metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1-(eth­­oxy­carbonyl­meth­yl)pyridinium] bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato-κ2S,S′)nickelate(II)

aDepartment of Immunology and Rheumatology, the Second People's Hospital of Wuxi, Wuxi 214002, People's Republic of China, and bKey Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine. Wuxi 214063, People's Republic of China
*Correspondence e-mail: yangcj12@126.com

(Received 9 July 2012; accepted 28 July 2012; online 4 August 2012)

The asymmetric unit of the title ion-pair complex, (C9H12NO2)2[Ni(C4N2S2)2], contains two 1-(eth­oxy­carbonyl­meth­yl)pyridinium cations and one bis­(1,2-dicyano­ethene-1,2-dithiol­ato)nickelate(II) dianion, which exhibits a slightly distorted square-planar coordination geometry. In the crystal, the cations are linked by strong C—H⋯O hydrogen bonds into C(6) chains along [100]. The cations and anions are linked into a three-dimensional architecture by weak C—H⋯N and C—H⋯S inter­actions.

Related literature

For details of other maleonitrile­dithiol­ate metal complexes, see: Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Coomber et al. (1996[Coomber, A. T., Beljonne, D., Friend, R. H. J., Bredas, L., Charlton, A., Robertson, N., Underhill, A. E., Kurmoo, M. & Day, P. (1996). Nature (London), 380, 144-146.]); Duan et al. (2010[Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509-1522.]); Wang et al. (2012[Wang, F. M., Chen, L. Z., Liu, Y. M., Lu, C. S., Duan, X. Y. & Meng, Q. J. (2012). J. Coord. Chem. 65, 87-103.]). For general background to the use of maleonitrile­dithiol­ate transition metal complexes as building blocks for optical, magnetic and conducting mol­ecular materials, see: Brammer (2004[Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.]); Ni et al. (2005[Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330-14338.]); Robin & Fromm (2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H12NO2)2[Ni(C4N2S2)2]

  • Mr = 671.46

  • Monoclinic, P 21 /c

  • a = 9.486 (2) Å

  • b = 19.542 (5) Å

  • c = 17.635 (4) Å

  • β = 104.803 (4)°

  • V = 3160.6 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 291 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 0.914

  • 16888 measured reflections

  • 6200 independent reflections

  • 5024 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.02

  • 6200 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.96 2.13 3.064 (4) 164
C13—H13A⋯N6ii 0.96 2.57 3.357 (4) 140
C15—H15B⋯S2 0.96 2.86 3.680 (3) 145
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The maleonitriledithiolate (or 1,2-dicyanoethene-1,2-dithiolate, mnt2-) transition metal complexes, which is one typical kind of bis-1,2-dithiolene complexes, are often used as building blocks for optical, magnetic and conducting molecular materials (Brammer, 2004; Robin & Fromm, 2006; Duan et al., 2010). It has been found that maleonitriledithiolate (mnt2-) complexes are charge-transfer salts, and they have various structure and the intra- or inter- molecular contacts which can result in large changes of physical properties of the complexes based on the [M(mnt)2]n- (Robertson & Cronin, 2002; Coomber et al., 1996; Ni et al., 2005; Duan et al., 2010; Wang et al., 2012). We report here a new [Ni(mnt)2]2- salt containing the 1-(ethoxycarbonylmethyl)pyridinium cation, (EtOAcPy)+, as shown in Fig. 1. The asymmetric unit contains two (EtOAcPy)+cation and one [Ni(mnt)22-] dianion. The [Ni(mnt)2]2- dianion exhibits a slightly distorted square-planar coordination geometry. In the crystal, cations are linked by strong C—H···O hydrogen bond into chains with graph-set notation C(6) along [100] (Bernstein et al., 1995). The cations and anions are linked by weak C—H ··· N and C—H··· S interactions (Table 1).

Related literature top

For details of other maleonitriledithiolate metal complexes, see: Robertson & Cronin (2002); Coomber et al. (1996); Duan et al. (2010); Wang et al. (2012). For general background to the use of maleonitriledithiolate transition metal complexes as building blocks for optical, magnetic and conducting molecular materials, see: Brammer (2004); Ni et al. (2005); Robin & Fromm (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by the direct reaction of NiCl2.6H2O, Na2mnt and (EtOAcPy)+.Br- in the mixed solution of ethanol and H2O (1:1). Red–brown block-like single crystals were obtained by slow evaporation of the acetonitrile solution at room temperature for about one week.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.96 Å (methylene) and 0.96 Å (pyridyl), with Uiso(H) = 1.2Ueq (pyridyl) or Uiso(H) = 1.5Ueq (methyl and methylene).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were draw at the 30% probability.
[Figure 2] Fig. 2. The packing diagram of title complex as viewed along a axis. (dotted lines are H-bonds between cations and anions)
Bis[1-(ethoxycarbonylmethyl)pyridinium] bis(1,2-dicyanoethene-1,2-dithiolato-κ2S,S')nickelate(II) top
Crystal data top
(C9H12NO2)2[Ni(C4N2S2)2]F(000) = 1384
Mr = 671.46Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1842 reflections
a = 9.486 (2) Åθ = 2.4–20.0°
b = 19.542 (5) ŵ = 0.92 mm1
c = 17.635 (4) ÅT = 291 K
β = 104.803 (4)°Block, red-brown
V = 3160.6 (13) Å30.30 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
6200 independent reflections
Radiation source: sealed tube5024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.770, Tmax = 0.914k = 2424
16888 measured reflectionsl = 2112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.06P)2 + 1.22P]
where P = (Fo2 + 2Fc2)/3
6200 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
(C9H12NO2)2[Ni(C4N2S2)2]V = 3160.6 (13) Å3
Mr = 671.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.486 (2) ŵ = 0.92 mm1
b = 19.542 (5) ÅT = 291 K
c = 17.635 (4) Å0.30 × 0.15 × 0.10 mm
β = 104.803 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6200 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5024 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.914Rint = 0.026
16888 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
6200 reflectionsΔρmin = 0.34 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0092 (3)0.27127 (15)0.68082 (18)0.0574 (7)
H1A0.05120.25030.71050.069*
C20.0336 (3)0.27156 (17)0.60181 (19)0.0627 (8)
H2A0.12350.24990.57520.075*
C30.0489 (3)0.30165 (17)0.5601 (2)0.0659 (8)
H3A0.01720.30190.50380.079*
C40.1749 (4)0.33078 (17)0.5965 (2)0.0702 (9)
H4A0.23520.35260.56740.084*
C50.2169 (4)0.33164 (17)0.67691 (19)0.0690 (9)
H5A0.30860.35130.70420.083*
C60.1778 (4)0.29897 (17)0.80314 (17)0.0625 (8)
H6A0.28080.30760.81950.075*
H6B0.16050.25380.82020.075*
C70.1028 (4)0.35080 (17)0.8425 (2)0.0656 (8)
C80.0589 (4)0.37959 (17)0.9706 (2)0.0664 (9)
H8A0.07110.35321.01780.080*
H8B0.04220.38750.94560.080*
C90.1514 (4)0.44077 (17)0.99563 (19)0.0657 (8)
H9A0.10850.46761.02950.099*
H9B0.24690.42611.02390.099*
H9C0.15850.46790.95140.099*
C100.2726 (4)0.56883 (17)0.31523 (19)0.0632 (8)
H10A0.17700.57670.28170.076*
C110.3033 (4)0.58304 (16)0.3941 (2)0.0678 (9)
H11A0.23140.60300.41710.081*
C120.4402 (4)0.56894 (17)0.4396 (2)0.0664 (8)
H12A0.46280.57840.49480.080*
C130.5375 (3)0.54072 (16)0.40850 (19)0.0608 (7)
H13A0.63300.53140.44130.073*
C140.5035 (3)0.52757 (16)0.33203 (18)0.0605 (7)
H14A0.57370.50570.30940.073*
C150.3445 (4)0.53147 (17)0.20264 (18)0.0658 (8)
H15A0.24090.52900.18130.079*
H15B0.38620.48830.19400.079*
C160.4074 (3)0.58706 (15)0.16235 (18)0.0580 (7)
C170.4174 (4)0.62653 (17)0.0371 (2)0.0668 (9)
H17A0.51820.63570.06170.080*
H17B0.36400.66880.02970.080*
C180.4040 (4)0.59306 (18)0.03955 (19)0.0701 (9)
H18A0.44140.62070.07500.105*
H18B0.45690.55070.03010.105*
H18C0.30250.58380.06220.105*
C190.5736 (3)0.30442 (17)0.31581 (18)0.0586 (7)
C200.7122 (3)0.27502 (17)0.34896 (18)0.0584 (7)
C210.5209 (3)0.30770 (16)0.23727 (18)0.0600 (7)
C220.6003 (3)0.27884 (16)0.18676 (19)0.0604 (7)
C230.0312 (3)0.43365 (16)0.27582 (17)0.0548 (7)
C240.1682 (3)0.46578 (17)0.24053 (18)0.0613 (7)
C250.0161 (3)0.42632 (17)0.35483 (17)0.0570 (7)
C260.0736 (3)0.44181 (17)0.40549 (19)0.0614 (8)
N10.1339 (3)0.30149 (13)0.71817 (14)0.0553 (6)
N20.3757 (3)0.54281 (13)0.28536 (14)0.0578 (6)
N30.8255 (3)0.25235 (14)0.37599 (17)0.0700 (8)
N40.6599 (3)0.25557 (15)0.14504 (16)0.0668 (7)
N50.2783 (3)0.49033 (15)0.21326 (16)0.0651 (7)
N60.1470 (3)0.45396 (14)0.44550 (16)0.0645 (7)
Ni10.27080 (4)0.370117 (18)0.29545 (2)0.05072 (12)
O10.0043 (3)0.38524 (11)0.80562 (13)0.0695 (6)
O20.1514 (2)0.34855 (11)0.91666 (13)0.0687 (6)
O30.4846 (2)0.63080 (11)0.19261 (12)0.0618 (5)
O40.3596 (2)0.57755 (11)0.08488 (12)0.0634 (5)
S10.46957 (8)0.33440 (4)0.37583 (4)0.05255 (18)
S20.35111 (8)0.34322 (4)0.19505 (4)0.05189 (17)
S30.07449 (8)0.40886 (4)0.21465 (4)0.05150 (18)
S40.18471 (8)0.38983 (4)0.39552 (4)0.05204 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0555 (17)0.0526 (16)0.0653 (18)0.0082 (13)0.0176 (14)0.0130 (14)
C20.0542 (17)0.0706 (19)0.0645 (19)0.0201 (15)0.0173 (14)0.0173 (15)
C30.0540 (17)0.076 (2)0.0641 (19)0.0093 (15)0.0080 (14)0.0125 (16)
C40.076 (2)0.0659 (19)0.0649 (19)0.0291 (17)0.0112 (16)0.0117 (16)
C50.069 (2)0.0648 (19)0.0645 (19)0.0179 (16)0.0003 (15)0.0222 (16)
C60.0695 (19)0.0634 (18)0.0540 (17)0.0206 (15)0.0143 (14)0.0037 (14)
C70.0636 (19)0.0605 (18)0.069 (2)0.0149 (15)0.0098 (16)0.0188 (16)
C80.0626 (19)0.0677 (19)0.0623 (18)0.0139 (15)0.0036 (15)0.0193 (15)
C90.069 (2)0.0657 (19)0.0630 (18)0.0146 (15)0.0184 (15)0.0181 (15)
C100.0568 (18)0.0680 (19)0.0641 (19)0.0133 (15)0.0142 (14)0.0103 (15)
C110.076 (2)0.0582 (18)0.070 (2)0.0250 (16)0.0204 (17)0.0048 (15)
C120.067 (2)0.070 (2)0.0600 (18)0.0121 (16)0.0110 (15)0.0047 (15)
C130.0517 (16)0.0602 (17)0.068 (2)0.0049 (14)0.0108 (14)0.0073 (15)
C140.0603 (18)0.0642 (18)0.0600 (18)0.0098 (14)0.0207 (14)0.0131 (14)
C150.077 (2)0.0613 (18)0.0574 (17)0.0215 (16)0.0140 (15)0.0099 (14)
C160.0610 (18)0.0534 (16)0.0593 (17)0.0091 (14)0.0150 (14)0.0094 (14)
C170.068 (2)0.0584 (18)0.069 (2)0.0180 (15)0.0078 (16)0.0077 (15)
C180.075 (2)0.069 (2)0.0642 (19)0.0213 (16)0.0149 (16)0.0186 (16)
C190.0442 (15)0.0707 (19)0.0624 (18)0.0064 (13)0.0161 (13)0.0019 (15)
C200.0495 (17)0.0670 (18)0.0581 (17)0.0027 (14)0.0124 (13)0.0007 (14)
C210.0587 (17)0.0632 (18)0.0604 (18)0.0127 (14)0.0197 (14)0.0052 (14)
C220.0602 (18)0.0597 (17)0.0644 (18)0.0173 (14)0.0216 (15)0.0124 (14)
C230.0404 (14)0.0676 (18)0.0581 (17)0.0016 (12)0.0156 (12)0.0073 (14)
C240.0545 (18)0.0698 (19)0.0603 (18)0.0118 (15)0.0162 (14)0.0024 (15)
C250.0513 (16)0.0680 (18)0.0525 (16)0.0062 (13)0.0147 (13)0.0072 (14)
C260.0574 (17)0.0676 (19)0.0597 (18)0.0142 (15)0.0161 (14)0.0068 (15)
N10.0528 (13)0.0582 (14)0.0528 (14)0.0015 (11)0.0095 (11)0.0033 (11)
N20.0492 (14)0.0653 (15)0.0577 (14)0.0080 (11)0.0111 (11)0.0050 (12)
N30.0570 (15)0.0670 (16)0.0742 (18)0.0118 (13)0.0050 (13)0.0157 (14)
N40.0655 (16)0.0733 (17)0.0619 (16)0.0269 (14)0.0173 (13)0.0104 (13)
N50.0482 (14)0.0825 (18)0.0672 (16)0.0142 (13)0.0193 (12)0.0097 (14)
N60.0625 (16)0.0694 (16)0.0616 (15)0.0164 (13)0.0158 (13)0.0141 (13)
Ni10.0489 (2)0.0502 (2)0.0536 (2)0.00300 (15)0.01412 (16)0.00066 (15)
O10.0652 (13)0.0641 (13)0.0718 (14)0.0178 (11)0.0039 (11)0.0198 (11)
O20.0707 (14)0.0654 (13)0.0651 (14)0.0163 (11)0.0085 (11)0.0224 (11)
O30.0625 (13)0.0630 (12)0.0574 (12)0.0164 (10)0.0107 (10)0.0014 (10)
O40.0693 (13)0.0660 (13)0.0569 (12)0.0244 (11)0.0195 (10)0.0107 (10)
S10.0502 (4)0.0529 (4)0.0540 (4)0.0037 (3)0.0124 (3)0.0015 (3)
S20.0501 (4)0.0523 (4)0.0540 (4)0.0045 (3)0.0146 (3)0.0007 (3)
S30.0488 (4)0.0529 (4)0.0534 (4)0.0041 (3)0.0141 (3)0.0008 (3)
S40.0503 (4)0.0528 (4)0.0531 (4)0.0035 (3)0.0135 (3)0.0010 (3)
Geometric parameters (Å, º) top
C1—N11.335 (4)C14—N21.314 (4)
C1—C21.348 (4)C14—H14A0.9599
C1—H1A0.9601C15—N21.430 (4)
C2—C31.340 (4)C15—C161.502 (4)
C2—H2A0.9600C15—H15A0.9601
C3—C41.331 (4)C15—H15B0.9599
C3—H3A0.9599C16—O31.163 (3)
C4—C51.372 (5)C16—O41.338 (4)
C4—H4A0.9600C17—O41.471 (4)
C5—N11.338 (4)C17—C181.478 (5)
C5—H5A0.9601C17—H17A0.9600
C6—N11.450 (4)C17—H17B0.9598
C6—C71.506 (4)C18—H18A0.9600
C6—H6A0.9600C18—H18B0.9600
C6—H6B0.9599C18—H18C0.9600
C7—O11.200 (4)C19—C211.349 (4)
C7—O21.271 (4)C19—C201.417 (4)
C8—C91.482 (5)C19—S11.723 (3)
C8—O21.572 (4)C20—N31.148 (4)
C8—H8A0.9600C21—C221.422 (4)
C8—H8B0.9600C21—S21.737 (3)
C9—H9A0.9600C22—N41.132 (4)
C9—H9B0.9600C23—C251.358 (4)
C9—H9C0.9600C23—C241.435 (4)
C10—N21.325 (4)C23—S31.719 (3)
C10—C111.375 (5)C24—N51.138 (4)
C10—H10A0.9600C25—C261.415 (4)
C11—C121.369 (5)C25—S41.730 (3)
C11—H11A0.9600C26—N61.136 (4)
C12—C131.310 (5)Ni1—S42.1599 (9)
C12—H12A0.9601Ni1—S22.1636 (9)
C13—C141.329 (4)Ni1—S12.1647 (9)
C13—H13A0.9600Ni1—S32.1714 (9)
N1—C1—C2120.2 (3)C16—C15—H15A110.0
N1—C1—H1A119.7N2—C15—H15B108.1
C2—C1—H1A120.1C16—C15—H15B109.4
C3—C2—C1120.4 (3)H15A—C15—H15B108.4
C3—C2—H2A119.7O3—C16—O4125.5 (3)
C1—C2—H2A119.9O3—C16—C15126.4 (3)
C4—C3—C2120.0 (3)O4—C16—C15108.1 (2)
C4—C3—H3A120.1O4—C17—C18106.1 (2)
C2—C3—H3A119.8O4—C17—H17A109.7
C3—C4—C5119.5 (3)C18—C17—H17A109.9
C3—C4—H4A121.0O4—C17—H17B112.1
C5—C4—H4A119.4C18—C17—H17B109.7
N1—C5—C4120.1 (3)H17A—C17—H17B109.3
N1—C5—H5A119.2C17—C18—H18A112.8
C4—C5—H5A120.6C17—C18—H18B107.7
N1—C6—C7114.1 (3)H18A—C18—H18B109.5
N1—C6—H6A107.8C17—C18—H18C107.9
C7—C6—H6A108.0H18A—C18—H18C109.5
N1—C6—H6B109.2H18B—C18—H18C109.5
C7—C6—H6B109.5C21—C19—C20120.3 (3)
H6A—C6—H6B108.0C21—C19—S1119.6 (2)
O1—C7—O2127.2 (3)C20—C19—S1120.1 (2)
O1—C7—C6121.4 (3)N3—C20—C19178.8 (4)
O2—C7—C6111.2 (3)C19—C21—C22120.5 (3)
C9—C8—O296.4 (3)C19—C21—S2121.3 (2)
C9—C8—H8A104.2C22—C21—S2118.1 (2)
O2—C8—H8A110.7N4—C22—C21178.1 (4)
C9—C8—H8B116.9C25—C23—C24121.1 (3)
O2—C8—H8B115.5C25—C23—S3121.4 (2)
H8A—C8—H8B111.7C24—C23—S3117.4 (2)
C8—C9—H9A108.3N5—C24—C23178.6 (4)
C8—C9—H9B108.8C23—C25—C26122.1 (3)
H9A—C9—H9B109.5C23—C25—S4119.8 (2)
C8—C9—H9C111.3C26—C25—S4117.9 (2)
H9A—C9—H9C109.5N6—C26—C25179.2 (4)
H9B—C9—H9C109.5C1—N1—C5119.8 (3)
N2—C10—C11119.5 (3)C1—N1—C6118.6 (3)
N2—C10—H10A119.6C5—N1—C6121.5 (3)
C11—C10—H10A120.9C14—N2—C10119.7 (3)
C12—C11—C10118.4 (3)C14—N2—C15121.4 (3)
C12—C11—H11A120.3C10—N2—C15119.0 (3)
C10—C11—H11A121.3S4—Ni1—S2176.02 (3)
C13—C12—C11120.3 (3)S4—Ni1—S188.30 (3)
C13—C12—H12A120.5S2—Ni1—S191.58 (3)
C11—C12—H12A119.2S4—Ni1—S391.96 (3)
C12—C13—C14119.5 (3)S2—Ni1—S388.28 (3)
C12—C13—H13A119.0S1—Ni1—S3178.30 (3)
C14—C13—H13A121.5C7—O2—C8119.8 (2)
N2—C14—C13122.5 (3)C16—O4—C17114.6 (2)
N2—C14—H14A117.9C19—S1—Ni1104.30 (11)
C13—C14—H14A119.6C21—S2—Ni1103.18 (11)
N2—C15—C16111.5 (2)C23—S3—Ni1103.07 (10)
N2—C15—H15A109.4C25—S4—Ni1103.71 (10)
N1—C1—C2—C30.5 (5)C13—C14—N2—C103.8 (5)
C1—C2—C3—C40.9 (6)C13—C14—N2—C15176.6 (3)
C2—C3—C4—C52.1 (6)C11—C10—N2—C143.5 (5)
C3—C4—C5—N12.1 (6)C11—C10—N2—C15176.9 (3)
N1—C6—C7—O17.7 (5)C16—C15—N2—C1479.4 (4)
N1—C6—C7—O2176.5 (3)C16—C15—N2—C10101.0 (4)
N2—C10—C11—C120.7 (5)O1—C7—O2—C815.0 (6)
C10—C11—C12—C132.0 (5)C6—C7—O2—C8160.4 (3)
C11—C12—C13—C141.8 (5)C9—C8—O2—C7107.1 (3)
C12—C13—C14—N21.1 (5)O3—C16—O4—C172.3 (5)
N2—C15—C16—O37.5 (5)C15—C16—O4—C17177.4 (3)
N2—C15—C16—O4172.8 (3)C18—C17—O4—C16157.6 (3)
C20—C19—C21—C223.0 (5)C21—C19—S1—Ni10.1 (3)
S1—C19—C21—C22175.5 (3)C20—C19—S1—Ni1178.4 (2)
C20—C19—C21—S2179.8 (2)S4—Ni1—S1—C19174.96 (12)
S1—C19—C21—S21.3 (4)C19—C21—S2—Ni12.0 (3)
C24—C23—C25—C268.0 (5)S1—Ni1—S2—C211.54 (12)
S3—C23—C25—C26175.3 (3)S3—Ni1—S2—C21179.84 (12)
C24—C23—C25—S4177.9 (2)C25—C23—S3—Ni10.2 (3)
C2—C1—N1—C50.5 (5)C24—C23—S3—Ni1176.6 (2)
C2—C1—N1—C6178.8 (3)S4—Ni1—S3—C231.13 (11)
C4—C5—N1—C10.8 (5)C23—C25—S4—Ni12.0 (3)
C4—C5—N1—C6177.4 (3)C26—C25—S4—Ni1176.3 (2)
C7—C6—N1—C180.3 (4)S1—Ni1—S4—C25176.70 (12)
C7—C6—N1—C5101.4 (4)S3—Ni1—S4—C251.61 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.962.133.064 (4)164
C13—H13A···N6ii0.962.573.357 (4)140
C15—H15B···S20.962.863.680 (3)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C9H12NO2)2[Ni(C4N2S2)2]
Mr671.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.486 (2), 19.542 (5), 17.635 (4)
β (°) 104.803 (4)
V3)3160.6 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.770, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
16888, 6200, 5024
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.02
No. of reflections6200
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.34

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.962.133.064 (4)164
C13—H13A···N6ii0.962.573.357 (4)140
C15—H15B···S20.962.863.680 (3)145
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by a project of the Natural Science Foundation of Jiangsu Province (BK2011168) and the Economic and Social Development Foundation of Wuxi (CSZ01010).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrammer, L. (2004). Chem. Soc. Rev. 33, 476–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoomber, A. T., Beljonne, D., Friend, R. H. J., Bredas, L., Charlton, A., Robertson, N., Underhill, A. E., Kurmoo, M. & Day, P. (1996). Nature (London), 380, 144–146.  CrossRef CAS Web of Science Google Scholar
First citationDuan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522.  Web of Science CrossRef CAS Google Scholar
First citationNi, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F. M., Chen, L. Z., Liu, Y. M., Lu, C. S., Duan, X. Y. & Meng, Q. J. (2012). J. Coord. Chem. 65, 87–103.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds