen bonding, were located in a difference Fourier map (ΔF) and they were refined freely with isotropic displacement parameters. Similar-ADP restraint (SIMU) was applied to carbon atoms (C25, C26 and C27) in disordered propionic acid molecule.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
Fig. 1. The molecular structure of compound (I), showing atom-labelling scheme. The molecule is centrosymmetric and only the unique atoms of the asymmetric unit are labelled. Ellipsoids representing displacement parameters are drown at the 50% probability level.

Fig. 2. Scheme of network of hydrogen bonds in (I). O2—H2O···O1ii [symmetry codes: (ii) 1 - x,1 - y,1 - z] hydrogen bonds are marked by blue lines connecting separated molecules into molecular ribbons. Magenta lines indicate C23—H23B···O3ii and C23—H23C···O5ii hydrogen bonds and green lines indicate O5—H5A···O6ii hydrogen bond connecting propionic acid molecules.
meso-5,10,15,20-Tetrakis(4-hydroxy-3-methoxyphenyl)porphyrin propionic acid monosolvate top
Crystal data top
C48H38N4O8·C3H6O2Z = 1
Mr = 872.90F(000) = 458
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 6.8715 (5) ÅCell parameters from 4163 reflections
b = 12.0783 (7) Åθ = 3.4–65.9°
c = 14.3772 (10) ŵ = 0.78 mm1
α = 112.850 (6)°T = 100 K
β = 98.560 (5)°Polyhedron, black
γ = 97.480 (5)°0.10 × 0.03 × 0.02 mm
V = 1063.97 (12) Å3
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3688 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3098 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4498 pixels mm-1θmax = 66.0°, θmin = 3.4°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1314
Tmin = 0.926, Tmax = 0.985l = 1517
9919 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.3935P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3688 reflectionsΔρmax = 0.22 e Å3
339 parametersΔρmin = 0.25 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0040 (5)
Crystal data top
C48H38N4O8·C3H6O2γ = 97.480 (5)°
Mr = 872.90V = 1063.97 (12) Å3
Triclinic, P1Z = 1
a = 6.8715 (5) ÅCu Kα radiation
b = 12.0783 (7) ŵ = 0.78 mm1
c = 14.3772 (10) ÅT = 100 K
α = 112.850 (6)°0.10 × 0.03 × 0.02 mm
β = 98.560 (5)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3688 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3098 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.985Rint = 0.028
9919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03812 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
3688 reflectionsΔρmin = 0.25 e Å3
339 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.28230 (18)0.01112 (11)0.33140 (9)0.0254 (3)
H1O0.211 (3)0.042 (2)0.3180 (17)0.038*
O21.21357 (17)0.83439 (12)0.45275 (9)0.0294 (3)
H2O1.190 (3)0.882 (2)0.5143 (19)0.044*
O30.00783 (17)0.03851 (10)0.21636 (8)0.0237 (3)
O40.87195 (16)0.87779 (11)0.51416 (8)0.0256 (3)
N10.1653 (2)0.46061 (12)0.11394 (10)0.0188 (3)
H1N0.101 (3)0.4735 (17)0.0650 (15)0.023*
N20.24395 (19)0.37519 (11)0.01361 (10)0.0186 (3)
C10.2385 (2)0.08075 (14)0.27810 (12)0.0216 (4)
C20.3381 (3)0.17440 (15)0.28535 (13)0.0256 (4)
H20.43650.18960.32620.031*
C30.2950 (2)0.24694 (15)0.23292 (13)0.0241 (4)
H30.36470.31140.23810.029*
C40.1513 (2)0.22622 (14)0.17301 (12)0.0198 (3)
C50.0510 (2)0.13016 (14)0.16546 (12)0.0205 (3)
H50.04730.11470.12460.025*
C60.0946 (2)0.05773 (14)0.21729 (12)0.0201 (3)
C70.1047 (2)0.30658 (14)0.11882 (11)0.0188 (3)
C80.2574 (2)0.30429 (14)0.04101 (12)0.0194 (3)
C90.4521 (2)0.22058 (15)0.00422 (12)0.0228 (4)
H90.49840.16250.02970.027*
C100.5542 (2)0.24117 (15)0.07284 (12)0.0224 (4)
H100.689 (3)0.1991 (18)0.1155 (15)0.027*
C110.4238 (2)0.33809 (14)0.08348 (12)0.0193 (3)
C120.4759 (2)0.61748 (14)0.15889 (12)0.0188 (3)
C130.3540 (2)0.52417 (14)0.17144 (12)0.0189 (3)
C140.3994 (2)0.48061 (14)0.24959 (12)0.0225 (4)
H140.52080.50760.30070.027*
C150.2393 (2)0.39374 (14)0.23837 (12)0.0228 (4)
H150.22940.34940.28000.027*
C160.0885 (2)0.38112 (14)0.15268 (12)0.0195 (3)
C170.6721 (2)0.67684 (14)0.23575 (12)0.0191 (3)
C180.8540 (2)0.65879 (15)0.20740 (13)0.0247 (4)
H180.85530.60910.13770.030*
C191.0343 (2)0.71304 (15)0.28061 (13)0.0260 (4)
H191.15790.70030.26040.031*
C201.0351 (2)0.78502 (14)0.38213 (12)0.0217 (3)
C210.8527 (2)0.80458 (14)0.41172 (12)0.0194 (3)
C220.6726 (2)0.75083 (14)0.33878 (12)0.0192 (3)
H220.54900.76430.35890.023*
C230.6888 (3)0.8927 (2)0.54936 (14)0.0344 (5)
H23A0.600 (4)0.933 (2)0.5120 (19)0.052*
H23B0.729 (4)0.944 (2)0.624 (2)0.052*
H23C0.608 (4)0.811 (2)0.5363 (19)0.052*
C240.1311 (3)0.07391 (17)0.15062 (14)0.0321 (4)
H24A0.24600.00540.17240.048*
H24B0.06410.09560.07890.048*
H24C0.17850.14500.15560.048*
O60.3201 (9)0.5783 (3)0.5140 (3)0.1001 (17)0.50
O50.2982 (10)0.3840 (4)0.4875 (3)0.0992 (17)0.50
H5A0.41950.40020.48510.149*0.50
C250.2215 (14)0.4812 (6)0.5036 (4)0.078 (2)0.50
C260.0013 (18)0.4670 (7)0.5103 (7)0.086 (3)0.50
H26A0.07350.38510.45830.103*0.50
H26B0.00930.47160.57960.103*0.50
C270.0933 (19)0.5642 (10)0.4919 (9)0.099 (4)0.50
H27A0.23590.54970.49410.148*0.50
H27B0.08080.56110.42400.148*0.50
H27C0.02500.64520.54580.148*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0275 (6)0.0259 (6)0.0237 (6)0.0023 (5)0.0049 (5)0.0125 (5)
O20.0141 (6)0.0390 (7)0.0221 (6)0.0023 (5)0.0026 (5)0.0022 (5)
O30.0252 (6)0.0214 (6)0.0243 (6)0.0060 (5)0.0046 (5)0.0092 (5)
O40.0159 (6)0.0363 (7)0.0161 (5)0.0004 (5)0.0021 (4)0.0039 (5)
N10.0152 (6)0.0196 (7)0.0180 (7)0.0012 (5)0.0007 (5)0.0065 (5)
N20.0166 (6)0.0187 (6)0.0171 (6)0.0030 (5)0.0012 (5)0.0051 (5)
C10.0211 (8)0.0212 (8)0.0180 (8)0.0023 (6)0.0003 (6)0.0070 (6)
C20.0223 (8)0.0285 (9)0.0253 (8)0.0037 (7)0.0071 (7)0.0102 (7)
C30.0226 (8)0.0243 (8)0.0260 (8)0.0060 (7)0.0053 (7)0.0107 (7)
C40.0176 (8)0.0195 (8)0.0172 (7)0.0008 (6)0.0016 (6)0.0055 (6)
C50.0177 (8)0.0214 (8)0.0176 (7)0.0004 (6)0.0010 (6)0.0051 (6)
C60.0191 (8)0.0179 (7)0.0171 (7)0.0001 (6)0.0024 (6)0.0043 (6)
C70.0181 (8)0.0184 (7)0.0172 (7)0.0026 (6)0.0030 (6)0.0053 (6)
C80.0188 (8)0.0179 (7)0.0178 (7)0.0017 (6)0.0032 (6)0.0044 (6)
C90.0203 (8)0.0226 (8)0.0221 (8)0.0012 (6)0.0018 (6)0.0086 (7)
C100.0168 (8)0.0235 (8)0.0212 (8)0.0011 (6)0.0001 (6)0.0064 (7)
C110.0163 (7)0.0186 (8)0.0176 (7)0.0018 (6)0.0020 (6)0.0032 (6)
C120.0158 (8)0.0180 (7)0.0176 (7)0.0035 (6)0.0019 (6)0.0028 (6)
C130.0161 (7)0.0179 (7)0.0178 (7)0.0029 (6)0.0012 (6)0.0035 (6)
C140.0177 (8)0.0216 (8)0.0219 (8)0.0017 (6)0.0038 (6)0.0062 (7)
C150.0225 (8)0.0218 (8)0.0220 (8)0.0028 (6)0.0001 (6)0.0094 (7)
C160.0190 (8)0.0183 (7)0.0185 (7)0.0033 (6)0.0023 (6)0.0057 (6)
C170.0164 (8)0.0169 (7)0.0208 (8)0.0005 (6)0.0001 (6)0.0069 (6)
C180.0195 (8)0.0273 (9)0.0192 (8)0.0046 (7)0.0017 (6)0.0023 (7)
C190.0167 (8)0.0298 (9)0.0255 (9)0.0061 (7)0.0038 (7)0.0050 (7)
C200.0150 (8)0.0233 (8)0.0220 (8)0.0008 (6)0.0013 (6)0.0071 (7)
C210.0183 (8)0.0199 (8)0.0170 (7)0.0011 (6)0.0023 (6)0.0059 (6)
C220.0145 (7)0.0209 (8)0.0203 (8)0.0010 (6)0.0018 (6)0.0081 (6)
C230.0182 (9)0.0506 (12)0.0210 (9)0.0000 (8)0.0060 (7)0.0027 (8)
C240.0372 (10)0.0318 (9)0.0324 (10)0.0161 (8)0.0136 (8)0.0138 (8)
O60.192 (5)0.039 (2)0.067 (3)0.009 (3)0.050 (3)0.0162 (18)
O50.165 (5)0.054 (2)0.073 (3)0.006 (3)0.001 (3)0.036 (2)
C250.157 (7)0.038 (3)0.025 (2)0.001 (4)0.001 (3)0.011 (2)
C260.153 (8)0.037 (5)0.050 (3)0.002 (5)0.017 (5)0.020 (3)
C270.138 (11)0.053 (6)0.092 (6)0.010 (5)0.026 (6)0.037 (4)
Geometric parameters (Å, º) top
O1—C11.3742 (19)C12—C11i1.406 (2)
O1—H1O0.84 (2)C12—C171.497 (2)
O2—C201.3637 (19)C13—C141.426 (2)
O2—H2O0.90 (2)C14—C151.361 (2)
O3—C61.3704 (19)C14—H140.9500
O3—C241.431 (2)C15—C161.431 (2)
O4—C211.3670 (19)C15—H150.9500
O4—C231.432 (2)C17—C181.389 (2)
N1—C161.372 (2)C17—C221.401 (2)
N1—C131.372 (2)C18—C191.392 (2)
N1—H1N0.85 (2)C18—H180.9500
N2—C111.369 (2)C19—C201.377 (2)
N2—C81.372 (2)C19—H190.9500
C1—C21.375 (2)C20—C211.402 (2)
C1—C61.400 (2)C21—C221.389 (2)
C2—C31.391 (2)C22—H220.9500
C2—H20.9500C23—H23A1.04 (3)
C3—C41.389 (2)C23—H23B0.99 (3)
C3—H30.9500C23—H23C1.00 (3)
C4—C51.402 (2)C24—H24A0.9800
C4—C71.494 (2)C24—H24B0.9800
C5—C61.384 (2)C24—H24C0.9800
C5—H50.9500O6—C251.218 (8)
C7—C161.402 (2)O5—C251.303 (9)
C7—C81.405 (2)O5—H5A0.8400
C8—C91.454 (2)C25—C261.522 (16)
C9—C101.345 (2)C26—C271.503 (13)
C9—H90.9500C26—H26A0.9900
C10—C111.450 (2)C26—H26B0.9900
C10—H100.98 (2)C27—H27A0.9800
C11—C12i1.406 (2)C27—H27B0.9800
C12—C131.401 (2)C27—H27C0.9800
C1—O1—H1O107.0 (15)C14—C15—H15126.1
C20—O2—H2O108.6 (15)C16—C15—H15126.1
C6—O3—C24117.77 (13)N1—C16—C7126.76 (14)
C21—O4—C23116.35 (12)N1—C16—C15106.89 (13)
C16—N1—C13110.09 (13)C7—C16—C15126.26 (14)
C16—N1—H1N124.7 (13)C18—C17—C22119.17 (14)
C13—N1—H1N124.9 (13)C18—C17—C12121.39 (14)
C11—N2—C8105.46 (12)C22—C17—C12119.44 (14)
O1—C1—C2118.99 (15)C17—C18—C19120.38 (15)
O1—C1—C6121.02 (15)C17—C18—H18119.8
C2—C1—C6119.99 (15)C19—C18—H18119.8
C1—C2—C3120.07 (15)C20—C19—C18120.56 (15)
C1—C2—H2120.0C20—C19—H19119.7
C3—C2—H2120.0C18—C19—H19119.7
C4—C3—C2120.75 (15)O2—C20—C19119.30 (15)
C4—C3—H3119.6O2—C20—C21121.01 (14)
C2—C3—H3119.6C19—C20—C21119.68 (14)
C3—C4—C5118.91 (15)O4—C21—C22125.60 (14)
C3—C4—C7119.91 (14)O4—C21—C20114.51 (13)
C5—C4—C7121.18 (14)C22—C21—C20119.88 (14)
C6—C5—C4120.30 (15)C21—C22—C17120.32 (15)
C6—C5—H5119.9C21—C22—H22119.8
C4—C5—H5119.9C17—C22—H22119.8
O3—C6—C5126.06 (14)O4—C23—H23A112.4 (14)
O3—C6—C1113.96 (13)O4—C23—H23B105.9 (14)
C5—C6—C1119.98 (15)H23A—C23—H23B111.4 (19)
C16—C7—C8125.43 (14)O4—C23—H23C109.9 (14)
C16—C7—C4116.49 (14)H23A—C23—H23C108 (2)
C8—C7—C4118.05 (13)H23B—C23—H23C109 (2)
N2—C8—C7125.96 (14)O3—C24—H24A109.5
N2—C8—C9110.38 (13)O3—C24—H24B109.5
C7—C8—C9123.62 (14)H24A—C24—H24B109.5
C10—C9—C8106.76 (14)O3—C24—H24C109.5
C10—C9—H9126.6H24A—C24—H24C109.5
C8—C9—H9126.6H24B—C24—H24C109.5
C9—C10—C11106.70 (14)C25—O5—H5A109.5
C9—C10—H10128.0 (11)O6—C25—O5122.2 (9)
C11—C10—H10125.3 (11)O6—C25—C26121.8 (7)
N2—C11—C12i125.73 (14)O5—C25—C26116.0 (7)
N2—C11—C10110.70 (14)C27—C26—C25112.1 (6)
C12i—C11—C10123.52 (14)C27—C26—H26A109.2
C13—C12—C11i125.08 (14)C25—C26—H26A109.2
C13—C12—C17116.23 (14)C27—C26—H26B109.2
C11i—C12—C17118.62 (13)C25—C26—H26B109.2
N1—C13—C12126.83 (14)H26A—C26—H26B107.9
N1—C13—C14106.81 (13)C26—C27—H27A109.5
C12—C13—C14126.31 (14)C26—C27—H27B109.5
C15—C14—C13108.34 (14)H27A—C27—H27B109.5
C15—C14—H14125.8C26—C27—H27C109.5
C13—C14—H14125.8H27A—C27—H27C109.5
C14—C15—C16107.86 (14)H27B—C27—H27C109.5
O1—C1—C2—C3179.38 (14)C17—C12—C13—N1176.90 (14)
C6—C1—C2—C30.5 (2)C11i—C12—C13—C14177.37 (15)
C1—C2—C3—C40.1 (2)C17—C12—C13—C140.3 (2)
C2—C3—C4—C50.5 (2)N1—C13—C14—C150.45 (18)
C2—C3—C4—C7178.92 (14)C12—C13—C14—C15177.19 (15)
C3—C4—C5—C60.2 (2)C13—C14—C15—C160.24 (18)
C7—C4—C5—C6179.19 (14)C13—N1—C16—C7175.63 (15)
C24—O3—C6—C54.5 (2)C13—N1—C16—C151.14 (17)
C24—O3—C6—C1175.86 (14)C8—C7—C16—N12.8 (3)
C4—C5—C6—O3179.98 (13)C4—C7—C16—N1179.17 (14)
C4—C5—C6—C10.4 (2)C8—C7—C16—C15173.42 (15)
O1—C1—C6—O30.5 (2)C4—C7—C16—C154.7 (2)
C2—C1—C6—O3179.61 (14)C14—C15—C16—N10.84 (18)
O1—C1—C6—C5179.11 (13)C14—C15—C16—C7175.96 (15)
C2—C1—C6—C50.8 (2)C13—C12—C17—C18110.22 (18)
C3—C4—C7—C16113.71 (17)C11i—C12—C17—C1872.5 (2)
C5—C4—C7—C1665.69 (19)C13—C12—C17—C2268.89 (19)
C3—C4—C7—C864.5 (2)C11i—C12—C17—C22108.39 (17)
C5—C4—C7—C8116.09 (16)C22—C17—C18—C190.3 (2)
C11—N2—C8—C7177.38 (15)C12—C17—C18—C19178.78 (15)
C11—N2—C8—C90.18 (17)C17—C18—C19—C200.2 (3)
C16—C7—C8—N20.8 (3)C18—C19—C20—O2178.29 (16)
C4—C7—C8—N2177.23 (14)C18—C19—C20—C210.5 (3)
C16—C7—C8—C9176.43 (15)C23—O4—C21—C224.4 (2)
C4—C7—C8—C95.5 (2)C23—O4—C21—C20175.46 (16)
N2—C8—C9—C100.38 (18)O2—C20—C21—O41.4 (2)
C7—C8—C9—C10177.25 (15)C19—C20—C21—O4179.76 (15)
C8—C9—C10—C110.40 (18)O2—C20—C21—C22178.45 (15)
C8—N2—C11—C12i177.59 (15)C19—C20—C21—C220.4 (2)
C8—N2—C11—C100.07 (17)O4—C21—C22—C17179.70 (14)
C9—C10—C11—N20.31 (18)C20—C21—C22—C170.2 (2)
C9—C10—C11—C12i177.89 (15)C18—C17—C22—C210.5 (2)
C16—N1—C13—C12176.62 (15)C12—C17—C22—C21178.62 (14)
C16—N1—C13—C141.00 (17)O6—C25—C26—C2720.7 (8)
C11i—C12—C13—N10.2 (3)O5—C25—C26—C27160.2 (5)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.85 (2)2.392 (19)2.9286 (19)121.4 (15)
N1—H1N···N2i0.85 (2)2.377 (19)2.9121 (19)121.2 (15)
O1—H1O···O30.84 (2)2.17 (2)2.6655 (17)117.4 (19)
O2—H2O···O40.90 (2)2.18 (2)2.6726 (16)113.8 (18)
O2—H2O···O1ii0.90 (2)2.03 (2)2.8588 (17)151 (2)
C10—H10···O3iii0.98 (2)2.46 (2)3.4085 (19)162.0 (16)
C23—H23B···O3ii0.99 (3)2.51 (3)3.383 (2)147.3 (19)
C23—H23C···O5ii1.00 (3)2.43 (3)3.189 (5)132.3 (19)
O5—H5A···O6ii0.841.772.608 (9)173
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC48H38N4O8·C3H6O2
Mr872.90
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.8715 (5), 12.0783 (7), 14.3772 (10)
α, β, γ (°)112.850 (6), 98.560 (5), 97.480 (5)
V3)1063.97 (12)
Z1
Radiation typeCu Kα
µ (mm1)0.78
Crystal size (mm)0.10 × 0.03 × 0.02
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.926, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
9919, 3688, 3098
Rint0.028
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.03
No. of reflections3688
No. of parameters339
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.85 (2)2.392 (19)2.9286 (19)121.4 (15)
N1—H1N···N2i0.85 (2)2.377 (19)2.9121 (19)121.2 (15)
O1—H1O···O30.84 (2)2.17 (2)2.6655 (17)117.4 (19)
O2—H2O···O40.90 (2)2.18 (2)2.6726 (16)113.8 (18)
O2—H2O···O1ii0.90 (2)2.03 (2)2.8588 (17)151 (2)
C10—H10···O3iii0.98 (2)2.46 (2)3.4085 (19)162.0 (16)
C23—H23B···O3ii0.99 (3)2.51 (3)3.383 (2)147.3 (19)
C23—H23C···O5ii1.00 (3)2.43 (3)3.189 (5)132.3 (19)
O5—H5A···O6ii0.841.772.608 (9)173.4
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z.
 

Acknowledgements

The authors are grateful to Dr M. Rojkiewicz for his help during the synthesis of the samples.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Techniologies, Yarnton, England.  Google Scholar
First citationAgostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., Hahn, S. M., Hamblin, M. R., Juzeniene, A., Kessel, D., Korbelik, M., Moan, J., Mroz, P., Nowis, D., Piette, J., Wilson, B. C. & Golab, J. (2011). CA Cancer J. Clin. 61, 250–284.  Web of Science CrossRef PubMed Google Scholar
First citationAllison, R. R., Downie, G. H., Cuenca, R., Hu, X., Childs, C. J. & Sibata, C. H. (2004). Photodiagn. Photodyn. Ther. 1, 27–42.  Web of Science CrossRef CAS Google Scholar
First citationBonar-Law, R. P. (1996). J. Org. Chem. 61, 3623–3634.  PubMed CAS Google Scholar
First citationDougherty, T. J., Henderson, B. W., Gomer, C. J., Jori, G., Kessel, D., Korbelik, M., Moan, J. & Peng, Q. (1998). J. Natl Cancer. Inst. 90, 889–905.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzurko, A., Rams, M., Sochanik, A., Sieron-Stoltny, K., Kozielec, A. M., Montforts, F. P., Wrzalik, R. & Ratuszna, A. (2009). Bioorg. Med. Chem. 17, 8197–8205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2797-o2798
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds