organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­chloro-N-(2,3-di­methyl­phen­yl)benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, cQuestioned Documents Unit, Punjab Forensic Science Agency, Home Department, Lahore, Pakistan, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan.
*Correspondence e-mail: koolmuneeb@yahoo.com

(Received 14 August 2012; accepted 14 August 2012; online 23 August 2012)

In the title compound, C14H13Cl2NO2S, the dihedral angle between the aromatic rings is 62.21 (7)° and the C—S—N—C group adopts a gauche conformation [torsion angle = 60.22 (17)°]. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into C(4) chains propagating in [010]. A short inter­molecular Cl⋯O contact of 3.1115 (17) Å is seen.

Related literature

For related structures, see: Mughal et al. (2012a[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Arshad, M. N. (2012a). Acta Cryst. E68, o2433.],b[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Arshad, M. N. (2012b). Acta Cryst. E68, o2476.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13Cl2NO2S

  • Mr = 330.21

  • Orthorhombic, P b c a

  • a = 13.0069 (11) Å

  • b = 10.0775 (9) Å

  • c = 22.408 (2) Å

  • V = 2937.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 23820 measured reflections

  • 3260 independent reflections

  • 2377 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 0.98

  • 3260 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (2) 2.14 (2) 2.975 (2) 162.9 (19)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), (Fig. 1) was examined as part of our ongoing interest in the structural chemistry of sulfonamides (Mughal et al., 2012a,b).

The dihedral angle between the C1—C6 and C9—C14 benzene rings in (I) is 62.21 (7)°. The C1—N1—S1—C9 linkage adopts a near-ideal gauche conformation [torsion angle = 60.22 (17)°] and the bond-angle sum about N1 (H atom freely refined) is 349°, possibly suggesting a hybridization state intermediate between sp2 and sp3, which was also observed in a related compound (Mughal et al., 2012a). The largest bond angle at the distorted tetrahedral S atom is O1—S1—O2 [119.69 (9)°], which again is typical for this class of compound (Mughal et al., 2012b).

In the crystal, the molecules are linked by N—H···O hydrogen bonds (Table 1) to generate C(4) chains propagating in [010]: adjacent molecules are in the chain are generated by glide-symmetry. A similar chain occurs in N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-fluorobenzenesulfonamide (Mughal et al., 2012a), although in this case, adjacent molecules are generated by translational symmetry. Conversely, in 2,5-dichloro-N-(3-methylphenyl)benzenesulfonamide (Mughal et al., 2012b), pairs of N—H···O interactions lead to inversion dimers in the crystal.

Any aromatic π-π stacking in (I), if it exists at all, must be extremely weak, as the shortest inter-centroid ring separation is 4.0550 (12) Å between inversion-symmetry related C9–C14 rings (slippage = 1.906 Å). A short intermolecular Cl···O contact of 3.1115 (17) Å occurs (van der Waals' radius sum for these species = 3.27 Å).

Related literature top

For related structures, see: Mughal et al. (2012a,b).

Experimental top

0.1 g of 2,3 dimethyl aniline was dissolved in 15 ml dichloromethane and 0.2 g of 2,5-dichloro benzene sulfonylchloride was added: the mixture was stirred at room temperature overnight with the pH maintained at 8–9 with triethyamine. On completion of reaction (after TLC) the mixture was poured into a separating flask and 1 M HCl solution added. The lower DCM layer was separated and the solvent was allowed to evaporate at room temperature. Brown blocks of (I) were recrystallized from acetonitrile solution at room temperature in 96% yield.

Refinement top

The N-bond H atom was located in a difference map and its position was freely refined. The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C) was applied. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Fig. 2. Fragment of a C(4) chain in the crystal of (I), with N—H···O hydrogen bonds shown as double-dashed lines. All C-bound H atoms omitted for clarity. Symmetry code: (i) 1/2 - x, y + 1/2, z.
2,5-Dichloro-N-(2,3-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H13Cl2NO2SDx = 1.494 Mg m3
Mr = 330.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1890 reflections
a = 13.0069 (11) Åθ = 4.2–21.6°
b = 10.0775 (9) ŵ = 0.58 mm1
c = 22.408 (2) ÅT = 296 K
V = 2937.2 (4) Å3Block, colourless
Z = 80.30 × 0.20 × 0.18 mm
F(000) = 1360
Data collection top
Bruker APEXII CCD
diffractometer
2377 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 27.2°, θmin = 1.8°
ω scansh = 1615
23820 measured reflectionsk = 1212
3260 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0396P)2 + 1.0864P]
where P = (Fo2 + 2Fc2)/3
3260 reflections(Δ/σ)max = 0.001
186 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H13Cl2NO2SV = 2937.2 (4) Å3
Mr = 330.21Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.0069 (11) ŵ = 0.58 mm1
b = 10.0775 (9) ÅT = 296 K
c = 22.408 (2) Å0.30 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2377 reflections with I > 2σ(I)
23820 measured reflectionsRint = 0.045
3260 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.26 e Å3
3260 reflectionsΔρmin = 0.31 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36432 (15)0.2392 (2)0.27761 (9)0.0380 (5)
C20.34175 (15)0.1626 (2)0.22779 (9)0.0403 (5)
C30.41472 (17)0.1589 (2)0.18170 (10)0.0471 (6)
C40.50361 (19)0.2333 (3)0.18622 (11)0.0607 (7)
H1A0.55230.22870.15590.073*
C50.52163 (19)0.3142 (3)0.23476 (12)0.0648 (7)
H130.58020.36700.23620.078*
C60.45235 (17)0.3159 (2)0.28092 (11)0.0510 (6)
H140.46450.36850.31430.061*
C70.24248 (18)0.0871 (3)0.22183 (11)0.0593 (7)
H11A0.20140.10060.25690.089*
H11B0.25700.00580.21740.089*
H11C0.20570.11830.18740.089*
C80.3960 (2)0.0772 (3)0.12657 (11)0.0689 (8)
H12A0.45520.08170.10110.103*
H12B0.33710.11110.10570.103*
H12C0.38380.01340.13770.103*
C90.42663 (14)0.14693 (19)0.41375 (8)0.0334 (4)
C100.45813 (15)0.2588 (2)0.44538 (9)0.0376 (5)
C110.55332 (16)0.2609 (2)0.47257 (10)0.0469 (5)
H70.57420.33580.49360.056*
C120.61758 (16)0.1526 (2)0.46883 (10)0.0490 (6)
H80.68140.15380.48750.059*
C130.58658 (16)0.0429 (2)0.43732 (9)0.0416 (5)
C140.49226 (15)0.0390 (2)0.40944 (9)0.0389 (5)
H100.47270.03560.38780.047*
Cl10.38122 (4)0.39770 (5)0.45093 (3)0.04880 (16)
Cl20.66673 (5)0.09408 (7)0.43314 (3)0.0630 (2)
S10.30265 (4)0.13320 (5)0.38004 (2)0.03558 (14)
N10.29345 (12)0.24200 (17)0.32771 (8)0.0376 (4)
H10.2777 (16)0.322 (2)0.3392 (10)0.045*
O10.30173 (10)0.00454 (14)0.35289 (7)0.0443 (4)
O20.22658 (11)0.16635 (16)0.42321 (7)0.0487 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0366 (10)0.0394 (12)0.0381 (11)0.0035 (9)0.0028 (8)0.0021 (10)
C20.0406 (11)0.0416 (12)0.0386 (12)0.0063 (10)0.0032 (9)0.0006 (10)
C30.0519 (13)0.0519 (14)0.0375 (12)0.0134 (11)0.0019 (10)0.0036 (11)
C40.0500 (13)0.0814 (19)0.0506 (15)0.0037 (13)0.0089 (11)0.0181 (14)
C50.0498 (14)0.0821 (19)0.0627 (17)0.0222 (14)0.0005 (12)0.0166 (15)
C60.0541 (13)0.0544 (14)0.0446 (13)0.0158 (12)0.0040 (11)0.0014 (12)
C70.0507 (13)0.0732 (17)0.0540 (14)0.0088 (13)0.0089 (11)0.0155 (14)
C80.0825 (19)0.078 (2)0.0458 (14)0.0175 (15)0.0057 (13)0.0104 (14)
C90.0351 (10)0.0356 (11)0.0296 (10)0.0050 (9)0.0024 (8)0.0019 (9)
C100.0390 (10)0.0374 (11)0.0365 (11)0.0029 (9)0.0006 (8)0.0027 (9)
C110.0462 (12)0.0483 (13)0.0461 (13)0.0077 (11)0.0079 (10)0.0096 (11)
C120.0382 (11)0.0592 (15)0.0497 (14)0.0038 (11)0.0091 (10)0.0002 (12)
C130.0401 (11)0.0439 (12)0.0407 (12)0.0038 (10)0.0028 (9)0.0077 (10)
C140.0412 (11)0.0373 (11)0.0384 (11)0.0036 (9)0.0018 (9)0.0021 (9)
Cl10.0479 (3)0.0399 (3)0.0586 (4)0.0005 (2)0.0035 (2)0.0150 (3)
Cl20.0558 (4)0.0571 (4)0.0760 (4)0.0165 (3)0.0020 (3)0.0082 (3)
S10.0320 (2)0.0373 (3)0.0374 (3)0.0063 (2)0.0019 (2)0.0072 (2)
N10.0382 (9)0.0360 (9)0.0386 (9)0.0041 (8)0.0001 (7)0.0077 (8)
O10.0438 (8)0.0374 (8)0.0515 (9)0.0084 (7)0.0015 (7)0.0112 (7)
O20.0393 (8)0.0595 (10)0.0473 (9)0.0077 (7)0.0115 (7)0.0117 (8)
Geometric parameters (Å, º) top
C1—C61.384 (3)C8—H12C0.9600
C1—C21.388 (3)C9—C141.386 (3)
C1—N11.453 (3)C9—C101.394 (3)
C2—C31.403 (3)C9—S11.786 (2)
C2—C71.505 (3)C10—C111.380 (3)
C3—C41.381 (3)C10—Cl11.725 (2)
C3—C81.505 (3)C11—C121.377 (3)
C4—C51.379 (4)C11—H70.9300
C4—H1A0.9300C12—C131.372 (3)
C5—C61.372 (3)C12—H80.9300
C5—H130.9300C13—C141.377 (3)
C6—H140.9300C13—Cl21.732 (2)
C7—H11A0.9600C14—H100.9300
C7—H11B0.9600S1—O21.4235 (14)
C7—H11C0.9600S1—O11.4323 (14)
C8—H12A0.9600S1—N11.6098 (18)
C8—H12B0.9600N1—H10.87 (2)
C6—C1—C2121.9 (2)H12B—C8—H12C109.5
C6—C1—N1118.21 (19)C14—C9—C10119.30 (18)
C2—C1—N1119.86 (18)C14—C9—S1117.77 (15)
C1—C2—C3117.6 (2)C10—C9—S1122.90 (15)
C1—C2—C7122.27 (19)C11—C10—C9120.01 (19)
C3—C2—C7120.1 (2)C11—C10—Cl1118.46 (16)
C4—C3—C2119.9 (2)C9—C10—Cl1121.52 (15)
C4—C3—C8119.5 (2)C12—C11—C10120.4 (2)
C2—C3—C8120.6 (2)C12—C11—H7119.8
C5—C4—C3121.4 (2)C10—C11—H7119.8
C5—C4—H1A119.3C13—C12—C11119.42 (19)
C3—C4—H1A119.3C13—C12—H8120.3
C6—C5—C4119.4 (2)C11—C12—H8120.3
C6—C5—H13120.3C12—C13—C14121.2 (2)
C4—C5—H13120.3C12—C13—Cl2119.53 (17)
C5—C6—C1119.7 (2)C14—C13—Cl2119.27 (18)
C5—C6—H14120.1C13—C14—C9119.7 (2)
C1—C6—H14120.1C13—C14—H10120.2
C2—C7—H11A109.5C9—C14—H10120.2
C2—C7—H11B109.5O2—S1—O1119.69 (9)
H11A—C7—H11B109.5O2—S1—N1106.47 (9)
C2—C7—H11C109.5O1—S1—N1107.85 (9)
H11A—C7—H11C109.5O2—S1—C9108.78 (9)
H11B—C7—H11C109.5O1—S1—C9104.91 (9)
C3—C8—H12A109.5N1—S1—C9108.81 (9)
C3—C8—H12B109.5C1—N1—S1120.16 (14)
H12A—C8—H12B109.5C1—N1—H1113.4 (15)
C3—C8—H12C109.5S1—N1—H1115.5 (15)
H12A—C8—H12C109.5
C6—C1—C2—C33.8 (3)Cl1—C10—C11—C12179.43 (18)
N1—C1—C2—C3177.39 (18)C10—C11—C12—C130.6 (3)
C6—C1—C2—C7175.2 (2)C11—C12—C13—C140.1 (3)
N1—C1—C2—C73.6 (3)C11—C12—C13—Cl2179.36 (17)
C1—C2—C3—C42.0 (3)C12—C13—C14—C90.8 (3)
C7—C2—C3—C4177.0 (2)Cl2—C13—C14—C9178.45 (15)
C1—C2—C3—C8179.5 (2)C10—C9—C14—C131.2 (3)
C7—C2—C3—C81.5 (3)S1—C9—C14—C13176.79 (16)
C2—C3—C4—C51.5 (4)C14—C9—S1—O2127.48 (16)
C8—C3—C4—C5177.1 (2)C10—C9—S1—O250.46 (19)
C3—C4—C5—C63.3 (4)C14—C9—S1—O11.71 (18)
C4—C5—C6—C11.5 (4)C10—C9—S1—O1179.65 (16)
C2—C1—C6—C52.0 (3)C14—C9—S1—N1116.91 (16)
N1—C1—C6—C5179.1 (2)C10—C9—S1—N165.14 (18)
C14—C9—C10—C110.7 (3)C6—C1—N1—S193.2 (2)
S1—C9—C10—C11177.17 (16)C2—C1—N1—S187.9 (2)
C14—C9—C10—Cl1178.49 (15)O2—S1—N1—C1177.30 (15)
S1—C9—C10—Cl13.6 (2)O1—S1—N1—C153.06 (17)
C9—C10—C11—C120.2 (3)C9—S1—N1—C160.22 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)2.14 (2)2.975 (2)162.9 (19)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H13Cl2NO2S
Mr330.21
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)13.0069 (11), 10.0775 (9), 22.408 (2)
V3)2937.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
23820, 3260, 2377
Rint0.045
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 0.98
No. of reflections3260
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)2.14 (2)2.975 (2)162.9 (19)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University Lahore.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Arshad, M. N. (2012a). Acta Cryst. E68, o2433.  CSD CrossRef IUCr Journals Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Arshad, M. N. (2012b). Acta Cryst. E68, o2476.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds