organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(Ethane-1,2-diyl)bis­(6-meth­­oxy-3,4-di­hydro-2H-1,3-benzoxazine) mono­hydrate

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 9 August 2012; accepted 11 August 2012; online 23 August 2012)

The asymmetric unit of the title compound, C20H24N2O4·H2O, contains one half-organic mol­ecule (an inversion centre generates the other half of the mol­ecule) and a half-mol­ecule of water (the O atom has site symmetry 2). The near planarity of the fused-benzene ring is illustrated by the very small deviations of all the atoms from the plane [largest deviation = 0.0092 (11) Å. The six-membered N,O-containing ring adopts a half-chair conformation. The observed N—CH2 and CH2—O bond lengths can be correlated to the manifestation of an anomeric effect in the N—CH2—O unit. In the crystal, the mol­ecules are connected into zigzag chains parallel to [001] through O—H⋯N hydrogen bonds formed between the oxazinic N atom and the solvent water mol­ecule. The chains are consolidated by C—H⋯O inter­actions.

Related literature

For related structures, see: Rivera et al. (2012[Rivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o148.], 2011[Rivera, A., Camacho, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2028.], 2010[Rivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.]). For the preparation of the title compound, see: Rivera et al. (1989[Rivera, A., Aguilar, Z., Clavijo, D. & Joseph-Nathan, P. (1989). Anal. Quim. 85, 9-10.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O4·H2O

  • Mr = 374.4

  • Monoclinic, C 2/c

  • a = 30.2999 (9) Å

  • b = 5.2132 (2) Å

  • c = 11.6058 (4) Å

  • β = 91.153 (2)°

  • V = 1832.87 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 120 K

  • 0.17 × 0.13 × 0.13 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.104, Tmax = 1

  • 18257 measured reflections

  • 1639 independent reflections

  • 1440 reflections with I > 3σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.094

  • S = 1.75

  • 1639 reflections

  • 127 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H1c4⋯O1i 0.96 2.46 3.2982 (13) 145.91
O3—H1o3⋯N1ii 0.914 (15) 2.076 (15) 2.9870 (12) 174.8 (13)
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

As models to examine the anomeric effect we have recently studied the influence of substituent such as chlorine and methyl on 3,3'-ethane-1,2-diylbis(3,4-dihydro-2H-1,3-benzoxazine) (Rivera, et al., 2010; 2011; 2012). In order to continue this research, we have synthesized the title compound and obtained suitable crystals for single-crystal X-ray diffraction analysis.

The asymmetric unit of the title compound (Fig. 1), C20H24N2O4.H2O, contains one half-organic molecule (an inversion centre generates the other half of the molecule) and one half water molecule The planarity of the fused-benzene ring is illustrated by very small deviation of all the atoms from these planes [largest deviations = 0.0092 (11) Å for C-3]. The half-chair conformation, with puckering parameters Q = 0.512 (2) Å, θ =129.6 (2)°, ϕ =283.6 (3)° (Cremer & Pople, 1975), of the six-membered N,O-containing ring is analyzed with respect to the plane formed by O1/C3/C5/C1 and the corresponding deviations of the atoms C9 and N1 are 0.3002 (11) and 0.3350 (10) Å, respectively. The methoxy substituent at the C6 atom forms the torsion angle of 2.63 (14) ° [synperiplanar conformation] with the atom set O2/C6/C8/C7. The bond lengths and angles are within normal ranges, whereas the C9—O1 bond length [1.4463 (13) Å] is shorter than the corresponding C—O bonds found in the chlorine related structure [1.529 (2) Å] (Rivera et al., 2010), whereas the N1—C9 bond length of [1.4445 (14) Å] is longer than the corresponding N—C bonds found in the related structure [1.3690 (16) Å] (Rivera et al., 2010). In contrast to the chloro analog, the title compound was found to be more agreement with other related structures (Rivera et al., 2012, 2011), and with the normal values for O—CH2 (1.470) and CH2—N (1.469) (Allen et al., 1987), indicating that the methoxy substituent decrease the influence of stereoelectronic effects in the N—CH2—O moiety.

In the crystal structure, the molecules of the title compound are conected into zigzag chains parallel to [001] through O—H···N hydrogen bonds formed between its oxazinic N atom and the solvent water molecule. This chain is further stabilized by weak C—H···O hydrogen bonding interactions between H4 and O1. (Figure 2)

Related literature top

For related structures, see: Rivera et al. (2012, 2011, 2010). For the preparation of the title compound, see: Rivera et al. (1989). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to the literature procedure (Rivera et al.,1989), and the single crystals were obtained by slow evaporation from a ethanol/water solvent mixture at room temperature.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice the hydrogen atoms attached to carbons were kept in ideal positions with C–H distance 0.96%A during the refinement. The methyl H atoms were allowed to rotate freely about the adjacent C—C bonds. The coordinates of the hydrogen atom bonded to oxygen were refined freely. All H atoms were refined with displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for the methyl- and hydroxyl groups and to 1.2Ueq(C) for the CH–, and CH2– groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
A view of (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. In the organic molecule, the labelled atoms are related with unlabelled atoms by symmetry code [1-x, 1-y, 1-z]. In the water molecule the labelled atom is related with unlabelled atom by symmetry code [1-x,y,3/2-z]. The hydrogen bond interaction is shown as dashed lines.

Packing of the molecules of the title compound view along the b axis. Intermolecular hydrogen bonds are shown as dashed lines. For clarity only shows the H atoms involved in hydrogen bonds.
3,3'-(Ethane-1,2-diyl)bis(6-methoxy-3,4-dihydro-2H-1,3-benzoxazine) monohydrate top
Crystal data top
C20H24N2O4·H2OF(000) = 800
Mr = 374.4Dx = 1.357 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -C 2ycCell parameters from 10577 reflections
a = 30.2999 (9) Åθ = 2.9–67.0°
b = 5.2132 (2) ŵ = 0.80 mm1
c = 11.6058 (4) ÅT = 120 K
β = 91.153 (2)°Prism, white
V = 1832.87 (11) Å30.17 × 0.13 × 0.13 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
1639 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1440 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 2.9°
ω scansh = 3636
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 66
Tmin = 0.104, Tmax = 1l = 1313
18257 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F2) = 0.094(Δ/σ)max = 0.015
S = 1.75Δρmax = 0.17 e Å3
1639 reflectionsΔρmin = 0.14 e Å3
127 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 1300 (300)
49 constraints
Crystal data top
C20H24N2O4·H2OV = 1832.87 (11) Å3
Mr = 374.4Z = 4
Monoclinic, C2/cCu Kα radiation
a = 30.2999 (9) ŵ = 0.80 mm1
b = 5.2132 (2) ÅT = 120 K
c = 11.6058 (4) Å0.17 × 0.13 × 0.13 mm
β = 91.153 (2)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
1639 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1440 reflections with I > 3σ(I)
Tmin = 0.104, Tmax = 1Rint = 0.033
18257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.75Δρmax = 0.17 e Å3
1639 reflectionsΔρmin = 0.14 e Å3
127 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.90016 (2)0.11497 (15)0.06702 (6)0.0199 (2)
O20.80451 (3)0.57728 (15)0.19811 (7)0.0218 (3)
O30.50.0044 (2)0.250.0278 (4)
N10.95328 (3)0.15870 (18)0.08373 (7)0.0175 (3)
C10.92150 (3)0.0638 (2)0.17210 (9)0.0187 (3)
C20.98132 (3)0.0506 (2)0.03816 (9)0.0185 (3)
C30.87593 (3)0.0523 (2)0.00091 (9)0.0170 (3)
C40.85915 (3)0.2627 (2)0.18039 (9)0.0170 (3)
C50.88428 (3)0.0852 (2)0.11834 (9)0.0164 (3)
C60.82677 (3)0.4068 (2)0.12743 (9)0.0177 (3)
C70.84416 (4)0.1983 (2)0.05238 (9)0.0198 (3)
C80.81931 (4)0.3764 (2)0.01008 (10)0.0200 (3)
C90.92843 (3)0.2868 (2)0.00424 (9)0.0179 (3)
C100.77298 (4)0.7400 (2)0.14564 (10)0.0260 (4)
H1c10.9365520.0440830.2255990.0225*
H2c10.9095370.2063260.2148130.0225*
H1c20.9933260.1455840.1010790.0222*
H2c20.9636140.1674360.0051010.0222*
H1c40.8642630.2860990.2610760.0205*
H1c70.8392230.1763960.133230.0237*
H1c80.797270.4773660.0271910.024*
H1c90.9483840.3711780.057160.0215*
H2c90.9109240.4208680.0302570.0215*
H1c100.760010.8513050.202840.0312*
H2c100.7873280.8410820.0867760.0312*
H3c100.7503370.6372260.1119090.0312*
H1o30.4874 (5)0.112 (3)0.3020 (13)0.0334*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0221 (4)0.0216 (5)0.0160 (4)0.0038 (3)0.0011 (3)0.0019 (3)
O20.0213 (4)0.0237 (5)0.0205 (4)0.0064 (3)0.0002 (3)0.0021 (3)
O30.0369 (7)0.0197 (7)0.0274 (6)00.0112 (5)0
N10.0171 (4)0.0186 (5)0.0167 (4)0.0008 (4)0.0019 (3)0.0001 (4)
C10.0183 (5)0.0233 (6)0.0146 (5)0.0022 (5)0.0014 (4)0.0015 (4)
C20.0173 (5)0.0175 (6)0.0208 (6)0.0007 (4)0.0013 (4)0.0009 (4)
C30.0168 (5)0.0171 (6)0.0171 (6)0.0027 (4)0.0018 (4)0.0008 (4)
C40.0174 (5)0.0197 (6)0.0140 (5)0.0027 (4)0.0007 (4)0.0007 (4)
C50.0151 (5)0.0175 (6)0.0166 (5)0.0025 (4)0.0010 (4)0.0034 (4)
C60.0161 (5)0.0173 (6)0.0196 (6)0.0017 (4)0.0026 (4)0.0001 (4)
C70.0209 (5)0.0235 (6)0.0150 (5)0.0018 (5)0.0022 (4)0.0008 (4)
C80.0182 (5)0.0212 (6)0.0208 (6)0.0011 (4)0.0031 (4)0.0033 (4)
C90.0179 (5)0.0162 (6)0.0195 (5)0.0004 (4)0.0004 (4)0.0000 (4)
C100.0249 (6)0.0251 (7)0.0279 (6)0.0096 (5)0.0007 (5)0.0007 (5)
Geometric parameters (Å, º) top
O1—C31.3776 (13)C3—C51.4016 (15)
O1—C91.4463 (13)C3—C71.3827 (15)
O2—C61.3765 (13)C4—C51.3902 (15)
O2—C101.4234 (15)C4—C61.3890 (15)
O3—H1o30.914 (15)C4—H1c40.96
O3—H1o3i0.914 (15)C6—C81.3941 (15)
N1—C11.4780 (13)C7—C81.3903 (16)
N1—C21.4743 (14)C7—H1c70.96
N1—C91.4445 (14)C8—H1c80.96
C1—C51.5143 (15)C9—H1c90.96
C1—H1c10.96C9—H2c90.96
C1—H2c10.96C10—H1c100.96
C2—C2ii1.5181 (14)C10—H2c100.96
C2—H1c20.96C10—H3c100.96
C2—H2c20.96
C3—O1—C9114.70 (8)C1—C5—C3119.23 (9)
C6—O2—C10117.04 (8)C1—C5—C4122.19 (9)
H1o3—O3—H1o3i104.2 (14)C3—C5—C4118.52 (10)
C1—N1—C2111.35 (9)O2—C6—C4115.30 (9)
C1—N1—C9107.66 (8)O2—C6—C8124.65 (10)
C2—N1—C9113.16 (8)C4—C6—C8120.04 (10)
N1—C1—C5111.48 (8)C3—C7—C8120.60 (10)
N1—C1—H1c1109.47C3—C7—H1c7119.7
N1—C1—H2c1109.47C8—C7—H1c7119.7
C5—C1—H1c1109.47C6—C8—C7119.25 (10)
C5—C1—H2c1109.47C6—C8—H1c8120.38
H1c1—C1—H2c1107.39C7—C8—H1c8120.38
N1—C2—C2ii111.70 (9)O1—C9—N1113.10 (9)
N1—C2—H1c2109.47O1—C9—H1c9109.47
N1—C2—H2c2109.47O1—C9—H2c9109.47
C2ii—C2—H1c2109.47N1—C9—H1c9109.47
C2ii—C2—H2c2109.47N1—C9—H2c9109.47
H1c2—C2—H2c2107.15H1c9—C9—H2c9105.58
O1—C3—C5121.97 (9)O2—C10—H1c10109.47
O1—C3—C7117.40 (9)O2—C10—H2c10109.47
C5—C3—C7120.56 (10)O2—C10—H3c10109.47
C5—C4—C6121.01 (10)H1c10—C10—H2c10109.47
C5—C4—H1c4119.49H1c10—C10—H3c10109.47
C6—C4—H1c4119.5H2c10—C10—H3c10109.47
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H1c4···O1iii0.962.463.2982 (13)145.91
O3—H1o3···N1iv0.914 (15)2.076 (15)2.9870 (12)174.8 (13)
Symmetry codes: (iii) x, y, z1/2; (iv) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H24N2O4·H2O
Mr374.4
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)30.2999 (9), 5.2132 (2), 11.6058 (4)
β (°) 91.153 (2)
V3)1832.87 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.17 × 0.13 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.104, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
18257, 1639, 1440
Rint0.033
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.094, 1.75
No. of reflections1639
No. of parameters127
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: CrysAlis PRO (Agilent, 2012), Superflip (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H1c4···O1i0.962.463.2982 (13)145.91
O3—H1o3···N1ii0.914 (15)2.076 (15)2.9870 (12)174.8 (13)
Symmetry codes: (i) x, y, z1/2; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well as the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationRivera, A., Aguilar, Z., Clavijo, D. & Joseph-Nathan, P. (1989). Anal. Quim. 85, 9–10.  CAS Google Scholar
First citationRivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Camacho, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2028.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds