organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(6-Chloro-1,3-benzo­thia­zol-2-yl)-2-[1-(4-meth­­oxy­phen­yl)ethyl­­idene]hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 July 2012; accepted 18 July 2012; online 11 August 2012)

The asymmetric unit of the title compound, C16H14ClN3OS, contains two independent mol­ecules (A and B) linked into dimers via N—H⋯N hydrogen bonds. The 1,3-benzothia­zol-2-yl ring system and the benzene ring form dihedral angles of 17.08 (8) and 8.63 (7)° in mol­ecules A and B, respectively.

Related literature

For general background to and the biological, physical and chemical activities of hydrazone derivatives, see: Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]); Naseema et al. (2010[Naseema, K., Sujith, K. V., Manjunatha, K. B., Kalluraya, B., Umesh, G. & Rao, V. (2010). Opt. Laser Technol. 42, 741-748.]); Fouda et al. (2007[Fouda, A. S., Mostafa, H. A., Ghazy, S. E. & El-Farah, S. A. (2007). Int. J. Electrochem. Sci. 2, 182-194.]); Dutkiewicz et al. (2010[Dutkiewicz, G., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o874.]); Ali et al. (2004[Ali, H., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, o1873-o1874.]); Zeb & Yousuf (2011[Zeb, A. & Yousuf, S. (2011). Acta Cryst. E67, o2801.]). For related structures, see: Fun et al. (2012a[Fun, H.-K., Quah, C. K., Munirajasekhar, D., Himaja, M. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2438-o2439.],b[Fun, H.-K., Quah, C. K., Sarojini, B. K., Mohan, B. J. & Narayana, B. (2012b). Acta Cryst. E68, o2459.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClN3OS

  • Mr = 331.81

  • Triclinic, [P \overline 1]

  • a = 8.5294 (1) Å

  • b = 9.3097 (1) Å

  • c = 19.8115 (3) Å

  • α = 87.999 (1)°

  • β = 78.091 (1)°

  • γ = 79.461 (1)°

  • V = 1513.32 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.976

  • 31608 measured reflections

  • 6907 independent reflections

  • 5393 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.088

  • S = 1.03

  • 6907 reflections

  • 409 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯N1B 0.82 (2) 2.18 (2) 2.974 (2) 162 (2)
N2B—H2NB⋯N1A 0.88 (3) 2.13 (3) 2.983 (2) 166 (3)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones and their derivatives constitute a versatile class of compounds in organic chemistry. Recently, a lot of biologically important hydrazone derivatives with a number of functional groups have been synthesized. These compounds showed biological properties such as anticonvulsant, antidepressant, analgesic, antiinflammatory and antiplatelet activities (Rollas & Küçükgüzel, 2007). Hydrazone derivatives could be used in optical limiters and optical switches due to their optical limiting property (Naseema et al., 2010). Hydrazone derivatives also act as corrosion inhibitors (Fouda et al., 2007). Structures related to hydrazone derivatives have been reported (Dutkiewicz et al., 2010; Ali et al., 2004; Zeb & Yousuf, 2011). The present work describes the synthesis and crystal structure of the title compound, (I), prepared by the condensation of 1-(6-chloro1,3-benzothiazol-2-yl) hydrazine with 4-methoxyacetophenone in ethanol.

The asymmetric unit of (I) consists of two independent molecules, A and B, respectively (Fig. 1), with comparable geometries. In molecule A, the 1,3-benzothiazol-2-yl ring system (S1A/N1A/C1A–C7A, r.m.s. deviation = 0.029 Å) forms a dihedral angle of 17.08 (8)° with the benzene ring (C10A–C15A). The corresponding r.m.s. deviation and dihedral angle for molecule B are 0.010 Å and 8.63 (7)°, respectively. Bond lengths and angles are within normal ranges and are comparable with those observed in the related structures (Fun et al., 2012a,b).

In the crystal structure, molecules A and B are interlinked via intermolecular N2A–H2NA···N1B and N2B–H2NB···N1A hydrogen bonds (Table 1) into dimers.

Related literature top

For general background to and the biological, physical and chemical activities of hydrazone derivatives, see: Rollas & Küçükgüzel (2007); Naseema et al. (2010); Fouda et al. (2007); Dutkiewicz et al. (2010); Ali et al. (2004); Zeb & Yousuf (2011). For related structures, see: Fun et al. (2012a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 1-(6-chloro1,3-benzothiazol-2-yl)hydrazine (1.99 g, 10 mmol) and 4-methoxyacetophenone (1.5 g, 10 mmol) in ethanol (50 ml) was refluxed for 4 h. Completion of the reaction was monitored by TLC. After completion of the reaction, the reaction-mixture was poured into ice water. Brown colored solid separated out. The product obtained was washed with water and dried. The crude product was recrystallized from ethanol. Single crystals were grown by slow evaporation from solvent ethanol (m.p. 451–453 K).

Refinement top

N-bound H atoms were located in a difference Fourier map and isotropically refined with a restraint N—H = 0.85 (3) Å. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of (I) showing 50% probability displacement ellipsoids for non-H atoms. Intermolecular hydrogen bonds are shown as dashed lines.
1-(6-Chloro-1,3-benzothiazol-2-yl)-2-[1-(4-methoxyphenyl)ethylidene]hydrazine top
Crystal data top
C16H14ClN3OSZ = 4
Mr = 331.81F(000) = 688
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5294 (1) ÅCell parameters from 9939 reflections
b = 9.3097 (1) Åθ = 2.2–32.9°
c = 19.8115 (3) ŵ = 0.40 mm1
α = 87.999 (1)°T = 100 K
β = 78.091 (1)°Plate, brown
γ = 79.461 (1)°0.25 × 0.20 × 0.06 mm
V = 1513.32 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6907 independent reflections
Radiation source: fine-focus sealed tube5393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.908, Tmax = 0.976k = 1212
31608 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.028P)2 + 1.121P]
where P = (Fo2 + 2Fc2)/3
6907 reflections(Δ/σ)max = 0.001
409 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C16H14ClN3OSγ = 79.461 (1)°
Mr = 331.81V = 1513.32 (3) Å3
Triclinic, P1Z = 4
a = 8.5294 (1) ÅMo Kα radiation
b = 9.3097 (1) ŵ = 0.40 mm1
c = 19.8115 (3) ÅT = 100 K
α = 87.999 (1)°0.25 × 0.20 × 0.06 mm
β = 78.091 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6907 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5393 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.976Rint = 0.044
31608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.36 e Å3
6907 reflectionsΔρmin = 0.40 e Å3
409 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.35667 (6)0.80375 (5)0.42848 (3)0.01905 (12)
Cl1A0.92646 (7)1.02723 (6)0.36901 (3)0.02725 (13)
O1A0.47274 (18)0.77478 (16)0.68927 (7)0.0251 (3)
N1A0.4366 (2)0.71715 (17)0.29901 (8)0.0170 (4)
N2A0.1864 (2)0.66677 (19)0.36002 (9)0.0179 (4)
N3A0.0764 (2)0.69008 (17)0.42147 (8)0.0176 (4)
C1A0.5390 (2)0.8395 (2)0.37855 (10)0.0173 (4)
C2A0.6504 (3)0.9150 (2)0.39716 (11)0.0200 (4)
H2AA0.63360.95450.44220.024*
C3A0.7863 (3)0.9303 (2)0.34768 (11)0.0202 (4)
C4A0.8153 (3)0.8714 (2)0.28172 (11)0.0204 (4)
H4AA0.91150.88190.24930.025*
C5A0.7029 (2)0.7971 (2)0.26351 (11)0.0195 (4)
H5AA0.72180.75640.21860.023*
C6A0.5629 (2)0.7828 (2)0.31144 (10)0.0163 (4)
C7A0.3244 (2)0.7215 (2)0.35521 (10)0.0162 (4)
C8A0.0543 (2)0.6348 (2)0.43082 (10)0.0163 (4)
C9A0.0953 (3)0.5383 (2)0.37990 (11)0.0219 (5)
H9AA0.03780.55780.33330.033*
H9AB0.21300.55890.38180.033*
H9AC0.06180.43560.39150.033*
C10A0.1681 (2)0.6701 (2)0.49761 (10)0.0156 (4)
C11A0.2985 (2)0.5978 (2)0.52026 (10)0.0184 (4)
H11A0.31570.52470.49170.022*
C12A0.4048 (3)0.6298 (2)0.58367 (11)0.0203 (4)
H12A0.49290.57900.59810.024*
C13A0.3803 (3)0.7363 (2)0.62527 (10)0.0196 (4)
C14A0.2529 (3)0.8123 (2)0.60313 (11)0.0204 (4)
H14A0.23750.88660.63140.025*
C15A0.1490 (3)0.7800 (2)0.54017 (10)0.0188 (4)
H15A0.06300.83310.52540.023*
C16A0.6045 (3)0.6997 (3)0.71405 (12)0.0301 (5)
H16A0.65950.73480.76050.045*
H16B0.56280.59460.71550.045*
H16C0.68210.71820.68310.045*
S1B0.10878 (6)0.65349 (5)0.10267 (3)0.01748 (12)
Cl1B0.14593 (6)0.14927 (6)0.10362 (3)0.02510 (13)
O1B0.34041 (18)1.34488 (15)0.10641 (7)0.0228 (3)
N1B0.1780 (2)0.55835 (17)0.22159 (8)0.0166 (4)
N2B0.2536 (2)0.78361 (17)0.18524 (9)0.0168 (4)
N3B0.2594 (2)0.87969 (17)0.13039 (8)0.0160 (3)
C1B0.0585 (2)0.4861 (2)0.13352 (10)0.0159 (4)
C2B0.0169 (2)0.3934 (2)0.10299 (10)0.0183 (4)
H2BA0.04800.41590.05990.022*
C3B0.0446 (2)0.2665 (2)0.13819 (11)0.0190 (4)
C4B0.0026 (2)0.2299 (2)0.20063 (11)0.0197 (4)
H4BA0.01710.14110.22290.024*
C5B0.0785 (2)0.3235 (2)0.23024 (10)0.0179 (4)
H5BA0.11170.29920.27280.022*
C6B0.1055 (2)0.4534 (2)0.19703 (10)0.0156 (4)
C7B0.1876 (2)0.6651 (2)0.17736 (10)0.0149 (4)
C8B0.3288 (2)0.9907 (2)0.13189 (10)0.0148 (4)
C9B0.4053 (3)1.0242 (2)0.18983 (11)0.0217 (5)
H9BA0.34890.98670.23320.032*
H9BB0.39671.13020.19350.032*
H9BC0.52040.97770.18070.032*
C10B0.3327 (2)1.0871 (2)0.07057 (10)0.0151 (4)
C11B0.4141 (2)1.2052 (2)0.06300 (11)0.0183 (4)
H11B0.46731.22550.09830.022*
C12B0.4197 (2)1.2945 (2)0.00492 (11)0.0190 (4)
H12B0.47671.37400.00060.023*
C13B0.3413 (2)1.2662 (2)0.04644 (10)0.0178 (4)
C14B0.2581 (2)1.1491 (2)0.03972 (10)0.0176 (4)
H14B0.20361.13000.07480.021*
C15B0.2549 (2)1.0610 (2)0.01764 (10)0.0169 (4)
H15B0.19880.98090.02140.020*
C16B0.4122 (3)1.4732 (2)0.11283 (11)0.0237 (5)
H16D0.40991.51610.15860.036*
H16E0.52531.44740.10700.036*
H16F0.35071.54420.07730.036*
H2NA0.174 (3)0.622 (2)0.3271 (12)0.020 (6)*
H2NB0.317 (3)0.776 (3)0.2152 (13)0.033 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0203 (3)0.0234 (2)0.0151 (2)0.0077 (2)0.0040 (2)0.0011 (2)
Cl1A0.0276 (3)0.0281 (3)0.0337 (3)0.0151 (2)0.0154 (3)0.0043 (2)
O1A0.0232 (9)0.0330 (8)0.0177 (8)0.0078 (7)0.0016 (7)0.0031 (6)
N1A0.0158 (9)0.0215 (8)0.0153 (8)0.0059 (7)0.0049 (7)0.0014 (7)
N2A0.0173 (9)0.0245 (9)0.0138 (9)0.0071 (7)0.0038 (7)0.0028 (7)
N3A0.0175 (9)0.0219 (8)0.0137 (8)0.0039 (7)0.0039 (7)0.0015 (7)
C1A0.0163 (11)0.0174 (9)0.0190 (10)0.0033 (8)0.0053 (9)0.0028 (8)
C2A0.0241 (12)0.0192 (9)0.0200 (11)0.0059 (8)0.0106 (9)0.0009 (8)
C3A0.0194 (11)0.0188 (9)0.0275 (12)0.0077 (8)0.0136 (10)0.0044 (8)
C4A0.0159 (11)0.0221 (10)0.0239 (11)0.0046 (8)0.0049 (9)0.0043 (8)
C5A0.0197 (11)0.0210 (10)0.0190 (10)0.0044 (8)0.0061 (9)0.0011 (8)
C6A0.0164 (11)0.0166 (9)0.0174 (10)0.0035 (8)0.0066 (9)0.0024 (8)
C7A0.0179 (11)0.0168 (9)0.0155 (10)0.0047 (8)0.0062 (8)0.0019 (8)
C8A0.0179 (11)0.0165 (9)0.0152 (10)0.0033 (8)0.0054 (8)0.0022 (8)
C9A0.0205 (11)0.0258 (11)0.0195 (11)0.0085 (9)0.0001 (9)0.0029 (8)
C10A0.0169 (10)0.0163 (9)0.0147 (10)0.0030 (8)0.0056 (8)0.0021 (8)
C11A0.0212 (11)0.0187 (9)0.0177 (10)0.0071 (8)0.0064 (9)0.0000 (8)
C12A0.0187 (11)0.0236 (10)0.0198 (11)0.0077 (8)0.0035 (9)0.0016 (8)
C13A0.0207 (11)0.0229 (10)0.0147 (10)0.0015 (8)0.0045 (9)0.0011 (8)
C14A0.0218 (12)0.0217 (10)0.0193 (11)0.0053 (8)0.0062 (9)0.0021 (8)
C15A0.0179 (11)0.0207 (10)0.0189 (10)0.0068 (8)0.0037 (9)0.0022 (8)
C16A0.0261 (13)0.0383 (13)0.0229 (12)0.0079 (10)0.0036 (10)0.0006 (10)
S1B0.0189 (3)0.0201 (2)0.0167 (2)0.0083 (2)0.0070 (2)0.00203 (19)
Cl1B0.0233 (3)0.0256 (3)0.0293 (3)0.0125 (2)0.0035 (2)0.0085 (2)
O1B0.0315 (9)0.0205 (7)0.0195 (8)0.0110 (6)0.0078 (7)0.0056 (6)
N1B0.0169 (9)0.0182 (8)0.0156 (8)0.0066 (7)0.0023 (7)0.0001 (7)
N2B0.0200 (9)0.0190 (8)0.0152 (9)0.0086 (7)0.0079 (8)0.0020 (7)
N3B0.0162 (9)0.0179 (8)0.0143 (8)0.0035 (7)0.0038 (7)0.0015 (6)
C1B0.0130 (10)0.0180 (9)0.0166 (10)0.0049 (8)0.0007 (8)0.0006 (8)
C2B0.0143 (10)0.0251 (10)0.0158 (10)0.0045 (8)0.0027 (8)0.0028 (8)
C3B0.0143 (10)0.0200 (10)0.0234 (11)0.0063 (8)0.0011 (9)0.0074 (8)
C4B0.0182 (11)0.0164 (9)0.0231 (11)0.0056 (8)0.0015 (9)0.0011 (8)
C5B0.0189 (11)0.0198 (10)0.0149 (10)0.0039 (8)0.0026 (9)0.0009 (8)
C6B0.0125 (10)0.0192 (9)0.0154 (10)0.0047 (8)0.0015 (8)0.0027 (8)
C7B0.0141 (10)0.0193 (9)0.0117 (9)0.0037 (8)0.0030 (8)0.0026 (8)
C8B0.0129 (10)0.0163 (9)0.0153 (10)0.0017 (7)0.0032 (8)0.0033 (7)
C9B0.0287 (12)0.0201 (10)0.0202 (11)0.0081 (9)0.0110 (10)0.0009 (8)
C10B0.0128 (10)0.0156 (9)0.0162 (10)0.0010 (7)0.0026 (8)0.0016 (7)
C11B0.0191 (11)0.0204 (10)0.0188 (10)0.0064 (8)0.0090 (9)0.0011 (8)
C12B0.0200 (11)0.0171 (9)0.0224 (11)0.0082 (8)0.0058 (9)0.0009 (8)
C13B0.0196 (11)0.0164 (9)0.0162 (10)0.0018 (8)0.0022 (9)0.0008 (8)
C14B0.0172 (11)0.0214 (10)0.0165 (10)0.0054 (8)0.0065 (9)0.0037 (8)
C15B0.0161 (10)0.0166 (9)0.0191 (10)0.0052 (8)0.0035 (8)0.0025 (8)
C16B0.0276 (12)0.0216 (10)0.0234 (11)0.0084 (9)0.0063 (10)0.0063 (9)
Geometric parameters (Å, º) top
S1A—C1A1.743 (2)S1B—C1B1.748 (2)
S1A—C7A1.757 (2)S1B—C7B1.7610 (19)
Cl1A—C3A1.747 (2)Cl1B—C3B1.746 (2)
O1A—C13A1.369 (2)O1B—C13B1.375 (2)
O1A—C16A1.424 (3)O1B—C16B1.430 (2)
N1A—C7A1.306 (3)N1B—C7B1.305 (2)
N1A—C6A1.399 (2)N1B—C6B1.397 (2)
N2A—C7A1.351 (3)N2B—C7B1.354 (2)
N2A—N3A1.372 (2)N2B—N3B1.382 (2)
N2A—H2NA0.82 (2)N2B—H2NB0.88 (2)
N3A—C8A1.288 (3)N3B—C8B1.286 (2)
C1A—C2A1.393 (3)C1B—C2B1.387 (3)
C1A—C6A1.409 (3)C1B—C6B1.405 (3)
C2A—C3A1.380 (3)C2B—C3B1.383 (3)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.392 (3)C3B—C4B1.391 (3)
C4A—C5A1.389 (3)C4B—C5B1.386 (3)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.388 (3)C5B—C6B1.390 (3)
C5A—H5AA0.9500C5B—H5BA0.9500
C8A—C10A1.478 (3)C8B—C10B1.483 (3)
C8A—C9A1.507 (3)C8B—C9B1.500 (3)
C9A—H9AA0.9800C9B—H9BA0.9800
C9A—H9AB0.9800C9B—H9BB0.9800
C9A—H9AC0.9800C9B—H9BC0.9800
C10A—C11A1.392 (3)C10B—C11B1.392 (3)
C10A—C15A1.401 (3)C10B—C15B1.401 (3)
C11A—C12A1.395 (3)C11B—C12B1.394 (3)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.381 (3)C12B—C13B1.384 (3)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.391 (3)C13B—C14B1.394 (3)
C14A—C15A1.380 (3)C14B—C15B1.377 (3)
C14A—H14A0.9500C14B—H14B0.9500
C15A—H15A0.9500C15B—H15B0.9500
C16A—H16A0.9800C16B—H16D0.9800
C16A—H16B0.9800C16B—H16E0.9800
C16A—H16C0.9800C16B—H16F0.9800
C1A—S1A—C7A87.78 (10)C1B—S1B—C7B87.71 (9)
C13A—O1A—C16A117.04 (17)C13B—O1B—C16B117.25 (16)
C7A—N1A—C6A109.44 (16)C7B—N1B—C6B109.43 (16)
C7A—N2A—N3A116.12 (17)C7B—N2B—N3B114.82 (16)
C7A—N2A—H2NA119.3 (16)C7B—N2B—H2NB116.7 (16)
N3A—N2A—H2NA124.5 (16)N3B—N2B—H2NB124.5 (16)
C8A—N3A—N2A119.40 (17)C8B—N3B—N2B118.85 (16)
C2A—C1A—C6A121.20 (19)C2B—C1B—C6B121.98 (18)
C2A—C1A—S1A128.43 (16)C2B—C1B—S1B127.89 (15)
C6A—C1A—S1A110.36 (15)C6B—C1B—S1B110.13 (14)
C3A—C2A—C1A117.46 (19)C3B—C2B—C1B116.85 (18)
C3A—C2A—H2AA121.3C3B—C2B—H2BA121.6
C1A—C2A—H2AA121.3C1B—C2B—H2BA121.6
C2A—C3A—C4A122.45 (19)C2B—C3B—C4B122.57 (18)
C2A—C3A—Cl1A118.53 (16)C2B—C3B—Cl1B118.70 (16)
C4A—C3A—Cl1A119.02 (17)C4B—C3B—Cl1B118.72 (16)
C5A—C4A—C3A119.6 (2)C5B—C4B—C3B119.80 (18)
C5A—C4A—H4AA120.2C5B—C4B—H4BA120.1
C3A—C4A—H4AA120.2C3B—C4B—H4BA120.1
C6A—C5A—C4A119.44 (19)C4B—C5B—C6B119.26 (18)
C6A—C5A—H5AA120.3C4B—C5B—H5BA120.4
C4A—C5A—H5AA120.3C6B—C5B—H5BA120.4
C5A—C6A—N1A125.37 (18)C5B—C6B—N1B125.19 (17)
C5A—C6A—C1A119.75 (18)C5B—C6B—C1B119.52 (17)
N1A—C6A—C1A114.88 (18)N1B—C6B—C1B115.29 (17)
N1A—C7A—N2A123.88 (18)N1B—C7B—N2B124.37 (17)
N1A—C7A—S1A117.51 (15)N1B—C7B—S1B117.43 (15)
N2A—C7A—S1A118.62 (15)N2B—C7B—S1B118.20 (14)
N3A—C8A—C10A115.50 (17)N3B—C8B—C10B115.59 (17)
N3A—C8A—C9A124.95 (18)N3B—C8B—C9B124.27 (18)
C10A—C8A—C9A119.54 (18)C10B—C8B—C9B120.13 (17)
C8A—C9A—H9AA109.5C8B—C9B—H9BA109.5
C8A—C9A—H9AB109.5C8B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C8A—C9A—H9AC109.5C8B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C11A—C10A—C15A117.53 (18)C11B—C10B—C15B117.61 (18)
C11A—C10A—C8A121.86 (18)C11B—C10B—C8B121.75 (17)
C15A—C10A—C8A120.60 (18)C15B—C10B—C8B120.64 (17)
C10A—C11A—C12A121.87 (19)C10B—C11B—C12B121.71 (18)
C10A—C11A—H11A119.1C10B—C11B—H11B119.1
C12A—C11A—H11A119.1C12B—C11B—H11B119.1
C13A—C12A—C11A119.2 (2)C13B—C12B—C11B119.36 (19)
C13A—C12A—H12A120.4C13B—C12B—H12B120.3
C11A—C12A—H12A120.4C11B—C12B—H12B120.3
O1A—C13A—C12A124.9 (2)O1B—C13B—C12B124.65 (18)
O1A—C13A—C14A115.11 (18)O1B—C13B—C14B115.44 (17)
C12A—C13A—C14A120.01 (19)C12B—C13B—C14B119.91 (18)
C15A—C14A—C13A120.20 (19)C15B—C14B—C13B120.10 (18)
C15A—C14A—H14A119.9C15B—C14B—H14B119.9
C13A—C14A—H14A119.9C13B—C14B—H14B119.9
C14A—C15A—C10A121.12 (19)C14B—C15B—C10B121.31 (19)
C14A—C15A—H15A119.4C14B—C15B—H15B119.3
C10A—C15A—H15A119.4C10B—C15B—H15B119.3
O1A—C16A—H16A109.5O1B—C16B—H16D109.5
O1A—C16A—H16B109.5O1B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
O1A—C16A—H16C109.5O1B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C7A—N2A—N3A—C8A176.68 (17)C7B—N2B—N3B—C8B176.02 (17)
C7A—S1A—C1A—C2A176.79 (18)C7B—S1B—C1B—C2B179.72 (19)
C7A—S1A—C1A—C6A1.74 (14)C7B—S1B—C1B—C6B0.13 (15)
C6A—C1A—C2A—C3A0.9 (3)C6B—C1B—C2B—C3B0.2 (3)
S1A—C1A—C2A—C3A179.33 (15)S1B—C1B—C2B—C3B179.58 (15)
C1A—C2A—C3A—C4A1.1 (3)C1B—C2B—C3B—C4B1.2 (3)
C1A—C2A—C3A—Cl1A178.88 (14)C1B—C2B—C3B—Cl1B177.64 (15)
C2A—C3A—C4A—C5A1.6 (3)C2B—C3B—C4B—C5B1.0 (3)
Cl1A—C3A—C4A—C5A178.44 (15)Cl1B—C3B—C4B—C5B177.90 (15)
C3A—C4A—C5A—C6A0.1 (3)C3B—C4B—C5B—C6B0.3 (3)
C4A—C5A—C6A—N1A176.79 (17)C4B—C5B—C6B—N1B178.88 (18)
C4A—C5A—C6A—C1A2.1 (3)C4B—C5B—C6B—C1B1.2 (3)
C7A—N1A—C6A—C5A179.64 (18)C7B—N1B—C6B—C5B178.79 (19)
C7A—N1A—C6A—C1A1.4 (2)C7B—N1B—C6B—C1B1.1 (2)
C2A—C1A—C6A—C5A2.5 (3)C2B—C1B—C6B—C5B1.0 (3)
S1A—C1A—C6A—C5A178.81 (14)S1B—C1B—C6B—C5B179.17 (15)
C2A—C1A—C6A—N1A176.44 (17)C2B—C1B—C6B—N1B179.14 (18)
S1A—C1A—C6A—N1A2.2 (2)S1B—C1B—C6B—N1B0.7 (2)
C6A—N1A—C7A—N2A179.93 (17)C6B—N1B—C7B—N2B179.15 (18)
C6A—N1A—C7A—S1A0.0 (2)C6B—N1B—C7B—S1B1.0 (2)
N3A—N2A—C7A—N1A175.47 (17)N3B—N2B—C7B—N1B176.61 (18)
N3A—N2A—C7A—S1A4.6 (2)N3B—N2B—C7B—S1B3.5 (2)
C1A—S1A—C7A—N1A1.05 (15)C1B—S1B—C7B—N1B0.52 (16)
C1A—S1A—C7A—N2A179.01 (16)C1B—S1B—C7B—N2B179.61 (16)
N2A—N3A—C8A—C10A177.94 (15)N2B—N3B—C8B—C10B178.92 (16)
N2A—N3A—C8A—C9A2.8 (3)N2B—N3B—C8B—C9B0.0 (3)
N3A—C8A—C10A—C11A168.14 (17)N3B—C8B—C10B—C11B175.29 (18)
C9A—C8A—C10A—C11A11.1 (3)C9B—C8B—C10B—C11B3.6 (3)
N3A—C8A—C10A—C15A12.7 (3)N3B—C8B—C10B—C15B4.1 (3)
C9A—C8A—C10A—C15A168.03 (17)C9B—C8B—C10B—C15B176.92 (18)
C15A—C10A—C11A—C12A1.6 (3)C15B—C10B—C11B—C12B0.4 (3)
C8A—C10A—C11A—C12A179.18 (18)C8B—C10B—C11B—C12B179.09 (18)
C10A—C11A—C12A—C13A0.1 (3)C10B—C11B—C12B—C13B0.5 (3)
C16A—O1A—C13A—C12A0.6 (3)C16B—O1B—C13B—C12B6.4 (3)
C16A—O1A—C13A—C14A179.99 (17)C16B—O1B—C13B—C14B174.81 (17)
C11A—C12A—C13A—O1A178.03 (18)C11B—C12B—C13B—O1B178.90 (18)
C11A—C12A—C13A—C14A1.3 (3)C11B—C12B—C13B—C14B0.1 (3)
O1A—C13A—C14A—C15A178.31 (17)O1B—C13B—C14B—C15B178.42 (17)
C12A—C13A—C14A—C15A1.1 (3)C12B—C13B—C14B—C15B0.5 (3)
C13A—C14A—C15A—C10A0.5 (3)C13B—C14B—C15B—C10B0.7 (3)
C11A—C10A—C15A—C14A1.9 (3)C11B—C10B—C15B—C14B0.2 (3)
C8A—C10A—C15A—C14A178.95 (17)C8B—C10B—C15B—C14B179.70 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···N1B0.82 (2)2.18 (2)2.974 (2)162 (2)
N2B—H2NB···N1A0.88 (3)2.13 (3)2.983 (2)166 (3)

Experimental details

Crystal data
Chemical formulaC16H14ClN3OS
Mr331.81
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.5294 (1), 9.3097 (1), 19.8115 (3)
α, β, γ (°)87.999 (1), 78.091 (1), 79.461 (1)
V3)1513.32 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.25 × 0.20 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.908, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
31608, 6907, 5393
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.088, 1.03
No. of reflections6907
No. of parameters409
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···N1B0.82 (2)2.18 (2)2.974 (2)162 (2)
N2B—H2NB···N1A0.88 (3)2.13 (3)2.983 (2)166 (3)
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). BKS gratefully acknowledges the Department of Atomic Energy (DAE)/BRNS, Government of India, for providing financial assistance in the BRNS Project (No. 2011/34/20-BRNS/0846).

References

First citationAli, H., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, o1873–o1874.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDutkiewicz, G., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Kubicki, M. (2010). Acta Cryst. E66, o874.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFouda, A. S., Mostafa, H. A., Ghazy, S. E. & El-Farah, S. A. (2007). Int. J. Electrochem. Sci. 2, 182–194.  CAS Google Scholar
First citationFun, H.-K., Quah, C. K., Munirajasekhar, D., Himaja, M. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2438–o2439.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Sarojini, B. K., Mohan, B. J. & Narayana, B. (2012b). Acta Cryst. E68, o2459.  CSD CrossRef IUCr Journals Google Scholar
First citationNaseema, K., Sujith, K. V., Manjunatha, K. B., Kalluraya, B., Umesh, G. & Rao, V. (2010). Opt. Laser Technol. 42, 741–748.  Web of Science CrossRef CAS Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeb, A. & Yousuf, S. (2011). Acta Cryst. E67, o2801.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds