organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-[(3-Aminona­phthalen-2-yl­amino)(phen­yl)methyl­­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

aCollege of Chemical Engineering, Northwest University, Xi'an 710069, Shannxi, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xian University of Science and Technology, Xi'an 710054, Shannxi, People's Republic of China
*Correspondence e-mail: lvxq@nwu.edu.cn

(Received 1 August 2012; accepted 6 August 2012; online 25 August 2012)

The mol­ecule of the title compound, C27H22N4O, assumes a non-planar conformation in which the pyrazolone ring forms dihedral angles of 12.73 (11), 65.17 (6) and 49.82 (6)°, respectively, with the two benzene rings and the naphthalene ring system. In the crystal, pairs of mol­ecules are linked by inter­molecular N—H⋯N hydrogen bonds, forming dimers. The secondary amino group is involved in an intra­molecular N—H⋯O hydrogen bond.

Related literature

For a related structure, see: Lu et al. (2011[Lu, R., Xia, H., Lü, X. & Zhao, S. (2011). Acta Cryst. E67, o2701.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis, see: Hennig & Mann (1988[Hennig, L. & Mann, G. (1988). Z. Chem. 28, 364-365.]).

[Scheme 1]

Experimental

Crystal data
  • C27H22N4O

  • Mr = 418.49

  • Monoclinic, P 21 /n

  • a = 9.8052 (14) Å

  • b = 18.041 (3) Å

  • c = 13.2193 (18) Å

  • β = 110.797 (2)°

  • V = 2186.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.31 × 0.25 × 0.24 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.981

  • 10878 measured reflections

  • 3886 independent reflections

  • 2629 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.123

  • S = 1.07

  • 3886 reflections

  • 290 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.86 2.06 2.7196 (19) 133
N4—H4A⋯N2i 0.92 (2) 2.21 (2) 3.121 (2) 169.8 (18)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Asymmetric Schiff bases attract the interest of researchers because they can form complexes with most of transition metal ions. These Schiff base complexes show excellent catalytic activity and selectivity in various reactions. Here we report the crystal structure of a novel asymmetrical Schiff base ligand (I) (Fig. 1). Bond lengths are in the range of normal values (Allen et al., 1987) and are comparable to those observed in similar compounds (Lu et al., 2011). The molecules of the title compound are linked by N—H···N hydrogen to form molecular pairs (Fig. 2). An intramolecular N3—H3a···O1 hydrogen bond forms an S6 ring motif.

Related literature top

For a related structure, see: Lu et al. (2011). For bond-length data, see: Allen et al. (1987). For the synthesis, see: Hennig & Mann (1988).

Experimental top

The title compound was obtained according to the synthetic procedure of Hennig & Mann (1988) with some modification. 2,3-diaminonaphthalene and 4-benzoyl-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one were refluxed for 2 h in a molar ratio of 1:1 in absolute ethanol to give the product. The single-crystal of suitable for X-ray diffraction was obtained by slow evaporation of its ethanolic solution of the title compound.

Refinement top

H atoms bonded to N4 were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and N—H = 0.87 (2) Å, and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C/N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

The packing of (I), showing molecules connected by N—H···N hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
(Z)-4-[(3-Aminonaphthalen-2-ylamino)(phenyl)methylidene]- 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C27H22N4OF(000) = 880
Mr = 418.49Dx = 1.272 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4488 reflections
a = 9.8052 (14) Åθ = 1.9–25.1°
b = 18.041 (3) ŵ = 0.08 mm1
c = 13.2193 (18) ÅT = 296 K
β = 110.797 (2)°Block, red
V = 2186.0 (5) Å30.31 × 0.25 × 0.24 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3886 independent reflections
Radiation source: fine-focus sealed tube2629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
thin–slice ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.976, Tmax = 0.981k = 2115
10878 measured reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.1136P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3886 reflectionsΔρmax = 0.19 e Å3
290 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0046 (10)
Crystal data top
C27H22N4OV = 2186.0 (5) Å3
Mr = 418.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8052 (14) ŵ = 0.08 mm1
b = 18.041 (3) ÅT = 296 K
c = 13.2193 (18) Å0.31 × 0.25 × 0.24 mm
β = 110.797 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3886 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2629 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.981Rint = 0.027
10878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.19 e Å3
3886 reflectionsΔρmin = 0.13 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27552 (14)1.00646 (7)0.55789 (10)0.0609 (4)
N20.43043 (16)0.85291 (8)0.47774 (12)0.0549 (4)
N10.31277 (16)0.89991 (8)0.46993 (11)0.0516 (4)
N30.51820 (16)1.03547 (8)0.73333 (11)0.0540 (4)
H3A0.44861.05340.67890.065*
C180.55379 (19)1.07787 (9)0.82950 (14)0.0490 (4)
C260.5429 (2)1.19826 (10)0.90501 (15)0.0556 (5)
H26A0.51901.24830.89610.067*
C270.52031 (19)1.15528 (10)0.81475 (14)0.0500 (4)
C250.60116 (19)1.16913 (10)1.01105 (15)0.0523 (5)
C120.71102 (19)0.94103 (9)0.79235 (13)0.0476 (4)
C110.57512 (19)0.97179 (9)0.71287 (14)0.0482 (4)
C80.50078 (19)0.93546 (9)0.61583 (13)0.0481 (4)
C50.1637 (2)0.83859 (9)0.30338 (14)0.0541 (5)
H5A0.24570.81370.30140.065*
C60.1758 (2)0.88711 (9)0.38791 (14)0.0488 (4)
C70.3538 (2)0.95422 (10)0.54880 (13)0.0495 (4)
N40.4582 (2)1.18265 (11)0.71068 (14)0.0656 (5)
C190.60730 (19)1.04834 (10)0.93090 (14)0.0532 (5)
H19A0.62660.99780.93890.064*
C200.63419 (19)1.09256 (10)1.02421 (14)0.0504 (5)
C210.6924 (2)1.06300 (11)1.12955 (15)0.0616 (5)
H21A0.71171.01251.13850.074*
C30.0920 (2)0.86374 (11)0.22376 (17)0.0646 (5)
H3B0.18120.85670.16810.078*
C90.5400 (2)0.87347 (9)0.56375 (14)0.0507 (5)
C130.7088 (2)0.87261 (10)0.83947 (15)0.0612 (5)
H13A0.62130.84690.82290.073*
C10.0515 (2)0.92247 (10)0.38980 (15)0.0606 (5)
H1A0.05720.95450.44630.073*
C230.6896 (2)1.18263 (13)1.20526 (17)0.0721 (6)
H23A0.70971.21271.26590.087*
C40.0309 (2)0.82743 (10)0.22284 (15)0.0610 (5)
H4C0.02390.79480.16680.073*
C240.6299 (2)1.21312 (11)1.10469 (16)0.0646 (5)
H24A0.60791.26341.09770.077*
C170.8418 (2)0.97844 (11)0.81943 (16)0.0638 (5)
H17A0.84461.02500.79000.077*
C100.6841 (2)0.83662 (11)0.58793 (16)0.0651 (6)
H10A0.67440.79660.53790.098*
H10B0.71720.81750.66040.098*
H10C0.75350.87200.58100.098*
C220.7211 (2)1.10693 (12)1.21862 (16)0.0671 (6)
H22A0.76131.08671.28760.081*
C20.0809 (2)0.91046 (11)0.30816 (17)0.0660 (6)
H2B0.16380.93440.31040.079*
C140.8356 (3)0.84252 (11)0.91075 (16)0.0726 (6)
H14A0.83320.79690.94300.087*
C160.9680 (2)0.94749 (14)0.88954 (18)0.0805 (6)
H16A1.05590.97290.90670.097*
C150.9647 (3)0.87940 (14)0.93425 (18)0.0787 (6)
H15A1.05060.85820.98070.094*
H4A0.497 (2)1.1671 (11)0.6603 (17)0.083 (7)*
H4B0.436 (3)1.2320 (14)0.7045 (17)0.098 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0635 (9)0.0555 (8)0.0600 (8)0.0159 (6)0.0173 (7)0.0065 (6)
N20.0542 (10)0.0522 (9)0.0562 (10)0.0090 (7)0.0168 (8)0.0072 (7)
N10.0522 (10)0.0506 (9)0.0494 (9)0.0094 (7)0.0147 (8)0.0073 (7)
N30.0600 (10)0.0483 (9)0.0482 (9)0.0088 (7)0.0124 (8)0.0048 (7)
C180.0474 (11)0.0483 (10)0.0510 (11)0.0011 (8)0.0171 (9)0.0080 (8)
C260.0581 (12)0.0463 (10)0.0633 (12)0.0025 (8)0.0227 (10)0.0054 (9)
C270.0468 (11)0.0509 (11)0.0529 (11)0.0013 (8)0.0183 (9)0.0017 (9)
C250.0474 (11)0.0527 (11)0.0585 (12)0.0064 (8)0.0211 (9)0.0085 (9)
C120.0521 (11)0.0445 (10)0.0469 (10)0.0020 (8)0.0183 (9)0.0022 (8)
C110.0522 (11)0.0445 (10)0.0504 (11)0.0006 (8)0.0213 (9)0.0009 (8)
C80.0530 (11)0.0444 (10)0.0453 (10)0.0053 (8)0.0156 (9)0.0016 (8)
C50.0588 (13)0.0497 (11)0.0527 (11)0.0026 (9)0.0183 (10)0.0022 (9)
C60.0525 (11)0.0461 (10)0.0467 (10)0.0015 (8)0.0160 (9)0.0030 (8)
C70.0591 (12)0.0476 (10)0.0438 (10)0.0048 (9)0.0208 (9)0.0003 (8)
N40.0803 (13)0.0607 (12)0.0561 (11)0.0229 (9)0.0246 (10)0.0045 (9)
C190.0566 (12)0.0461 (10)0.0570 (12)0.0013 (8)0.0205 (10)0.0016 (9)
C200.0452 (11)0.0538 (11)0.0527 (11)0.0046 (8)0.0180 (9)0.0050 (9)
C210.0644 (13)0.0646 (13)0.0579 (12)0.0017 (10)0.0245 (10)0.0017 (10)
C30.0579 (13)0.0642 (13)0.0609 (13)0.0016 (10)0.0078 (10)0.0031 (10)
C90.0551 (12)0.0476 (10)0.0488 (11)0.0056 (8)0.0175 (10)0.0000 (8)
C130.0642 (13)0.0487 (11)0.0619 (13)0.0055 (9)0.0115 (10)0.0026 (10)
C10.0603 (13)0.0642 (12)0.0562 (12)0.0064 (10)0.0192 (11)0.0059 (10)
C230.0765 (16)0.0817 (16)0.0611 (14)0.0114 (12)0.0280 (12)0.0202 (12)
C40.0683 (14)0.0551 (12)0.0541 (12)0.0011 (10)0.0150 (11)0.0044 (9)
C240.0716 (14)0.0604 (12)0.0640 (14)0.0069 (10)0.0269 (11)0.0162 (10)
C170.0571 (13)0.0641 (12)0.0697 (14)0.0029 (10)0.0219 (11)0.0122 (10)
C100.0588 (13)0.0683 (13)0.0659 (13)0.0173 (10)0.0191 (11)0.0072 (10)
C220.0686 (14)0.0826 (16)0.0513 (12)0.0031 (11)0.0226 (11)0.0023 (11)
C20.0564 (13)0.0692 (13)0.0690 (14)0.0094 (10)0.0183 (11)0.0023 (11)
C140.0867 (18)0.0538 (12)0.0636 (14)0.0054 (11)0.0098 (12)0.0096 (10)
C160.0520 (14)0.0979 (18)0.0852 (16)0.0040 (12)0.0167 (12)0.0146 (14)
C150.0643 (15)0.0876 (17)0.0703 (15)0.0164 (12)0.0065 (12)0.0072 (13)
Geometric parameters (Å, º) top
O1—C71.2480 (19)C19—H19A0.9300
N2—C91.310 (2)C20—C211.409 (2)
N2—N11.4056 (19)C21—C221.363 (3)
N1—C71.382 (2)C21—H21A0.9300
N1—C61.414 (2)C3—C21.371 (3)
N3—C111.346 (2)C3—C41.376 (3)
N3—C181.417 (2)C3—H3B0.9300
N3—H3A0.8600C9—C101.490 (2)
C18—C191.362 (2)C13—C141.377 (3)
C18—C271.432 (2)C13—H13A0.9300
C26—C271.373 (2)C1—C21.379 (3)
C26—C251.414 (2)C1—H1A0.9300
C26—H26A0.9300C23—C241.364 (3)
C27—N41.383 (2)C23—C221.398 (3)
C25—C241.412 (2)C23—H23A0.9300
C25—C201.415 (2)C4—H4C0.9300
C12—C171.379 (3)C24—H24A0.9300
C12—C131.386 (2)C17—C161.374 (3)
C12—C111.481 (2)C17—H17A0.9300
C11—C81.394 (2)C10—H10A0.9600
C8—C91.436 (2)C10—H10B0.9600
C8—C71.439 (2)C10—H10C0.9600
C5—C41.373 (3)C22—H22A0.9300
C5—C61.391 (2)C2—H2B0.9300
C5—H5A0.9300C14—C151.365 (3)
C6—C11.384 (2)C14—H14A0.9300
N4—H4A0.92 (2)C16—C151.368 (3)
N4—H4B0.91 (2)C16—H16A0.9300
C19—C201.413 (2)C15—H15A0.9300
C9—N2—N1106.96 (14)C22—C21—H21A119.3
C7—N1—N2111.14 (15)C20—C21—H21A119.3
C7—N1—C6129.56 (14)C2—C3—C4118.88 (19)
N2—N1—C6119.30 (14)C2—C3—H3B120.6
C11—N3—C18130.80 (15)C4—C3—H3B120.6
C11—N3—H3A114.6N2—C9—C8111.09 (16)
C18—N3—H3A114.6N2—C9—C10118.87 (16)
C19—C18—N3123.89 (15)C8—C9—C10129.78 (17)
C19—C18—C27120.33 (16)C14—C13—C12120.25 (19)
N3—C18—C27115.64 (15)C14—C13—H13A119.9
C27—C26—C25122.37 (16)C12—C13—H13A119.9
C27—C26—H26A118.8C2—C1—C6120.25 (18)
C25—C26—H26A118.8C2—C1—H1A119.9
C26—C27—N4122.76 (17)C6—C1—H1A119.9
C26—C27—C18118.27 (16)C24—C23—C22121.09 (19)
N4—C27—C18118.84 (16)C24—C23—H23A119.5
C24—C25—C26123.02 (17)C22—C23—H23A119.5
C24—C25—C20118.36 (17)C5—C4—C3121.06 (18)
C26—C25—C20118.61 (16)C5—C4—H4C119.5
C17—C12—C13118.74 (18)C3—C4—H4C119.5
C17—C12—C11121.35 (16)C23—C24—C25120.72 (19)
C13—C12—C11119.90 (16)C23—C24—H24A119.6
N3—C11—C8117.88 (16)C25—C24—H24A119.6
N3—C11—C12120.67 (15)C16—C17—C12120.53 (19)
C8—C11—C12121.44 (15)C16—C17—H17A119.7
C11—C8—C9131.77 (17)C12—C17—H17A119.7
C11—C8—C7122.58 (15)C9—C10—H10A109.5
C9—C8—C7105.55 (15)C9—C10—H10B109.5
C4—C5—C6120.14 (17)H10A—C10—H10B109.5
C4—C5—H5A119.9C9—C10—H10C109.5
C6—C5—H5A119.9H10A—C10—H10C109.5
C1—C6—C5118.70 (18)H10B—C10—H10C109.5
C1—C6—N1120.94 (16)C21—C22—C23119.4 (2)
C5—C6—N1120.37 (15)C21—C22—H22A120.3
O1—C7—N1125.71 (17)C23—C22—H22A120.3
O1—C7—C8129.36 (16)C3—C2—C1120.95 (19)
N1—C7—C8104.92 (14)C3—C2—H2B119.5
C27—N4—H4A117.6 (13)C1—C2—H2B119.5
C27—N4—H4B116.4 (14)C15—C14—C13120.2 (2)
H4A—N4—H4B112.3 (19)C15—C14—H14A119.9
C18—C19—C20121.69 (16)C13—C14—H14A119.9
C18—C19—H19A119.2C15—C16—C17120.2 (2)
C20—C19—H19A119.2C15—C16—H16A119.9
C21—C20—C19122.25 (17)C17—C16—H16A119.9
C21—C20—C25119.06 (16)C14—C15—C16120.1 (2)
C19—C20—C25118.69 (16)C14—C15—H15A120.0
C22—C21—C20121.36 (19)C16—C15—H15A120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.862.062.7196 (19)133
N4—H4A···N2i0.92 (2)2.21 (2)3.121 (2)169.8 (18)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC27H22N4O
Mr418.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.8052 (14), 18.041 (3), 13.2193 (18)
β (°) 110.797 (2)
V3)2186.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.25 × 0.24
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.976, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10878, 3886, 2629
Rint0.027
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.123, 1.07
No. of reflections3886
No. of parameters290
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.13

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.862.062.7196 (19)133.3
N4—H4A···N2i0.92 (2)2.21 (2)3.121 (2)169.8 (18)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The project was supported by the National Natural Science Foundation of China (program Nos. 21103135, 21073139), the Natural Science Basic Research Plan in Shaanxi Province of China (program No. 2011JQ2011) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (program No.12 J K0622).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHennig, L. & Mann, G. (1988). Z. Chem. 28, 364-365.  CrossRef CAS Google Scholar
First citationLu, R., Xia, H., Lü, X. & Zhao, S. (2011). Acta Cryst. E67, o2701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds