organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-4-nitro­benzamide

aDepartment of Chemistry, Quaid - I- Azam University, Islamabad 45320, Pakistan, bUniversität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany, and cNESCOM, PO Box 2216, Islamabad, Pakistan
*Correspondence e-mail: Humaira_siddiqi@yahoo.com

(Received 14 August 2012; accepted 16 August 2012; online 25 August 2012)

The title compound, C13H9ClN2O3, is almost planar, showing a dihedral angle of 4.63 (6)° between the aromatic ring planes. The nitro group also lies in the plane, the C—C—N—O torsion angle being 6.7 (2)°. There is an intamolecular C—H⋯O hydrogen bond. The crystal structure features N—H⋯O(nitro) hydrogen bonds that link the mol­ecules into zigzag chains extending along [010].

Related literature

For background information on aromatic polyimides, see: Yang et al. (1999[Yang, G., Jikei, M. & Kakimoto, M.-A. (1999). Macromolecules, 32, 2215-2220.]); More et al. (2010[More, A. S., Pasale, S. K. & Wadgaonkar, P. P. (2010). Eur. Polym. J. 46, 557-567.]); Litvinov et al., (2010[Litvinov, V. M., Persyn, O., Miri, V. & Lefebvre, J. M. (2010). Macromolecules, 43, 7668-7679.]); Sheng et al. (2009[Sheng, S.-R., Pei, X.-L., Huang, Z.-Z., Liu, X.-L. & Song, C.-S. (2009). Eur. Polym. J. 45, 230-236.]); Choi et al. (1992[Choi, K.-Y., Yi, M. H. & Choi, S.-K. (1992). J. Polym. Sci. Part A Polym. Chem. 30, 1583-1588.]); Hsiao & Lin (2004[Hsiao, S.-H. & Lin, K.-H. (2004). Polymer, 45, 7877-7885.]); Li et al. (2007[Li, W., Li, S., Zhang, Q. & Zhang, S. (2007). Macromolecules, 40, 8205-8211.]); Liaw et al. (2005[Liaw, D. J., Chang, F. C., Leung, M., Chou, M. Y. & Muellen, K. (2005). Macromolecules, 38, 4024-4029.]). For related structures, see Saeed et al. (2011[Saeed, S., Jasinski, J. P. & Butcher, R. J. (2011). Acta Cryst. E67, o279.]); Wardell et al. (2006[Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2006). Acta Cryst. B62, 931-943.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClN2O3

  • Mr = 276.67

  • Monoclinic, P 21 /n

  • a = 9.6019 (7) Å

  • b = 13.0688 (10) Å

  • c = 9.6412 (7) Å

  • β = 103.853 (1)°

  • V = 1174.64 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 130 K

  • 0.49 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.855, Tmax = 0.943

  • 10822 measured reflections

  • 2808 independent reflections

  • 2557 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.08

  • 2808 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1 0.95 2.26 2.859 (2) 120
N1—H1A⋯O3i 0.88 2.29 3.1312 (17) 159
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Aromatic polyimides are distinguished as high performance polymers owing to excellent thermal, mechanical, and chemical properties (Yang et al., 1999, More et al., 2010). They are not only used as beneficial substitutes for metals or ceramics in presently used goods but also as new materials in novel technological applications (Litvinov et al., 2010). Nevertheless, infusibility and insolubility are some of the shortcomings due to the highly regular and rigid polymer backbones and the formation of intermolecular hydrogen bonding, causing deterioration in processability and applications (Sheng et al., 2009, Choi et al., 1992). In order to improve upon these drawbacks, recent research has aimed at improving their processability and solubility without an intense loss in the chemical, thermal, and mechanical properties. For this, improvement of solubility is targeted through diminishing the cohesive energy by lowering the interchain interactions. To achieve this, designing and synthesizing new diamines or dicarboxylic acids is proposed to produce a great variety of soluble and processable polyimides (Hsiao et al., 2004). Incorporating substituted pendant groups which reduce dense chain packing and interchain interactions increases the solubility of resulting polyimides (Liaw et al., 2005, Li et al., 2007). As part of our enduring interest in solubility of aromatic polyimides by structural modification, we are reporting a chloro substituted pendant group having inbuilt amide functionality, which enhances the solubility of polyimides without worsening the inherent properties of polyimides. The molecular structure of the title compound (Figure 1) is closely related to that of the bromo- (Saeed et al., 2011) and iodo-compound (Wardell et al., 2006). The two aromatic rings are almost coplanar with a dihedral angle of 4.63 (6)°, and the nitro group is also coplanar, the associated C4–C5–N2–O2 torsion angle is 6.7 (2)°. The molecular conformation is stabilized by a rather strong intramolecular C13–H···O1 bond. Crystal packing shows a strong intermolecular N1–H···O3(-x + 0.5, y - 0.5, -z + 1.5) hydrogen interaction with H···O3 2.29 Å and N–H···O 159.1° that links molecules into endless zigzag chains extended along the b axis (Figure 2).

Related literature top

For background information on aromatic polyimides, see: Yang et al. (1999); More et al. (2010); Litvinov et al., (2010); Sheng et al. (2009); Choi et al. (1992); Hsiao & Lin (2004); Li et al. (2007); Liaw et al. (2005). For related structures, see Saeed et al. (2011); Wardell et al. (2006).

Experimental top

All the chemicals were of analytical grade and no further purification was carried out before their usage. 1.275 g (0.01 mole) of 4-chloroaniline, 25 ml dichloromethane and 1.39 ml of triethylamine were charged in 100 ml, three-necked, round-bottomed flask fitted with a condenser, a nitrogen inlet tube, a thermometer and a magnetic stirrer. The mixture was stirred at 273-278K for 30 minutes. A solution of 1.85 g (0.01mole) of 4-nitrobenzoyl chloride in 25 ml dichloromethane was added dropwise and stirring was continued for further 45 minutes under same conditions. The temperature was then raised to room temperature along with stirring for further 30 minutes. Product was precipitated by pouring the flask content into water. The product was filtered, washed with 5% NaOH solution, further washing with hot water was carried out and solid product was dried overnight under vacuum at 343K. The product was recrystallized from an ethanol-tetrahydrofuran(1:1)

Refinement top

Hydrogen atoms were clearly derived from difference Fourier maps and then refined at idealized positions riding on the carbon or nitrogen atoms with isotropic displacement parameters Uiso(H) = 1.2U(C/Neq) and N—H 0.88 / C—H 0.95 Å.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
Figure 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2. Crystal packing viewed along [100] with hydrogen bonding pattern indicated as dashed lines. H-atoms not involved are omitted.
N-(4-Chlorophenyl)-4-nitrobenzamide top
Crystal data top
C13H9ClN2O3F(000) = 568
Mr = 276.67Dx = 1.564 Mg m3
Monoclinic, P21/nMelting point: 141 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.6019 (7) ÅCell parameters from 5166 reflections
b = 13.0688 (10) Åθ = 2.7–28.3°
c = 9.6412 (7) ŵ = 0.33 mm1
β = 103.853 (1)°T = 130 K
V = 1174.64 (15) Å3Prism, yellow
Z = 40.49 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX
diffractometer
2808 independent reflections
Radiation source: sealed tube2557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 27.9°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1112
Tmin = 0.855, Tmax = 0.943k = 1617
10822 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.116H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.6505P]
where P = (Fo2 + 2Fc2)/3
2808 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H9ClN2O3V = 1174.64 (15) Å3
Mr = 276.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6019 (7) ŵ = 0.33 mm1
b = 13.0688 (10) ÅT = 130 K
c = 9.6412 (7) Å0.49 × 0.20 × 0.18 mm
β = 103.853 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2808 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2557 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.943Rint = 0.019
10822 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.08Δρmax = 0.76 e Å3
2808 reflectionsΔρmin = 0.26 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86234 (4)0.07922 (3)0.98180 (4)0.02702 (14)
O10.81457 (12)0.60046 (9)0.92017 (14)0.0290 (3)
O20.38514 (13)1.02953 (9)0.81384 (14)0.0317 (3)
O30.20735 (12)0.93858 (9)0.69700 (13)0.0268 (3)
N10.61843 (14)0.49653 (10)0.87249 (14)0.0212 (3)
H1A0.52410.49720.84580.025*
N20.33274 (14)0.94804 (11)0.76579 (15)0.0216 (3)
C10.68462 (17)0.58903 (12)0.88325 (17)0.0208 (3)
C20.58628 (16)0.68089 (12)0.84829 (16)0.0193 (3)
C30.64838 (16)0.77663 (12)0.88474 (17)0.0210 (3)
H3A0.74790.78120.92870.025*
C40.56698 (17)0.86526 (12)0.85776 (17)0.0215 (3)
H4A0.60900.93050.88330.026*
C50.42207 (16)0.85577 (11)0.79222 (16)0.0193 (3)
C60.35741 (16)0.76187 (13)0.75241 (17)0.0217 (3)
H6A0.25840.75780.70640.026*
C70.44026 (17)0.67427 (12)0.78121 (17)0.0224 (3)
H7A0.39770.60920.75530.027*
C80.68397 (16)0.39913 (12)0.89933 (16)0.0198 (3)
C90.59677 (17)0.31396 (12)0.85279 (17)0.0220 (3)
H9A0.49960.32380.80320.026*
C100.65021 (17)0.21567 (13)0.87802 (17)0.0225 (3)
H10A0.59070.15800.84660.027*
C110.79284 (17)0.20303 (12)0.95039 (17)0.0203 (3)
C120.88114 (16)0.28597 (13)0.99628 (17)0.0213 (3)
H12A0.97840.27561.04520.026*
C130.82716 (17)0.38472 (13)0.97057 (17)0.0215 (3)
H13A0.88750.44201.00140.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0277 (2)0.0195 (2)0.0341 (2)0.00400 (14)0.00786 (16)0.00411 (15)
O10.0156 (5)0.0224 (6)0.0469 (7)0.0015 (4)0.0033 (5)0.0064 (5)
O20.0278 (6)0.0180 (6)0.0468 (8)0.0001 (5)0.0041 (5)0.0024 (5)
O30.0182 (5)0.0259 (6)0.0344 (6)0.0029 (4)0.0029 (5)0.0003 (5)
N10.0142 (6)0.0192 (6)0.0288 (7)0.0001 (5)0.0023 (5)0.0008 (5)
N20.0194 (6)0.0216 (7)0.0248 (6)0.0008 (5)0.0069 (5)0.0004 (5)
C10.0177 (7)0.0216 (8)0.0232 (7)0.0007 (6)0.0051 (6)0.0026 (6)
C20.0177 (7)0.0203 (7)0.0202 (7)0.0005 (5)0.0053 (5)0.0019 (5)
C30.0153 (6)0.0227 (8)0.0238 (7)0.0022 (6)0.0024 (6)0.0009 (6)
C40.0199 (7)0.0195 (7)0.0247 (7)0.0033 (6)0.0046 (6)0.0005 (6)
C50.0183 (7)0.0195 (7)0.0208 (7)0.0021 (6)0.0063 (5)0.0006 (5)
C60.0146 (6)0.0243 (8)0.0248 (8)0.0014 (6)0.0023 (5)0.0006 (6)
C70.0188 (7)0.0187 (7)0.0286 (8)0.0029 (6)0.0033 (6)0.0014 (6)
C80.0191 (7)0.0194 (7)0.0218 (7)0.0014 (6)0.0067 (6)0.0012 (6)
C90.0158 (7)0.0249 (8)0.0242 (7)0.0002 (6)0.0026 (6)0.0010 (6)
C100.0195 (7)0.0218 (8)0.0267 (8)0.0037 (6)0.0063 (6)0.0026 (6)
C110.0203 (7)0.0183 (7)0.0237 (7)0.0027 (6)0.0083 (6)0.0027 (6)
C120.0159 (7)0.0239 (8)0.0239 (7)0.0012 (6)0.0042 (6)0.0024 (6)
C130.0181 (7)0.0215 (7)0.0247 (7)0.0009 (6)0.0048 (6)0.0001 (6)
Geometric parameters (Å, º) top
Cl1—C111.7488 (16)C5—C61.387 (2)
O1—C11.222 (2)C6—C71.384 (2)
O2—N21.2207 (19)C6—H6A0.9500
O3—N21.2339 (17)C7—H7A0.9500
N1—C11.358 (2)C8—C131.395 (2)
N1—C81.4161 (19)C8—C91.400 (2)
N1—H1A0.8800C9—C101.383 (2)
N2—C51.466 (2)C9—H9A0.9500
C1—C21.515 (2)C10—C111.390 (2)
C2—C31.394 (2)C10—H10A0.9500
C2—C71.399 (2)C11—C121.382 (2)
C3—C41.387 (2)C12—C131.391 (2)
C3—H3A0.9500C12—H12A0.9500
C4—C51.389 (2)C13—H13A0.9500
C4—H4A0.9500
C1—N1—C8127.36 (13)C5—C6—H6A120.7
C1—N1—H1A116.3C6—C7—C2120.39 (14)
C8—N1—H1A116.3C6—C7—H7A119.8
O2—N2—O3123.50 (14)C2—C7—H7A119.8
O2—N2—C5118.73 (13)C13—C8—C9119.58 (14)
O3—N2—C5117.76 (13)C13—C8—N1123.64 (14)
O1—C1—N1123.89 (14)C9—C8—N1116.77 (13)
O1—C1—C2120.44 (14)C10—C9—C8120.91 (14)
N1—C1—C2115.67 (13)C10—C9—H9A119.5
C3—C2—C7119.53 (14)C8—C9—H9A119.5
C3—C2—C1116.68 (13)C9—C10—C11118.56 (14)
C7—C2—C1123.79 (14)C9—C10—H10A120.7
C4—C3—C2120.96 (14)C11—C10—H10A120.7
C4—C3—H3A119.5C12—C11—C10121.51 (14)
C2—C3—H3A119.5C12—C11—Cl1119.40 (12)
C3—C4—C5117.96 (14)C10—C11—Cl1119.09 (12)
C3—C4—H4A121.0C11—C12—C13119.80 (14)
C5—C4—H4A121.0C11—C12—H12A120.1
C6—C5—C4122.55 (14)C13—C12—H12A120.1
C6—C5—N2118.36 (13)C12—C13—C8119.63 (14)
C4—C5—N2119.09 (14)C12—C13—H13A120.2
C7—C6—C5118.60 (14)C8—C13—H13A120.2
C7—C6—H6A120.7
C8—N1—C1—O10.7 (3)N2—C5—C6—C7177.98 (14)
C8—N1—C1—C2179.73 (14)C5—C6—C7—C20.4 (2)
O1—C1—C2—C311.2 (2)C3—C2—C7—C60.7 (2)
N1—C1—C2—C3167.93 (14)C1—C2—C7—C6179.81 (15)
O1—C1—C2—C7167.99 (16)C1—N1—C8—C1314.2 (3)
N1—C1—C2—C712.9 (2)C1—N1—C8—C9167.02 (15)
C7—C2—C3—C41.2 (2)C13—C8—C9—C100.8 (2)
C1—C2—C3—C4179.64 (14)N1—C8—C9—C10178.06 (14)
C2—C3—C4—C50.6 (2)C8—C9—C10—C110.2 (2)
C3—C4—C5—C60.5 (2)C9—C10—C11—C120.3 (2)
C3—C4—C5—N2178.45 (14)C9—C10—C11—Cl1179.48 (12)
O2—N2—C5—C6172.37 (15)C10—C11—C12—C130.2 (2)
O3—N2—C5—C66.8 (2)Cl1—C11—C12—C13179.39 (12)
O2—N2—C5—C46.7 (2)C11—C12—C13—C80.4 (2)
O3—N2—C5—C4174.13 (14)C9—C8—C13—C120.9 (2)
C4—C5—C6—C71.0 (2)N1—C8—C13—C12177.89 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O10.952.262.859 (2)120
N1—H1A···O3i0.882.293.1312 (17)159
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H9ClN2O3
Mr276.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)130
a, b, c (Å)9.6019 (7), 13.0688 (10), 9.6412 (7)
β (°) 103.853 (1)
V3)1174.64 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.49 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.855, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
10822, 2808, 2557
Rint0.019
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.08
No. of reflections2808
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O10.952.262.859 (2)119.9
N1—H1A···O3i0.882.293.1312 (17)159.1
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge financial assistance for this project from the Higher Education Commission of Pakistan.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, K.-Y., Yi, M. H. & Choi, S.-K. (1992). J. Polym. Sci. Part A Polym. Chem. 30, 1583–1588.  CrossRef CAS Web of Science Google Scholar
First citationHsiao, S.-H. & Lin, K.-H. (2004). Polymer, 45, 7877–7885.  Web of Science CrossRef CAS Google Scholar
First citationLi, W., Li, S., Zhang, Q. & Zhang, S. (2007). Macromolecules, 40, 8205–8211.  Web of Science CrossRef CAS Google Scholar
First citationLiaw, D. J., Chang, F. C., Leung, M., Chou, M. Y. & Muellen, K. (2005). Macromolecules, 38, 4024–4029.  Web of Science CrossRef CAS Google Scholar
First citationLitvinov, V. M., Persyn, O., Miri, V. & Lefebvre, J. M. (2010). Macromolecules, 43, 7668–7679.  Web of Science CrossRef CAS Google Scholar
First citationMore, A. S., Pasale, S. K. & Wadgaonkar, P. P. (2010). Eur. Polym. J. 46, 557–567.  Web of Science CrossRef CAS Google Scholar
First citationSaeed, S., Jasinski, J. P. & Butcher, R. J. (2011). Acta Cryst. E67, o279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, S.-R., Pei, X.-L., Huang, Z.-Z., Liu, X.-L. & Song, C.-S. (2009). Eur. Polym. J. 45, 230–236.  Web of Science CrossRef CAS Google Scholar
First citationWardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2006). Acta Cryst. B62, 931–943.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYang, G., Jikei, M. & Kakimoto, M.-A. (1999). Macromolecules, 32, 2215–2220.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds