organic compounds
(E)-{[But-2-ene-1,4-diylbis(oxy)]bis(4,1-phenylene)}bis(phenylmethanone)
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cYeşilyurt Demir Çelik Vocational School, Ondokuz Mayis University, Samsun, Turkey, and dDepartment of Chemistry, Karadeniz Technical University, 61080 Trabzon, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com
The title molecule, C30H24O4, lies about an inversion center located at the mid-point of the central C=C bond. The diphenylmethanone unit adopts an all-trans conformation. The dihedral angle between the adjacent rings is 53.57 (4)°.
Related literature
For sterically hindered ); Pospisil et al. (2003); Wolf & Kaul, (1992). For synthetic phenolic antioxidants, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) or butylated hydroxyquinone (TBHQ) as antioxidants, see: Omura (1995). For the ability of to stop the propagation chain during the oxidation process, see: Kumar & Naik (2010); Findik et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002). For the synthesis of the title compound, see: Er et al. (2009).
and secondary aromatic as antioxidants, see: Rabek (1990Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812033624/ds2209sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812033624/ds2209Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812033624/ds2209Isup3.cml
Title compound was synthesized by published methods (Er et al., 2009). Crystals were grown by slow evaporation of an ethanol/acetone mixed solution.
All H-atoms were positioned geometrically with C—H = 0.93 or 0.97 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C30H24O4 | F(000) = 472 |
Mr = 448.49 | Dx = 1.348 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3302 reflections |
a = 24.913 (1) Å | θ = 3.3–28.6° |
b = 7.2586 (3) Å | µ = 0.09 mm−1 |
c = 6.1359 (2) Å | T = 123 K |
β = 95.012 (4)° | Pyrimidal, colorless |
V = 1105.33 (7) Å3 | 0.44 × 0.37 × 0.22 mm |
Z = 2 |
Agilent Xcalibur Ruby Gemini diffractometer | 2409 independent reflections |
Radiation source: fine-focus sealed tube | 1964 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 28.6°, θmin = 3.3° |
ω scans | h = −27→31 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] | k = −9→7 |
Tmin = 0.976, Tmax = 0.989 | l = −8→7 |
8112 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0494P)2 + 0.5741P] where P = (Fo2 + 2Fc2)/3 |
2409 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C30H24O4 | V = 1105.33 (7) Å3 |
Mr = 448.49 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 24.913 (1) Å | µ = 0.09 mm−1 |
b = 7.2586 (3) Å | T = 123 K |
c = 6.1359 (2) Å | 0.44 × 0.37 × 0.22 mm |
β = 95.012 (4)° |
Agilent Xcalibur Ruby Gemini diffractometer | 2409 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] | 1964 reflections with I > 2σ(I) |
Tmin = 0.976, Tmax = 0.989 | Rint = 0.045 |
8112 measured reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.25 e Å−3 |
2409 reflections | Δρmin = −0.27 e Å−3 |
154 parameters |
Experimental. Absorption correction: analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.71419 (5) | 0.00150 (18) | 0.81909 (19) | 0.0279 (3) | |
O2 | 0.92164 (4) | −0.01342 (16) | 0.31446 (19) | 0.0240 (3) | |
C1 | 0.65514 (7) | −0.0714 (2) | 0.2731 (3) | 0.0214 (4) | |
H1A | 0.6853 | −0.1202 | 0.2080 | 0.026* | |
C2 | 0.60418 (7) | −0.0791 (2) | 0.1610 (3) | 0.0243 (4) | |
H2A | 0.5994 | −0.1345 | 0.0203 | 0.029* | |
C3 | 0.56033 (7) | −0.0055 (2) | 0.2551 (3) | 0.0264 (4) | |
H3A | 0.5254 | −0.0123 | 0.1796 | 0.032* | |
C4 | 0.56713 (7) | 0.0778 (2) | 0.4592 (3) | 0.0255 (4) | |
H4A | 0.5371 | 0.1313 | 0.5209 | 0.031* | |
C5 | 0.61760 (6) | 0.0832 (2) | 0.5730 (3) | 0.0222 (4) | |
H5A | 0.6221 | 0.1381 | 0.7139 | 0.027* | |
C6 | 0.66211 (6) | 0.0077 (2) | 0.4805 (3) | 0.0193 (4) | |
C7 | 0.71442 (6) | 0.0017 (2) | 0.6198 (3) | 0.0196 (4) | |
C8 | 0.76709 (6) | −0.0056 (2) | 0.5208 (3) | 0.0189 (4) | |
C9 | 0.81067 (6) | −0.0885 (2) | 0.6439 (3) | 0.0203 (4) | |
H9A | 0.8053 | −0.1436 | 0.7808 | 0.024* | |
C10 | 0.86106 (6) | −0.0910 (2) | 0.5686 (3) | 0.0207 (4) | |
H10A | 0.8900 | −0.1516 | 0.6505 | 0.025* | |
C11 | 0.86966 (6) | −0.0043 (2) | 0.3717 (3) | 0.0195 (4) | |
C12 | 0.82714 (6) | 0.0799 (2) | 0.2468 (3) | 0.0207 (4) | |
H12A | 0.8330 | 0.1391 | 0.1128 | 0.025* | |
C13 | 0.77587 (6) | 0.0758 (2) | 0.3220 (3) | 0.0195 (4) | |
H13A | 0.7465 | 0.1297 | 0.2357 | 0.023* | |
C14 | 0.93354 (7) | 0.0764 (3) | 0.1161 (3) | 0.0251 (4) | |
H14A | 0.9271 | 0.2106 | 0.1262 | 0.030* | |
H14B | 0.9103 | 0.0271 | −0.0097 | 0.030* | |
C15 | 0.99148 (7) | 0.0394 (3) | 0.0874 (3) | 0.0265 (4) | |
H15A | 1.0176 | 0.0748 | 0.2019 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0252 (7) | 0.0416 (8) | 0.0173 (6) | −0.0015 (5) | 0.0036 (5) | −0.0004 (5) |
O2 | 0.0154 (6) | 0.0328 (7) | 0.0242 (6) | 0.0014 (5) | 0.0045 (5) | 0.0017 (5) |
C1 | 0.0218 (8) | 0.0217 (8) | 0.0215 (8) | −0.0006 (6) | 0.0055 (7) | 0.0005 (7) |
C2 | 0.0264 (9) | 0.0263 (9) | 0.0201 (8) | −0.0031 (7) | 0.0013 (7) | 0.0000 (7) |
C3 | 0.0207 (8) | 0.0305 (10) | 0.0276 (9) | −0.0018 (7) | −0.0002 (7) | 0.0048 (7) |
C4 | 0.0185 (8) | 0.0290 (9) | 0.0301 (9) | −0.0005 (7) | 0.0076 (7) | 0.0020 (7) |
C5 | 0.0214 (8) | 0.0248 (9) | 0.0211 (8) | −0.0021 (7) | 0.0064 (7) | −0.0010 (7) |
C6 | 0.0179 (8) | 0.0207 (8) | 0.0198 (8) | −0.0017 (6) | 0.0050 (6) | 0.0019 (6) |
C7 | 0.0199 (8) | 0.0198 (8) | 0.0195 (8) | −0.0017 (6) | 0.0036 (6) | −0.0007 (6) |
C8 | 0.0191 (8) | 0.0188 (8) | 0.0191 (8) | −0.0011 (6) | 0.0024 (6) | −0.0023 (6) |
C9 | 0.0231 (8) | 0.0216 (8) | 0.0162 (8) | −0.0024 (6) | 0.0009 (6) | −0.0003 (6) |
C10 | 0.0199 (8) | 0.0215 (9) | 0.0201 (8) | 0.0004 (6) | −0.0021 (6) | −0.0008 (6) |
C11 | 0.0167 (8) | 0.0212 (8) | 0.0208 (8) | −0.0015 (6) | 0.0025 (6) | −0.0053 (6) |
C12 | 0.0205 (8) | 0.0220 (8) | 0.0199 (8) | −0.0008 (6) | 0.0045 (6) | 0.0013 (6) |
C13 | 0.0187 (8) | 0.0212 (8) | 0.0185 (8) | 0.0013 (6) | 0.0012 (6) | −0.0001 (6) |
C14 | 0.0204 (8) | 0.0331 (10) | 0.0225 (9) | 0.0002 (7) | 0.0058 (7) | 0.0010 (7) |
C15 | 0.0174 (8) | 0.0357 (10) | 0.0267 (9) | −0.0029 (7) | 0.0039 (7) | −0.0015 (7) |
O1—C7 | 1.223 (2) | C8—C13 | 1.390 (2) |
O2—C11 | 1.3726 (19) | C8—C9 | 1.403 (2) |
O2—C14 | 1.435 (2) | C9—C10 | 1.376 (2) |
C1—C2 | 1.391 (2) | C9—H9A | 0.9500 |
C1—C6 | 1.393 (2) | C10—C11 | 1.395 (2) |
C1—H1A | 0.9500 | C10—H10A | 0.9500 |
C2—C3 | 1.387 (3) | C11—C12 | 1.393 (2) |
C2—H2A | 0.9500 | C12—C13 | 1.395 (2) |
C3—C4 | 1.388 (3) | C12—H12A | 0.9500 |
C3—H3A | 0.9500 | C13—H13A | 0.9500 |
C4—C5 | 1.384 (2) | C14—C15 | 1.494 (2) |
C4—H4A | 0.9500 | C14—H14A | 0.9900 |
C5—C6 | 1.401 (2) | C14—H14B | 0.9900 |
C5—H5A | 0.9500 | C15—C15i | 1.318 (4) |
C6—C7 | 1.496 (2) | C15—H15A | 0.9500 |
C7—C8 | 1.494 (2) | ||
C11—O2—C14 | 117.70 (12) | C10—C9—C8 | 120.69 (15) |
C2—C1—C6 | 120.26 (16) | C10—C9—H9A | 119.7 |
C2—C1—H1A | 119.9 | C8—C9—H9A | 119.7 |
C6—C1—H1A | 119.9 | C9—C10—C11 | 119.94 (14) |
C3—C2—C1 | 119.77 (16) | C9—C10—H10A | 120.0 |
C3—C2—H2A | 120.1 | C11—C10—H10A | 120.0 |
C1—C2—H2A | 120.1 | O2—C11—C12 | 124.69 (15) |
C2—C3—C4 | 120.35 (16) | O2—C11—C10 | 114.82 (14) |
C2—C3—H3A | 119.8 | C12—C11—C10 | 120.48 (15) |
C4—C3—H3A | 119.8 | C11—C12—C13 | 118.87 (15) |
C5—C4—C3 | 120.08 (16) | C11—C12—H12A | 120.6 |
C5—C4—H4A | 120.0 | C13—C12—H12A | 120.6 |
C3—C4—H4A | 120.0 | C8—C13—C12 | 121.18 (15) |
C4—C5—C6 | 120.06 (16) | C8—C13—H13A | 119.4 |
C4—C5—H5A | 120.0 | C12—C13—H13A | 119.4 |
C6—C5—H5A | 120.0 | O2—C14—C15 | 106.96 (13) |
C1—C6—C5 | 119.44 (15) | O2—C14—H14A | 110.3 |
C1—C6—C7 | 122.90 (15) | C15—C14—H14A | 110.3 |
C5—C6—C7 | 117.43 (15) | O2—C14—H14B | 110.3 |
O1—C7—C8 | 119.17 (14) | C15—C14—H14B | 110.3 |
O1—C7—C6 | 119.44 (15) | H14A—C14—H14B | 108.6 |
C8—C7—C6 | 121.38 (14) | C15i—C15—C14 | 123.9 (2) |
C13—C8—C9 | 118.77 (15) | C15i—C15—H15A | 118.1 |
C13—C8—C7 | 123.58 (14) | C14—C15—H15A | 118.1 |
C9—C8—C7 | 117.50 (14) | ||
C6—C1—C2—C3 | 0.8 (3) | C6—C7—C8—C9 | −152.96 (15) |
C1—C2—C3—C4 | 0.9 (3) | C13—C8—C9—C10 | −0.7 (2) |
C2—C3—C4—C5 | −1.9 (3) | C7—C8—C9—C10 | −176.32 (15) |
C3—C4—C5—C6 | 1.3 (3) | C8—C9—C10—C11 | 2.4 (2) |
C2—C1—C6—C5 | −1.5 (2) | C14—O2—C11—C12 | 2.6 (2) |
C2—C1—C6—C7 | 173.00 (15) | C14—O2—C11—C10 | −178.67 (14) |
C4—C5—C6—C1 | 0.4 (2) | C9—C10—C11—O2 | 179.11 (14) |
C4—C5—C6—C7 | −174.34 (15) | C9—C10—C11—C12 | −2.1 (2) |
C1—C6—C7—O1 | −150.21 (16) | O2—C11—C12—C13 | 178.62 (15) |
C5—C6—C7—O1 | 24.4 (2) | C10—C11—C12—C13 | −0.1 (2) |
C1—C6—C7—C8 | 29.3 (2) | C9—C8—C13—C12 | −1.5 (2) |
C5—C6—C7—C8 | −156.15 (15) | C7—C8—C13—C12 | 173.86 (15) |
O1—C7—C8—C13 | −148.92 (17) | C11—C12—C13—C8 | 1.9 (2) |
C6—C7—C8—C13 | 31.6 (2) | C11—O2—C14—C15 | −177.68 (14) |
O1—C7—C8—C9 | 26.5 (2) | O2—C14—C15—C15i | 123.3 (2) |
Symmetry code: (i) −x+2, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C30H24O4 |
Mr | 448.49 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 24.913 (1), 7.2586 (3), 6.1359 (2) |
β (°) | 95.012 (4) |
V (Å3) | 1105.33 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.44 × 0.37 × 0.22 |
Data collection | |
Diffractometer | Agilent Xcalibur Ruby Gemini diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.976, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8112, 2409, 1964 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.674 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.129, 1.09 |
No. of reflections | 2409 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.27 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.
References
Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Er, M., Ünver, Y., Sancak, K., Degirmencioglu, I. & Karaoglu, S. A. (2009). ARKIVOC, ii, 149–167. CrossRef Google Scholar
Findik, E., Ceylan, M. & Elmastas, M. (2011). Eur. J. Med. Chem. 46, 4618–4624. Web of Science CAS PubMed Google Scholar
Kumar, H. V. & Naik, N. (2010). Eur. J. Med. Chem. 45, 2–10. PubMed CAS Google Scholar
Omura, K. (1995). J. Am. Oil Chem. Soc. 72, 1565–1570. CrossRef CAS Web of Science Google Scholar
Pospisil, J., Horak, Z., Pilar, J., Billingham, N. C., Zweifel, H. & Nespurek, S. (2003). Polym. Degrad. Stab. 82, 145–162. CAS Google Scholar
Rabek, J. F. (1990). In Photostabilization of Polymers – Principles and Applications. New York: Elsevier Applied Science. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolf, R. & Kaul, B. L. (1992). Editors. Plastics, Additives, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A20, pp. 459–507. Weinheim: VCH Verlag. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Antioxidants are chemical compounds that can quench reactive radical intermediates formed during oxidative reactions. The primary antioxidants essentially comprise of sterically hindered phenols and secondary aromatic amines (Rabek, 1990; Pospisil et al., 2003; Wolf & Kaul, 1992). Phenols have been utilized extensively for food preservation. Synthetic phenolic antioxidants, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) or butylated hydroxyquinone (TBHQ) possess good antioxidant capacity (Omura, 1995). The main structural feature responsible for the antioxidative and free radical scavenging activity of phenolic derivatives is the phenolic hydroxyl group. Phenols are able to donate the hydrogen atom of the phenolic OH to the free radicals, thus stopping the propagation chain during the oxidation process (Kumar & Naik, 2010; Findik, et al., 2011).
In view of the importance of phenolate compounds as antioxidants the structure of (E)-((but-2-ene-1,4-diylbis(oxy))bis(4,1-phenylene))bis(phenylmethanone) was determined. This molecule, C30H24O4, (Fig. 1), lies on an inversion centre, which passes through middle point of the C15=C15A double bond of the aliphatic chain, giving one half-molecule per asymmetric unit. As a consequence of this symmetry, the diphenylmethanone adopts an all-trans conformation. The molecular structure is not planar. The O2 C14 C15 C15A (C15A generated by 2 - x, -y, -z) torsion angle is 123.3 (3) ° and the dihedral angle between the planes of the aromatic rings (C1/C6 to C8/C13) is 53.57 (4) ° [for the non-H atoms, maximum deviation = -0.015 (1) Å for C10]. Bond lengths and angles can be regarded as normal (Allen, 2002). There are no significant C–H···O contacts.