organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-(Prop-1-yn-1-yl)-10H-pheno­thia­zine

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

(Received 14 August 2012; accepted 22 August 2012; online 25 August 2012)

In the title compound, C15H11NS, the asymmetric unit comprises one half-mol­ecule; a mirror plane passes through the S atom, the ynamine fragment, the methyl C atom and one methyl H atom. The phenothia­zine moiety has a butterfly conformation and the central six-membered ring has a boat conformation. The dihedral angle between the benzene rings is 149.40 (4)°. The crystal structure is stabilized by van der Waals inter­actions.

Related literature

For related structures of phenothia­zine compounds, see: Okuno et al. (2006[Okuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35-44.]); Tabata & Okuno (2012[Tabata, H. & Okuno, T. (2012). Acta Cryst. E68, o2214.]). For the preparation of the title compound, see: Zaugg et al. (1958[Zaugg, H. E., Swett, L. R. & Stone, G. R. (1958). J. Org. Chem. 23, 1389-1390.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NS

  • Mr = 237.31

  • Orthorhombic, C m c 21

  • a = 14.717 (6) Å

  • b = 10.631 (4) Å

  • c = 7.375 (3) Å

  • V = 1153.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 93 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.959, Tmax = 0.980

  • 4889 measured reflections

  • 1486 independent reflections

  • 1441 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.08

  • 1486 reflections

  • 87 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 670 Friedel pairs

  • Flack parameter: −0.01 (6)

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ynamines, where amino groups connect to acetylene groups, are known to be unstable because of their high reactivity. The title compound, C15H11NS, is the first ynamine compound which was prepared accidentally (Zaugg et al., 1958). The asymmetric unit comprises one half-molecule; a mirror plane passes through the S, ynamine fragment, one C atom of methyl group and one H atom of methyl group. The bond distances and angles are comparable with others reported ynamines (Okuno et al., 2006; Tabata et al., 2012). The crystal structure is stabilized by van der Waals interactions. The phenothiazine moiety has a butterfly conformation, and the central six-membered ring has a boat conformation. The dihedral angle between two benzene rings is 149.40 (4)°.

Related literature top

For related structures of phenothiazine compounds, see: Okuno et al. (2006); Tabata & Okuno (2012). For the preparation of the title compound, see: Zaugg et al. (1958).

Experimental top

The title compound was prepared according to a published procedure (Zaugg et al., 1958). The single crystals with sufficient quality for X-ray analysis were obtained by slow concentration of a methanol solution.

Refinement top

The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of H2—H5 atoms were set at 1.2Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
ORTEP view of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres. [Symmetry code: (i) -x, y, z.]
10-(Prop-1-yn-1-yl)-10H-phenothiazine top
Crystal data top
C15H11NSF(000) = 496
Mr = 237.31Dx = 1.366 Mg m3
Orthorhombic, Cmc21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: C 2c -2Cell parameters from 2342 reflections
a = 14.717 (6) Åθ = 2.4–31.2°
b = 10.631 (4) ŵ = 0.25 mm1
c = 7.375 (3) ÅT = 93 K
V = 1153.9 (8) Å3Block, colorless
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Rigaku Saturn724+
diffractometer
1441 reflections with I > 2σ(I)
Detector resolution: 28.445 pixels mm-1Rint = 0.019
ω scansθmax = 28.5°, θmin = 2.4°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1916
Tmin = 0.959, Tmax = 0.980k = 1412
4889 measured reflectionsl = 99
1486 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.514P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1486 reflectionsΔρmax = 0.20 e Å3
87 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 670 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C15H11NSV = 1153.9 (8) Å3
Mr = 237.31Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 14.717 (6) ŵ = 0.25 mm1
b = 10.631 (4) ÅT = 93 K
c = 7.375 (3) Å0.12 × 0.10 × 0.08 mm
Data collection top
Rigaku Saturn724+
diffractometer
1486 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
1441 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.980Rint = 0.019
4889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.20 e Å3
S = 1.08Δρmin = 0.16 e Å3
1486 reflectionsAbsolute structure: Flack (1983), 670 Friedel pairs
87 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00000.03514 (4)0.00174 (4)0.01839 (11)
N10.00000.28986 (13)0.1771 (2)0.0165 (3)
C10.08381 (8)0.22366 (10)0.19225 (16)0.0153 (2)
C20.15834 (8)0.27842 (11)0.27878 (17)0.0176 (2)
H20.15240.35850.33460.021*
C30.24154 (8)0.21576 (12)0.28336 (18)0.0201 (3)
H30.29260.25420.33930.024*
C40.24978 (8)0.09669 (12)0.20594 (18)0.0212 (3)
H40.30670.05450.20750.025*
C50.17460 (9)0.03964 (11)0.12637 (17)0.0189 (3)
H50.17970.04300.07830.023*
C60.09172 (8)0.10329 (11)0.11690 (15)0.0163 (2)
C70.00000.41727 (16)0.1900 (2)0.0164 (3)
C80.00000.52987 (15)0.1916 (3)0.0171 (3)
C90.00000.66718 (16)0.1911 (3)0.0218 (4)
H9A0.00000.70260.30420.045 (8)*
H9B0.04350.70170.11830.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0226 (2)0.01654 (18)0.01607 (19)0.0000.0000.00403 (15)
N10.0160 (7)0.0124 (6)0.0212 (7)0.0000.0000.0023 (5)
C10.0150 (5)0.0154 (5)0.0155 (5)0.0004 (4)0.0028 (4)0.0021 (4)
C20.0188 (6)0.0159 (5)0.0180 (5)0.0016 (5)0.0009 (5)0.0001 (4)
C30.0165 (6)0.0225 (6)0.0212 (6)0.0021 (5)0.0001 (5)0.0039 (4)
C40.0178 (5)0.0209 (6)0.0249 (6)0.0043 (5)0.0040 (5)0.0060 (5)
C50.0218 (6)0.0159 (5)0.0189 (6)0.0030 (4)0.0061 (5)0.0021 (4)
C60.0183 (5)0.0160 (5)0.0144 (5)0.0007 (4)0.0027 (4)0.0011 (4)
C70.0146 (7)0.0172 (8)0.0175 (7)0.0000.0000.0018 (6)
C80.0143 (7)0.0165 (8)0.0206 (8)0.0000.0000.0014 (6)
C90.0232 (9)0.0142 (7)0.0278 (9)0.0000.0000.0011 (7)
Geometric parameters (Å, º) top
S1—C6i1.7642 (13)C3—H30.9500
S1—C61.7643 (13)C4—C51.3914 (19)
N1—C71.358 (2)C4—H40.9500
N1—C11.4246 (14)C5—C61.3966 (17)
N1—C1i1.4246 (14)C5—H50.9500
C1—C21.3961 (17)C7—C81.197 (3)
C1—C61.3999 (17)C8—C91.460 (2)
C2—C31.3944 (17)C9—H9A0.9152
C2—H20.9500C9—H9B0.9126
C3—C41.3940 (18)
C6i—S1—C699.84 (8)C5—C4—H4120.0
C7—N1—C1119.16 (7)C3—C4—H4120.0
C7—N1—C1i119.16 (7)C4—C5—C6120.29 (11)
C1—N1—C1i119.97 (14)C4—C5—H5119.9
C2—C1—C6119.82 (11)C6—C5—H5119.9
C2—C1—N1120.67 (11)C5—C6—C1119.71 (11)
C6—C1—N1119.50 (11)C5—C6—S1119.61 (9)
C3—C2—C1120.12 (11)C1—C6—S1120.57 (9)
C3—C2—H2119.9C8—C7—N1176.53 (19)
C1—C2—H2119.9C7—C8—C9179.3 (2)
C4—C3—C2120.02 (11)C8—C9—H9A114.2
C4—C3—H3120.0C8—C9—H9B113.8
C2—C3—H3120.0H9A—C9—H9B111.8
C5—C4—C3119.96 (11)
C7—N1—C1—C221.9 (2)C4—C5—C6—S1174.51 (9)
C1i—N1—C1—C2143.06 (11)C2—C1—C6—C51.00 (17)
C7—N1—C1—C6157.02 (14)N1—C1—C6—C5177.97 (12)
C1i—N1—C1—C638.0 (2)C2—C1—C6—S1177.19 (9)
C6—C1—C2—C32.76 (17)N1—C1—C6—S11.78 (15)
N1—C1—C2—C3176.20 (12)C6i—S1—C6—C5152.23 (7)
C1—C2—C3—C41.81 (18)C6i—S1—C6—C131.58 (13)
C2—C3—C4—C50.91 (18)C1—N1—C7—C897.44 (13)
C3—C4—C5—C62.68 (18)C1i—N1—C7—C897.44 (13)
C4—C5—C6—C11.72 (18)N1—C7—C8—C90.00 (5)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC15H11NS
Mr237.31
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)93
a, b, c (Å)14.717 (6), 10.631 (4), 7.375 (3)
V3)1153.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionNumerical
(NUMABS; Rigaku, 1999)
Tmin, Tmax0.959, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4889, 1486, 1441
Rint0.019
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.08
No. of reflections1486
No. of parameters87
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16
Absolute structureFlack (1983), 670 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This work was supported by Research for Promoting Technological Seeds from the Japan Science and Technology Agency (JST).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkuno, T., Ikeda, S., Kubo, N. & Sandman, D. J. (2006). Mol. Cryst. Liq. Cryst. 456, 35–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabata, H. & Okuno, T. (2012). Acta Cryst. E68, o2214.  CSD CrossRef IUCr Journals Google Scholar
First citationZaugg, H. E., Swett, L. R. & Stone, G. R. (1958). J. Org. Chem. 23, 1389–1390.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds