organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2782-o2783

2-Anilino-5,7-di­methyl­pyrazolo­[1,5-a]pyrimidine-3-carbo­nitrile

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and dDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 14 August 2012; accepted 15 August 2012; online 25 August 2012)

The title compound, C15H13N5, crystallizes with two independent mol­ecules in the asymmetric unit. The mol­ecular conformations are stabilized by C—H⋯N contacts forming S(6) ring motifs. In the crystal, pairs of mol­ecules are connected into R22(12) dimers by N—H⋯N hydrogen bonds. C—H⋯π inter­actions and ππ stacking inter­actions [centroid–centroid distances = 3.6085 (8), 3.6657 (8), 3.4745 (8) and 3.5059 (8) Å] also also observed.

Related literature

For background details and bioactivity of pyrazolo­pyrimidine compounds, see: Singh et al. (2011[Singh, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). Int. J. Pharm. Sci. 2, 131-144.]); Rajendran et al. (2011[Rajendran, A., Raghupathy, D. & Priyadarshini, M. (2011). Int. J. Chem. Technol. 3, 293-297.]); Earl et al.(1975[Earl, R. A., Pugmire, R. J., Revanker, G. R. & Townsend, L. B. (1975). J. Org. Chem. 40, 1822-1828.]); Bendich et al. (1954[Bendich, A., Russell, P. J. Jr & Fox, J. J. (1954). J. Am. Chem. Soc. 76, 6073-6077.]); Elion et al. (1963[Elion, G. B., Callahan, S., Nathan, H., Bieher, S., Rundles, R. W. & Hitchings, G. H. (1963). Biochem. Pharmacol. 12, 85-93.]); Hildick & Shaw (1971[Hildick, B. G. & Shaw, G. (1971). J. Chem. Soc. pp. 1610-1613.]); Kabayasahi (1973[Kabayasahi, S. J. (1973). Pharm. Bull. 21, 941-949.]); Satherland et al. (1968[Satherland, E. W., Robinson, G. A. & Butcher, R. W. (1968). Circulation, 37, 279-287.]); Soliman et al. (2010[Soliman, A. M., Sultan, A. A., Abdel-Aleem, M. & Abdel-Ghany, H. (2010). J. Int. Environ. Appl. Sci. 5, 883-889.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N5

  • Mr = 263.30

  • Monoclinic, P 21 /c

  • a = 11.2139 (4) Å

  • b = 10.4347 (4) Å

  • c = 22.1753 (9) Å

  • β = 94.569 (1)°

  • V = 2586.57 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.30 × 0.14 × 0.13 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.989

  • 16931 measured reflections

  • 6402 independent reflections

  • 4813 reflections with I > 2σ(I)

  • Rint = 0.027

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.02

  • 6402 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the N2/N3/C7–C9 and N3/N5/C9/C11–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N9i 0.86 2.20 3.0487 (17) 168
N6—H6⋯N4ii 0.86 2.23 3.0703 (17) 167
C1—H1⋯N2 0.93 2.40 2.9158 (17) 115
C16—H16⋯N7 0.93 2.28 2.9059 (17) 124
C4—H4⋯Cg1iii 0.93 2.83 3.5730 (16) 138
C27—H27⋯Cg3iii 0.93 2.99 3.7462 (15) 139
C29—H29BCg3 0.96 2.95 3.7420 (16) 141
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The pyrazole containing compounds have practical applications in the medicinal and agrochemical fields. Pyrazolopyrimidines in particular represent a class of nitrogen bridgehead antibiotic compounds such as formycin and and allopurinol (Elion et al., 1963) which are still the drug of choice for the treatment of hyperurecemia and gouty arthritis (Earl et al., 1975). In addition, pyrazolopyrimidines have exhibited antimicrobial (Singh et al., 2011; Rajendran et al. 2011, Hildick & Shaw, 1971), antitumor and antileukemic activities (Earl et al., 1975). They are as purine analogues (Bendich et al., 1954; Kabayasahi, 1973) and as such they have useful properties as antimetabolites in purine biochemical reaction (Satherland et al., 1968). In view of the importance of pyrazolpyrimidine derivatives we have planned a systematic study of such compounds, and describe here the crystal structure of the title compound (I) as one of potential bioactive derivative.

As shown in Fig. 1, the two independent molecules (A with N1 and B with N6) in the asymmetric unit of (I) have a similar conformation. In both molecules (A and B), the pyrazolo[1,5-a]pyrimidine rings are essentially planar [maximum deviaitions are 0.015 (1) Å for N2 and N3 in molecule A, and 0.018 (1) Å for N7 in molecule B]. The dihedral angles between the pyrazolo[1,5-a]pyrimidine and phenyl rings are 29.74 (6)° in molecule A and 3.34 (6)° in molecule B. In the both molecules (A and B) of (I), the bond lengths and bond angles are found to have normal values (Allen et al., 1987).

Molecular conformations of the molecules A and B are stabilized by C—H···N contacts generating S(6) ring motifs (Table 1). In the crystal, R22(12) dimers by N—H···N hydrogen bonds connect pairs of molecules to each other (Bernstein et al.,1995; Table 1, Fig. 2). Furthermore, C—H···π interactions and π-π stacking interactions [Cg1···Cg6 (x, y, z) = 3.6085 (8) Å, Cg2···Cg5 (x, y, z) = 3.6657 (8) Å, Cg5···Cg7 (2 - x, -y, 1 - z) = 3.4745 (8) Å and Cg6···Cg7 (2 - x, -y, 1 - z) = 3.5059 (8) Å; where Cg1, Cg2, Cg5, Cg6 and Cg7 are the N2/N3/C7–C9, N3/N5/C9/C11–C13, N7/N8/C22–C24, N8/N10/C24/C26–C28 and C16–C21 rings, respectively] are also observed in the crystal structure.

Related literature top

For background details and bioactivity of pyrazolopyrimidine compounds, see: Singh et al. (2011); Rajendran et al. (2011); Earl et al.(1975); Bendich et al. (1954); Elion et al. (1963); Hildick & Shaw (1971); Kabayasahi (1973); Satherland et al. (1968); Soliman et al. (2010). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared according to the reported literature (Soliman et al., 2010). Suitable crystals for X-ray diffraction were obtained from ethanol solution of (I) by slow evaporation method (M.p.: 553 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with N—H = 0.86 Å, C—H = 0.93 and 0.96 Å, and with Uiso = 1.2 or 1.5Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
View of two independent molecules of C15H13N5 in the asymmetric unit. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

View of the dimers formed by pairs of N—H···N hydrogen bonds, forming a R22(12) motif. H atoms not involved in hydrogen bonds have been omitted for clarity.
2-Anilino-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-carbonitrile top
Crystal data top
C15H13N5F(000) = 1104
Mr = 263.30Dx = 1.352 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5253 reflections
a = 11.2139 (4) Åθ = 2.5–28.3°
b = 10.4347 (4) ŵ = 0.09 mm1
c = 22.1753 (9) ÅT = 90 K
β = 94.569 (1)°Needle, yellow
V = 2586.57 (17) Å30.30 × 0.14 × 0.13 mm
Z = 8
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6402 independent reflections
Radiation source: sealed tube4813 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1414
Tmin = 0.975, Tmax = 0.989k = 913
16931 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.7958P]
where P = (Fo2 + 2Fc2)/3
6402 reflections(Δ/σ)max = 0.001
365 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H13N5V = 2586.57 (17) Å3
Mr = 263.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.2139 (4) ŵ = 0.09 mm1
b = 10.4347 (4) ÅT = 90 K
c = 22.1753 (9) Å0.30 × 0.14 × 0.13 mm
β = 94.569 (1)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6402 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4813 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.989Rint = 0.027
16931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
6402 reflectionsΔρmin = 0.21 e Å3
365 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.47831 (10)0.32101 (12)0.70318 (5)0.0199 (3)
N20.66448 (10)0.40025 (11)0.67523 (5)0.0180 (3)
N30.70882 (10)0.41926 (11)0.61962 (5)0.0166 (3)
N40.33625 (11)0.25331 (13)0.54197 (6)0.0266 (4)
N50.65371 (10)0.40210 (11)0.51345 (5)0.0192 (3)
C10.58840 (12)0.39461 (14)0.79791 (6)0.0206 (4)
C20.60952 (12)0.38176 (15)0.86009 (6)0.0231 (4)
C30.55016 (13)0.28965 (15)0.89136 (7)0.0255 (4)
C40.46676 (13)0.21140 (14)0.85998 (7)0.0251 (4)
C50.44404 (12)0.22347 (14)0.79814 (6)0.0211 (4)
C60.50542 (11)0.31412 (13)0.76635 (6)0.0178 (4)
C70.55347 (11)0.35638 (13)0.66085 (6)0.0174 (4)
C80.52493 (11)0.34861 (13)0.59719 (6)0.0178 (4)
C90.62799 (11)0.39049 (13)0.57116 (6)0.0173 (4)
C100.42096 (12)0.29756 (13)0.56611 (6)0.0193 (4)
C110.76337 (12)0.44325 (13)0.50442 (6)0.0198 (4)
C120.84888 (12)0.47222 (13)0.55295 (6)0.0205 (4)
C130.82237 (12)0.45941 (13)0.61182 (6)0.0186 (4)
C140.79399 (13)0.45550 (15)0.44007 (7)0.0246 (4)
C150.90416 (12)0.48200 (14)0.66696 (6)0.0226 (4)
N61.07117 (10)0.19315 (11)0.50864 (5)0.0198 (3)
N70.87866 (10)0.13453 (11)0.53749 (5)0.0184 (3)
N80.83415 (10)0.11918 (11)0.59317 (5)0.0171 (3)
N91.22465 (11)0.22274 (14)0.67265 (6)0.0304 (4)
N100.89182 (10)0.13317 (11)0.69927 (5)0.0186 (3)
C160.94456 (12)0.15164 (13)0.41364 (6)0.0210 (4)
C170.93656 (13)0.14738 (14)0.35064 (7)0.0229 (4)
C181.03505 (13)0.17251 (14)0.31852 (7)0.0227 (4)
C191.14369 (13)0.20196 (13)0.35019 (6)0.0216 (4)
C201.15306 (12)0.20798 (13)0.41256 (6)0.0193 (4)
C211.05356 (12)0.18282 (12)0.44522 (6)0.0181 (4)
C220.99284 (12)0.16850 (12)0.55138 (6)0.0173 (4)
C231.02218 (12)0.17663 (13)0.61492 (6)0.0180 (4)
C240.91709 (11)0.14323 (13)0.64140 (6)0.0173 (4)
C251.13379 (12)0.20222 (14)0.64679 (6)0.0206 (4)
C260.78134 (12)0.09541 (13)0.70864 (6)0.0194 (4)
C270.69422 (12)0.06867 (13)0.66062 (6)0.0193 (4)
C280.72062 (12)0.08007 (13)0.60174 (6)0.0188 (4)
C290.75352 (13)0.07701 (15)0.77310 (7)0.0240 (4)
C300.63923 (12)0.05188 (14)0.54696 (7)0.0224 (4)
H10.629100.456300.777300.0250*
H1A0.406600.300700.690000.0240*
H20.664300.435700.881100.0280*
H30.566100.280500.932900.0310*
H40.425800.150200.880800.0300*
H50.387500.170900.777600.0250*
H120.924500.500500.544700.0250*
H14A0.848300.388300.431000.0370*
H14B0.830900.537200.434400.0370*
H14C0.722300.448800.413500.0370*
H15A0.869900.545100.691900.0340*
H15B0.980000.512100.655400.0340*
H15C0.915400.403400.689200.0340*
H61.141100.218500.522400.0240*
H160.877800.133900.434500.0250*
H170.863800.127300.329700.0280*
H181.028600.169700.276500.0270*
H191.210600.217700.329100.0260*
H201.226000.228900.433100.0230*
H270.618000.043000.669200.0230*
H29A0.766100.011100.784400.0360*
H29B0.671600.099700.777300.0360*
H29C0.805000.130600.798900.0360*
H30A0.561100.030900.558900.0340*
H30B0.670200.019200.525600.0340*
H30C0.633900.125800.521100.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0128 (5)0.0291 (7)0.0172 (6)0.0027 (5)0.0017 (4)0.0004 (5)
N20.0161 (5)0.0196 (6)0.0183 (6)0.0002 (4)0.0009 (4)0.0004 (4)
N30.0149 (5)0.0172 (6)0.0174 (6)0.0003 (4)0.0004 (4)0.0020 (4)
N40.0188 (6)0.0376 (8)0.0231 (6)0.0026 (5)0.0001 (5)0.0049 (5)
N50.0175 (5)0.0210 (6)0.0192 (6)0.0012 (5)0.0025 (4)0.0021 (4)
C10.0170 (6)0.0245 (7)0.0201 (7)0.0016 (5)0.0010 (5)0.0012 (5)
C20.0181 (6)0.0303 (8)0.0205 (7)0.0003 (6)0.0015 (5)0.0026 (6)
C30.0265 (7)0.0327 (8)0.0169 (7)0.0040 (6)0.0006 (5)0.0022 (6)
C40.0283 (7)0.0240 (7)0.0238 (7)0.0004 (6)0.0068 (6)0.0036 (6)
C50.0188 (6)0.0215 (7)0.0233 (7)0.0020 (5)0.0032 (5)0.0033 (5)
C60.0137 (6)0.0216 (7)0.0180 (6)0.0042 (5)0.0003 (5)0.0007 (5)
C70.0152 (6)0.0170 (6)0.0196 (7)0.0012 (5)0.0011 (5)0.0018 (5)
C80.0146 (6)0.0200 (7)0.0185 (7)0.0009 (5)0.0003 (5)0.0016 (5)
C90.0144 (6)0.0167 (6)0.0203 (7)0.0022 (5)0.0015 (5)0.0028 (5)
C100.0166 (6)0.0237 (7)0.0177 (7)0.0017 (5)0.0021 (5)0.0019 (5)
C110.0197 (7)0.0176 (7)0.0222 (7)0.0027 (5)0.0029 (5)0.0019 (5)
C120.0155 (6)0.0195 (7)0.0269 (7)0.0014 (5)0.0034 (5)0.0017 (5)
C130.0139 (6)0.0151 (6)0.0266 (7)0.0006 (5)0.0002 (5)0.0019 (5)
C140.0233 (7)0.0269 (8)0.0242 (7)0.0004 (6)0.0064 (6)0.0020 (6)
C150.0166 (6)0.0251 (7)0.0253 (7)0.0032 (6)0.0037 (5)0.0011 (6)
N60.0148 (5)0.0241 (6)0.0198 (6)0.0035 (5)0.0022 (4)0.0022 (5)
N70.0165 (5)0.0181 (6)0.0204 (6)0.0010 (4)0.0001 (4)0.0005 (4)
N80.0147 (5)0.0171 (6)0.0191 (6)0.0004 (4)0.0015 (4)0.0010 (4)
N90.0208 (6)0.0462 (8)0.0237 (7)0.0064 (6)0.0005 (5)0.0009 (6)
N100.0158 (5)0.0194 (6)0.0205 (6)0.0005 (4)0.0002 (4)0.0027 (4)
C160.0181 (6)0.0197 (7)0.0247 (7)0.0008 (5)0.0008 (5)0.0000 (5)
C170.0214 (7)0.0221 (7)0.0240 (7)0.0012 (6)0.0063 (5)0.0000 (6)
C180.0263 (7)0.0217 (7)0.0194 (7)0.0010 (6)0.0020 (5)0.0013 (5)
C190.0207 (7)0.0201 (7)0.0240 (7)0.0014 (5)0.0016 (5)0.0026 (5)
C200.0162 (6)0.0182 (7)0.0228 (7)0.0008 (5)0.0023 (5)0.0002 (5)
C210.0190 (6)0.0141 (6)0.0209 (7)0.0026 (5)0.0011 (5)0.0001 (5)
C220.0162 (6)0.0143 (6)0.0209 (7)0.0009 (5)0.0008 (5)0.0008 (5)
C230.0150 (6)0.0181 (6)0.0205 (7)0.0002 (5)0.0011 (5)0.0017 (5)
C240.0151 (6)0.0145 (6)0.0217 (7)0.0011 (5)0.0021 (5)0.0024 (5)
C250.0175 (6)0.0248 (7)0.0195 (7)0.0022 (5)0.0022 (5)0.0004 (5)
C260.0177 (6)0.0161 (6)0.0244 (7)0.0026 (5)0.0012 (5)0.0015 (5)
C270.0134 (6)0.0177 (7)0.0267 (7)0.0004 (5)0.0011 (5)0.0005 (5)
C280.0144 (6)0.0145 (6)0.0270 (7)0.0014 (5)0.0020 (5)0.0010 (5)
C290.0194 (7)0.0290 (8)0.0237 (7)0.0008 (6)0.0026 (5)0.0013 (6)
C300.0163 (6)0.0235 (7)0.0266 (7)0.0020 (6)0.0036 (5)0.0007 (6)
Geometric parameters (Å, º) top
N1—C61.4114 (17)C3—H30.9300
N1—C71.3615 (17)C4—H40.9300
N2—N31.3802 (16)C5—H50.9300
N2—C71.3408 (17)C12—H120.9300
N3—C91.3825 (17)C14—H14C0.9600
N3—C131.3645 (18)C14—H14B0.9600
N4—C101.1494 (19)C14—H14A0.9600
N5—C91.3396 (17)C15—H15A0.9600
N5—C111.3326 (18)C15—H15B0.9600
N1—H1A0.8600C15—H15C0.9600
N6—C211.4086 (17)C16—C211.3978 (19)
N6—C221.3670 (17)C16—C171.394 (2)
N7—C221.3406 (18)C17—C181.386 (2)
N7—N81.3775 (16)C18—C191.391 (2)
N8—C281.3646 (18)C19—C201.3801 (19)
N8—C241.3833 (17)C20—C211.4026 (19)
N9—C251.1488 (19)C22—C231.4237 (19)
N10—C261.3320 (18)C23—C251.4129 (19)
N10—C241.3402 (17)C23—C241.4019 (18)
N6—H60.8600C26—C271.4144 (19)
C1—C21.3868 (19)C26—C291.500 (2)
C1—C61.3991 (19)C27—C281.3668 (19)
C2—C31.386 (2)C28—C301.490 (2)
C3—C41.386 (2)C16—H160.9300
C4—C51.380 (2)C17—H170.9300
C5—C61.3938 (19)C18—H180.9300
C7—C81.4247 (19)C19—H190.9300
C8—C101.4107 (19)C20—H200.9300
C8—C91.4022 (18)C27—H270.9300
C11—C141.500 (2)C29—H29A0.9600
C11—C121.4158 (19)C29—H29B0.9600
C12—C131.3683 (19)C29—H29C0.9600
C13—C151.4877 (19)C30—H30A0.9600
C1—H10.9300C30—H30B0.9600
C2—H20.9300C30—H30C0.9600
C6—N1—C7127.00 (11)H14B—C14—H14C109.00
N3—N2—C7103.32 (10)C11—C14—H14A110.00
N2—N3—C9113.75 (11)C13—C15—H15A109.00
N2—N3—C13124.31 (11)H15B—C15—H15C109.00
C9—N3—C13121.92 (11)H15A—C15—H15B109.00
C9—N5—C11116.37 (11)H15A—C15—H15C109.00
C6—N1—H1A117.00C13—C15—H15B109.00
C7—N1—H1A116.00C13—C15—H15C110.00
C21—N6—C22129.13 (11)C17—C16—C21119.58 (13)
N8—N7—C22103.44 (10)C16—C17—C18121.26 (14)
N7—N8—C28124.63 (11)C17—C18—C19118.94 (14)
C24—N8—C28121.59 (11)C18—C19—C20120.64 (13)
N7—N8—C24113.74 (11)C19—C20—C21120.58 (13)
C24—N10—C26116.28 (11)N6—C21—C20116.56 (12)
C22—N6—H6115.00N6—C21—C16124.43 (12)
C21—N6—H6115.00C16—C21—C20119.00 (12)
C2—C1—C6119.57 (13)N6—C22—C23124.36 (12)
C1—C2—C3120.91 (13)N6—C22—N7123.04 (12)
C2—C3—C4119.27 (14)N7—C22—C23112.60 (12)
C3—C4—C5120.57 (14)C24—C23—C25125.32 (12)
C4—C5—C6120.32 (13)C22—C23—C25129.20 (12)
C1—C6—C5119.34 (12)C22—C23—C24105.31 (12)
N1—C6—C1123.23 (12)N8—C24—N10123.07 (11)
N1—C6—C5117.42 (12)N8—C24—C23104.90 (11)
N1—C7—C8124.41 (12)N10—C24—C23132.03 (12)
N2—C7—C8112.71 (11)N9—C25—C23179.83 (16)
N1—C7—N2122.86 (12)C27—C26—C29120.58 (12)
C9—C8—C10126.36 (12)N10—C26—C27122.42 (12)
C7—C8—C9105.23 (11)N10—C26—C29116.96 (12)
C7—C8—C10128.12 (12)C26—C27—C28120.85 (12)
N3—C9—N5123.04 (11)C27—C28—C30126.63 (12)
N5—C9—C8131.97 (12)N8—C28—C27115.76 (12)
N3—C9—C8104.98 (11)N8—C28—C30117.60 (12)
N4—C10—C8178.10 (15)C17—C16—H16120.00
N5—C11—C12122.13 (12)C21—C16—H16120.00
N5—C11—C14117.03 (12)C16—C17—H17119.00
C12—C11—C14120.83 (12)C18—C17—H17119.00
C11—C12—C13121.26 (12)C17—C18—H18121.00
C12—C13—C15127.02 (12)C19—C18—H18121.00
N3—C13—C15117.70 (12)C18—C19—H19120.00
N3—C13—C12115.26 (12)C20—C19—H19120.00
C6—C1—H1120.00C19—C20—H20120.00
C2—C1—H1120.00C21—C20—H20120.00
C3—C2—H2120.00C26—C27—H27120.00
C1—C2—H2120.00C28—C27—H27120.00
C4—C3—H3120.00C26—C29—H29A110.00
C2—C3—H3120.00C26—C29—H29B110.00
C5—C4—H4120.00C26—C29—H29C109.00
C3—C4—H4120.00H29A—C29—H29B109.00
C4—C5—H5120.00H29A—C29—H29C109.00
C6—C5—H5120.00H29B—C29—H29C109.00
C13—C12—H12119.00C28—C30—H30A109.00
C11—C12—H12119.00C28—C30—H30B109.00
H14A—C14—H14B109.00C28—C30—H30C109.00
H14A—C14—H14C109.00H30A—C30—H30B109.00
C11—C14—H14B110.00H30A—C30—H30C109.00
C11—C14—H14C109.00H30B—C30—H30C109.00
C7—N1—C6—C131.2 (2)C2—C1—C6—N1179.79 (13)
C7—N1—C6—C5149.89 (14)C2—C1—C6—C50.9 (2)
C6—N1—C7—N25.5 (2)C6—C1—C2—C30.5 (2)
C6—N1—C7—C8173.05 (13)C1—C2—C3—C41.4 (2)
C7—N2—N3—C13177.38 (12)C2—C3—C4—C50.9 (2)
N3—N2—C7—C80.88 (15)C3—C4—C5—C60.4 (2)
C7—N2—N3—C91.00 (15)C4—C5—C6—N1179.70 (13)
N3—N2—C7—N1177.84 (12)C4—C5—C6—C11.4 (2)
N2—N3—C9—N5179.79 (12)N2—C7—C8—C90.48 (16)
N2—N3—C13—C12179.92 (13)N1—C7—C8—C104.3 (2)
C9—N3—C13—C121.67 (19)N2—C7—C8—C10174.45 (13)
C13—N3—C9—N51.4 (2)N1—C7—C8—C9178.22 (13)
C9—N3—C13—C15177.18 (12)C7—C8—C9—N30.15 (15)
N2—N3—C9—C80.73 (15)C10—C8—C9—N3173.96 (13)
N2—N3—C13—C151.07 (19)C10—C8—C9—N55.0 (2)
C13—N3—C9—C8177.69 (12)C7—C8—C9—N5179.09 (14)
C9—N5—C11—C14179.40 (12)C14—C11—C12—C13178.97 (13)
C9—N5—C11—C120.55 (19)N5—C11—C12—C130.2 (2)
C11—N5—C9—N30.18 (19)C11—C12—C13—N30.9 (2)
C11—N5—C9—C8178.60 (14)C11—C12—C13—C15177.78 (13)
C21—N6—C22—C23176.95 (13)C21—C16—C17—C180.5 (2)
C22—N6—C21—C164.5 (2)C17—C16—C21—C200.6 (2)
C21—N6—C22—N73.5 (2)C17—C16—C21—N6178.31 (13)
C22—N6—C21—C20176.57 (13)C16—C17—C18—C190.3 (2)
N8—N7—C22—N6179.77 (12)C17—C18—C19—C201.0 (2)
C22—N7—N8—C240.31 (14)C18—C19—C20—C210.9 (2)
N8—N7—C22—C230.64 (14)C19—C20—C21—C160.1 (2)
C22—N7—N8—C28177.66 (12)C19—C20—C21—N6179.07 (12)
N7—N8—C28—C300.07 (19)N6—C22—C23—C254.3 (2)
N7—N8—C24—C230.13 (15)N7—C22—C23—C25176.09 (14)
C28—N8—C24—N101.7 (2)N6—C22—C23—C24179.68 (12)
N7—N8—C24—N10179.72 (12)N7—C22—C23—C240.74 (15)
C24—N8—C28—C271.12 (19)C22—C23—C24—N80.49 (14)
C28—N8—C24—C23178.17 (12)C22—C23—C24—N10179.33 (14)
C24—N8—C28—C30177.75 (12)C25—C23—C24—N8176.07 (13)
N7—N8—C28—C27178.94 (12)C25—C23—C24—N103.8 (2)
C26—N10—C24—N81.42 (19)C29—C26—C27—C28177.22 (13)
C26—N10—C24—C23178.38 (14)N10—C26—C27—C280.4 (2)
C24—N10—C26—C29176.88 (12)C26—C27—C28—N80.5 (2)
C24—N10—C26—C270.77 (19)C26—C27—C28—C30178.25 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N2/N3/C7–C9 and N3/N5/C9/C11–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N9i0.862.203.0487 (17)168
N6—H6···N4ii0.862.233.0703 (17)167
C1—H1···N20.932.402.9158 (17)115
C16—H16···N70.932.282.9059 (17)124
C4—H4···Cg1iii0.932.833.5730 (16)138
C27—H27···Cg3iii0.932.993.7462 (15)139
C29—H29B···Cg30.962.953.7420 (16)141
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H13N5
Mr263.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)11.2139 (4), 10.4347 (4), 22.1753 (9)
β (°) 94.569 (1)
V3)2586.57 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.14 × 0.13
Data collection
DiffractometerBruker Kappa APEXII DUO
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.975, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
16931, 6402, 4813
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.02
No. of reflections6402
No. of parameters365
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the N2/N3/C7–C9 and N3/N5/C9/C11–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N9i0.862.203.0487 (17)168
N6—H6···N4ii0.862.233.0703 (17)167
C1—H1···N20.932.402.9158 (17)115
C16—H16···N70.932.282.9059 (17)124
C4—H4···Cg1iii0.932.833.5730 (16)138
C27—H27···Cg3iii0.932.993.7462 (15)139
C29—H29B···Cg30.962.953.7420 (16)141
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

We thank Sohag University for the financial support of this project. Manchester Metropolitan University, Erciyes University and Louisiana State University are also gratefuly acknowledged for supporting this study.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBendich, A., Russell, P. J. Jr & Fox, J. J. (1954). J. Am. Chem. Soc. 76, 6073–6077.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEarl, R. A., Pugmire, R. J., Revanker, G. R. & Townsend, L. B. (1975). J. Org. Chem. 40, 1822–1828.  CrossRef CAS Web of Science Google Scholar
First citationElion, G. B., Callahan, S., Nathan, H., Bieher, S., Rundles, R. W. & Hitchings, G. H. (1963). Biochem. Pharmacol. 12, 85–93.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHildick, B. G. & Shaw, G. (1971). J. Chem. Soc. pp. 1610–1613.  Google Scholar
First citationKabayasahi, S. J. (1973). Pharm. Bull. 21, 941–949.  Google Scholar
First citationRajendran, A., Raghupathy, D. & Priyadarshini, M. (2011). Int. J. Chem. Technol. 3, 293–297.  CAS Google Scholar
First citationSatherland, E. W., Robinson, G. A. & Butcher, R. W. (1968). Circulation, 37, 279–287.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). Int. J. Pharm. Sci. 2, 131–144.  CAS Google Scholar
First citationSoliman, A. M., Sultan, A. A., Abdel-Aleem, M. & Abdel-Ghany, H. (2010). J. Int. Environ. Appl. Sci. 5, 883–889.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2782-o2783
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds