organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2695-o2696

1-[(4-Chloro­phen­yl)(phen­yl)meth­yl]piperazine-1,4-diium bis­­(tri­chloro­acetate)–tri­chloro­acetic acid (1/1)

aSchool of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China, bDepartment of Chemistry, Alva's Institute of Engineering & Technology, Shobhavana Campus, Mijar, Moodbidri 574 225, South Canara District, Karnataka, India, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Sugar Technology, University of Mysore, Sir. M.V. PG Center, Tubinakere 571 402, India, and eKey Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
*Correspondence e-mail: hongqili@dhu.edu.cn

(Received 17 June 2012; accepted 6 August 2012; online 11 August 2012)

In the title salt adduct, C17H21ClN22+·2C2Cl3O2·C2HCl3O2, the Cl atom of the dication is disordered over two positions in a 0.915 (3):0.085 (3) ratio. The Cl atoms in the trichloroacetate anions and trichloroacetic acid molecule are also disordered, with refined site-occupation factors of 0.59 (3):0.41 (3), 0.503 (12):0.417 (12) and 0.653 (12):0.347 (12). The piperazine ring adopts a chair conformation, with puckering parameters QT = 0.587 (3) Å, θ = 2.6 (2) and Φ 334 (6)°. In the crystal, neighbouring mol­ecules are linked by N—H⋯O, O—H⋯O, N—H⋯Cl, C—H⋯O and C—H⋯Cl hydrogen bonds, forming a three-dimensional network.

Related literature

For the biological activity of piperazine derivatives, see: Dinsmore et al. (2002[Dinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297-3312.]); Berkheij et al. (2005[Berkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369-2371.]); Humle & Cherrier (1999[Humle, C. & Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295-5299.]); Campbell et al. (1973[Campbell, H., Cline, W., Evans, M., Lloyd, J. & Peck, A. W. (1973). Eur. J. Clin. Pharmacol. 6, 170-176.]). For related structures, see: Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500-o501.]); Song et al. (2012[Song, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21ClN22+·2C2Cl3O2·C2HCl3O2

  • Mr = 776.93

  • Triclinic, [P \overline 1]

  • a = 9.746 (2) Å

  • b = 13.096 (3) Å

  • c = 13.725 (3) Å

  • α = 88.317 (3)°

  • β = 73.127 (3)°

  • γ = 77.169 (3)°

  • V = 1633.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 293 K

  • 0.27 × 0.22 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004)[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.790, Tmax = 0.875

  • 10010 measured reflections

  • 7039 independent reflections

  • 5186 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.04

  • 7039 reflections

  • 468 parameters

  • 38 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.91 1.78 2.685 (3) 172
O1—H1B⋯O6i 0.82 1.74 2.560 (4) 178
N2—H2A⋯Cl6Bii 0.90 2.74 3.299 (5) 121
N2—H2A⋯O4ii 0.90 1.84 2.716 (3) 162
N2—H2B⋯O5iii 0.90 1.84 2.710 (3) 161
C7—H7⋯O2iv 0.98 2.47 3.435 (4) 167
C9—H9⋯O3 0.93 2.39 3.270 (3) 157
C14—H14B⋯O6iii 0.97 2.42 3.323 (4) 156
C15—H15B⋯Cl7Av 0.97 2.79 3.526 (5) 133
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y, -z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The piperazine nucleus is capable of binding to multiple receptors with high affinity and therefore piperazine has been classified as a privileged structure (Dinsmore et al., 2002). They are found in biologically active compounds across a number of different therapeutic areas (Berkheij et al., 2005) such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Humle & Cherrier, 1999). 1-Benzylpiperazine was originally synthesized as a potential antihelminthic (Campbell et al., 1973) and these derivatives were found to possess excellent pharmacological activities such as vasodilator, hypotensive, antiviral activity and cerebral blood flow increasing actions, broad pharmacological action on central nerves system (CNS), especially on dopaminergic neurotransmission. In the course of our studies on the salts of piperazines (Jasinski et al., 2011; Song et al., 2012) and in view of the importance of piperazines, the paper reports the crystal and molecular structure of the title salt.

The piperazine ring in the title compound adopts a chair conformation [puckering parameters (Cremer & Pople, 1975) QT = 0.587 (3) Å, θ = 2.6 (2)° and Φ 334 (6)°]. In the crystal, molecules are connected via N—H···O, O—H···O, N—H···C, C—H···O and C—H···C hydrogen bonds forming a three dimensional network (Table 1, Fig. 2). Furthermore, C—H···π interactions help to contribute to the stabilization of the structure.

Related literature top

For the biological activity of piperazine derivatives, see: Dinsmore et al. (2002); Berkheij et al. (2005); Humle & Cherrier (1999); Campbell et al. (1973). For related structures, see: Jasinski et al. (2011); Song et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

1-((4-Chlorophenyl)(phenyl)methyl)piperazine (2.88 g, 0.01 mol) was dissolved in 10 ml of methanol and trichloroacetic acid (4.89 g, 0.03 mol) was also dissolved in 10 ml of methanol. Both the solutions were mixed and stirred in a beaker over a magnetic plate at 333 K for 30 minutes. The mixture was kept aside for a day at room temperature. The title compound was obtained by the slow evaporation of methanol (m.p: 409 K-411 K).

Refinement top

The hydroxyl H atom appeared in a difference map and was positioned geometrically and refined by using a riding model [O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O)]. The disordered H1C atom attached to C11 was refined with a restrained distance C—H = 0.93 (6) Å and Uiso(H) = 1.2Ueq(C). The rest H atoms bonded to C atoms were located geometrically, with C—H = 0.93–0.98 Å, and refined by using a riding model, with 1.2Ueq(C). The occupancies of the disordered chlorine atoms in three trichloroacetic acid moieties refined to 0.59 (3), 0.41 (3) [for Cl1A,B–Cl3A,B]; 0.503 (12), 0.417 (12) [for Cl4A,B–Cl6A,B] and 0.653 (12), 0.347 (12) [for Cl7A,B–Cl9A,B]. The chlorine atom in the 1-[(4-chlorophenyl)(phenyl)methyl]piperazinediium moiety is disordered on the two-symmetric C atoms of the two benzene rings with refined site-occupation factors of 0.915 (3), 0.085 (3). The disorder was refined using the commands DFIX and EADP.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecule of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. View of the packing and hydroegen bonding diagrams of the title compound along the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity. Only major components of the disorder parts are shown.
1-[(4-Chlorophenyl)(phenyl)methyl]piperazine-1,4-diium bis(trichloroacetate)– trichloroacetic acid (1/1) top
Crystal data top
C17H21ClN22+·2C2Cl3O2·C2HCl3O2Z = 2
Mr = 776.93F(000) = 784
Triclinic, P1Dx = 1.580 Mg m3
Hall symbol: -P 1Melting point = 409–411 K
a = 9.746 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.096 (3) ÅCell parameters from 3555 reflections
c = 13.725 (3) Åθ = 2.2–26.9°
α = 88.317 (3)°µ = 0.89 mm1
β = 73.127 (3)°T = 293 K
γ = 77.169 (3)°Plate, colourless
V = 1633.3 (6) Å30.27 × 0.22 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
7039 independent reflections
Radiation source: fine-focus sealed tube5186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 27.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1112
Tmin = 0.790, Tmax = 0.875k = 1611
10010 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.7913P]
where P = (Fo2 + 2Fc2)/3
7039 reflections(Δ/σ)max = 0.001
468 parametersΔρmax = 0.40 e Å3
38 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H21ClN22+·2C2Cl3O2·C2HCl3O2γ = 77.169 (3)°
Mr = 776.93V = 1633.3 (6) Å3
Triclinic, P1Z = 2
a = 9.746 (2) ÅMo Kα radiation
b = 13.096 (3) ŵ = 0.89 mm1
c = 13.725 (3) ÅT = 293 K
α = 88.317 (3)°0.27 × 0.22 × 0.15 mm
β = 73.127 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
7039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5186 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.875Rint = 0.012
10010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04738 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.40 e Å3
7039 reflectionsΔρmin = 0.33 e Å3
468 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1C0.31840 (14)0.07626 (8)0.67451 (7)0.1062 (4)0.915 (3)
N10.66237 (18)0.23191 (14)0.21015 (13)0.0366 (5)
N20.7247 (2)0.14402 (17)0.00697 (14)0.0500 (6)
C10.3636 (3)0.2436 (2)0.42747 (18)0.0496 (8)
C20.3041 (3)0.1922 (2)0.5133 (2)0.0623 (10)
C30.3952 (4)0.1382 (2)0.5661 (2)0.0614 (9)
C40.5441 (4)0.1344 (2)0.5345 (2)0.0672 (10)
C50.6024 (3)0.1857 (2)0.4488 (2)0.0545 (8)
C60.5126 (2)0.24114 (17)0.39409 (16)0.0391 (6)
C70.5689 (2)0.30362 (17)0.30255 (16)0.0386 (6)
C80.6491 (3)0.38233 (17)0.32521 (16)0.0417 (7)
C90.7969 (3)0.3582 (2)0.3198 (2)0.0544 (8)
C100.8610 (3)0.4331 (2)0.3469 (2)0.0643 (10)
C110.7786 (4)0.5318 (3)0.3801 (2)0.0690 (11)
C120.6326 (4)0.5560 (2)0.3859 (2)0.0671 (10)
C130.5666 (3)0.48247 (19)0.35811 (19)0.0532 (8)
C140.7043 (3)0.2947 (2)0.11745 (17)0.0472 (8)
C150.8003 (3)0.2238 (2)0.02683 (18)0.0555 (9)
C160.6808 (3)0.08220 (19)0.09830 (18)0.0478 (8)
C170.5831 (2)0.15348 (18)0.18780 (17)0.0416 (7)
Cl1D0.8762 (17)0.5906 (10)0.4249 (12)0.123 (6)0.085 (3)
Cl1B0.6717 (5)0.2921 (6)0.7725 (6)0.0945 (12)0.59 (3)
Cl2B0.9718 (4)0.2936 (7)0.7561 (5)0.0923 (13)0.59 (3)
Cl3B0.8561 (7)0.3498 (10)0.5860 (4)0.129 (2)0.59 (3)
O10.7348 (4)0.46222 (19)0.8666 (2)0.0975 (10)
O20.7545 (3)0.5423 (2)0.7197 (2)0.1045 (11)
C180.7641 (3)0.4663 (3)0.7690 (3)0.0725 (11)
C190.8137 (3)0.3552 (3)0.7202 (2)0.0700 (10)
Cl1A0.6634 (9)0.2930 (7)0.7508 (14)0.121 (3)0.41 (3)
Cl2A0.9600 (10)0.2728 (12)0.7519 (6)0.116 (2)0.41 (3)
Cl3A0.8603 (7)0.3771 (15)0.5911 (6)0.104 (3)0.41 (3)
Cl4B1.1554 (7)0.1768 (5)0.2833 (10)0.163 (3)0.503 (12)
Cl5B1.0936 (7)0.0153 (9)0.3672 (4)0.146 (3)0.503 (12)
Cl6B1.3218 (4)0.0180 (4)0.1815 (4)0.0598 (10)0.503 (12)
O30.90549 (18)0.11171 (14)0.24280 (14)0.0588 (6)
O41.05566 (19)0.00573 (16)0.12532 (14)0.0631 (7)
C201.0244 (2)0.05258 (18)0.19980 (17)0.0406 (7)
C211.1464 (3)0.0551 (2)0.25207 (19)0.0537 (8)
Cl4A1.1704 (3)0.1899 (2)0.2413 (3)0.0618 (8)0.497 (12)
Cl5A1.0917 (8)0.0294 (5)0.3806 (3)0.1017 (17)0.497 (12)
Cl6A1.3180 (5)0.0238 (5)0.1946 (6)0.0861 (16)0.497 (12)
Cl7A0.8144 (3)0.8071 (2)0.0564 (3)0.0937 (8)0.653 (12)
Cl8A0.7410 (4)0.6177 (5)0.1419 (3)0.1097 (12)0.653 (12)
Cl9A0.9218 (3)0.6188 (3)0.0657 (2)0.0773 (8)0.653 (12)
O50.5411 (2)0.79751 (16)0.02795 (15)0.0696 (7)
O60.6096 (3)0.6471 (2)0.0567 (2)0.1044 (13)
C220.6253 (3)0.7137 (2)0.0029 (2)0.0565 (9)
C230.7680 (3)0.6882 (2)0.0312 (2)0.0588 (9)
Cl7B0.7846 (14)0.7855 (7)0.1020 (12)0.155 (4)0.347 (12)
Cl8B0.7349 (10)0.5792 (8)0.1111 (9)0.134 (3)0.347 (12)
Cl9B0.9191 (8)0.6431 (10)0.0692 (6)0.141 (3)0.347 (12)
H10.302300.280600.391400.0590*
H1A0.746100.196600.223600.0440*
H1C0.812 (7)0.587 (4)0.400 (5)0.1680*0.915 (3)
H20.203800.194200.534800.0750*
H2A0.785100.100800.045200.0600*
H2B0.644300.175800.011000.0600*
H40.604800.097500.571000.0810*
H50.702800.183200.427300.0650*
H70.482500.343700.284700.0460*
H90.853500.291400.297900.0650*
H100.960500.416400.342600.0770*
H120.576700.622800.408700.0810*
H130.467500.500200.361500.0640*
H14A0.757000.344900.130600.0570*
H14B0.616200.333200.102300.0570*
H15A0.823600.265500.032800.0670*
H15B0.891800.189400.039900.0670*
H16A0.768000.043700.114800.0570*
H16B0.628700.032000.084200.0570*
H17A0.494000.189800.172500.0500*
H17B0.555500.112100.247200.0500*
H1D0.356400.104000.623400.1680*0.085 (3)
H1B0.694700.520900.892600.1460*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1C0.1343 (10)0.0734 (6)0.0679 (6)0.0027 (6)0.0188 (6)0.0294 (5)
N10.0324 (9)0.0402 (10)0.0346 (9)0.0041 (7)0.0085 (7)0.0037 (8)
N20.0382 (10)0.0655 (13)0.0387 (10)0.0035 (9)0.0094 (8)0.0153 (10)
C10.0481 (13)0.0562 (15)0.0428 (13)0.0120 (11)0.0102 (11)0.0012 (11)
C20.0619 (17)0.0661 (18)0.0532 (16)0.0233 (14)0.0007 (13)0.0032 (14)
C30.082 (2)0.0423 (14)0.0446 (14)0.0083 (13)0.0010 (13)0.0017 (11)
C40.080 (2)0.0580 (17)0.0522 (16)0.0059 (15)0.0186 (15)0.0086 (13)
C50.0497 (14)0.0539 (15)0.0510 (14)0.0012 (11)0.0103 (11)0.0011 (12)
C60.0423 (11)0.0369 (11)0.0340 (11)0.0053 (9)0.0068 (9)0.0072 (9)
C70.0366 (11)0.0367 (11)0.0367 (11)0.0004 (9)0.0075 (9)0.0056 (9)
C80.0485 (13)0.0367 (12)0.0354 (11)0.0076 (10)0.0065 (9)0.0036 (9)
C90.0510 (14)0.0475 (14)0.0624 (16)0.0082 (11)0.0136 (12)0.0141 (12)
C100.0616 (17)0.0729 (19)0.0616 (17)0.0269 (15)0.0128 (14)0.0095 (15)
C110.088 (2)0.0628 (19)0.0562 (17)0.0337 (17)0.0069 (15)0.0114 (14)
C120.092 (2)0.0397 (14)0.0586 (17)0.0133 (14)0.0047 (15)0.0111 (12)
C130.0621 (15)0.0418 (13)0.0460 (14)0.0038 (11)0.0060 (12)0.0042 (11)
C140.0481 (13)0.0535 (14)0.0389 (12)0.0147 (11)0.0083 (10)0.0018 (11)
C150.0471 (14)0.0763 (18)0.0388 (13)0.0162 (13)0.0034 (11)0.0066 (12)
C160.0431 (12)0.0468 (13)0.0516 (14)0.0019 (10)0.0155 (11)0.0127 (11)
C170.0404 (11)0.0413 (12)0.0419 (12)0.0070 (9)0.0110 (9)0.0054 (10)
Cl1D0.138 (13)0.084 (8)0.122 (11)0.057 (8)0.028 (9)0.043 (8)
Cl1B0.087 (2)0.092 (2)0.103 (2)0.0406 (17)0.0098 (14)0.0010 (15)
Cl2B0.0502 (18)0.125 (3)0.080 (2)0.010 (2)0.0111 (14)0.039 (2)
Cl3B0.166 (5)0.130 (4)0.0581 (17)0.026 (3)0.0279 (19)0.0032 (17)
O10.128 (2)0.0724 (16)0.0876 (18)0.0050 (15)0.0374 (16)0.0014 (13)
O20.1013 (19)0.0807 (17)0.136 (2)0.0134 (14)0.0510 (17)0.0464 (17)
C180.0613 (18)0.073 (2)0.089 (2)0.0147 (15)0.0330 (17)0.0250 (18)
C190.0590 (17)0.078 (2)0.0604 (17)0.0002 (15)0.0106 (14)0.0138 (15)
Cl1A0.121 (4)0.069 (3)0.162 (8)0.018 (3)0.027 (4)0.015 (3)
Cl2A0.114 (5)0.116 (4)0.061 (3)0.062 (4)0.003 (3)0.007 (3)
Cl3A0.083 (3)0.146 (7)0.064 (3)0.000 (3)0.0147 (18)0.027 (3)
Cl4B0.124 (3)0.115 (3)0.274 (7)0.028 (2)0.125 (4)0.117 (3)
Cl5B0.096 (3)0.252 (8)0.0563 (17)0.034 (4)0.0272 (15)0.028 (3)
Cl6B0.0251 (13)0.075 (2)0.0773 (16)0.0025 (13)0.0156 (11)0.0275 (15)
O30.0395 (9)0.0604 (11)0.0696 (12)0.0093 (8)0.0186 (8)0.0206 (9)
O40.0446 (9)0.0845 (14)0.0543 (11)0.0062 (9)0.0178 (8)0.0291 (10)
C200.0333 (11)0.0433 (12)0.0435 (12)0.0024 (9)0.0130 (9)0.0005 (10)
C210.0441 (13)0.0605 (16)0.0550 (15)0.0020 (11)0.0213 (11)0.0107 (12)
Cl4A0.0429 (12)0.0478 (11)0.0974 (18)0.0109 (7)0.0229 (11)0.0082 (12)
Cl5A0.102 (3)0.165 (4)0.0475 (15)0.038 (3)0.0323 (15)0.0251 (18)
Cl6A0.060 (2)0.075 (2)0.121 (4)0.0152 (18)0.045 (2)0.003 (2)
Cl7A0.0516 (10)0.0767 (12)0.146 (2)0.0045 (8)0.0225 (13)0.0295 (13)
Cl8A0.0871 (13)0.160 (3)0.0825 (15)0.0239 (17)0.0334 (12)0.0591 (18)
Cl9A0.0466 (12)0.0750 (12)0.0865 (15)0.0172 (9)0.0047 (9)0.0106 (9)
O50.0487 (10)0.0748 (13)0.0735 (13)0.0149 (10)0.0203 (9)0.0066 (11)
O60.0810 (16)0.0876 (17)0.154 (3)0.0089 (13)0.0651 (17)0.0407 (17)
C220.0419 (13)0.0611 (17)0.0591 (16)0.0008 (12)0.0131 (12)0.0056 (13)
C230.0454 (14)0.0588 (16)0.0644 (17)0.0045 (12)0.0164 (12)0.0032 (13)
Cl7B0.156 (7)0.118 (5)0.214 (9)0.051 (4)0.144 (6)0.083 (5)
Cl8B0.139 (4)0.125 (5)0.112 (5)0.020 (3)0.039 (3)0.058 (4)
Cl9B0.053 (3)0.189 (7)0.167 (6)0.035 (4)0.000 (3)0.060 (5)
Geometric parameters (Å, º) top
Cl1C—C31.728 (3)C2—C31.370 (4)
Cl1D—C111.603 (17)C3—C41.379 (6)
Cl1A—C191.772 (11)C4—C51.376 (4)
Cl1B—C191.735 (7)C5—C61.387 (4)
Cl2A—C191.742 (13)C6—C71.513 (3)
Cl2B—C191.770 (7)C7—C81.513 (3)
Cl3A—C191.729 (9)C8—C91.385 (4)
Cl3B—C191.767 (6)C8—C131.388 (3)
Cl4A—C211.828 (4)C9—C101.385 (4)
Cl4B—C211.690 (8)C10—C111.373 (5)
Cl5A—C211.735 (5)C11—C121.366 (6)
Cl5B—C211.807 (8)C12—C131.388 (4)
Cl6A—C211.732 (7)C14—C151.514 (3)
Cl6B—C211.773 (6)C16—C171.510 (3)
Cl7A—C231.784 (4)C1—H10.9300
Cl7B—C231.688 (13)C2—H20.9300
Cl8A—C231.739 (5)C3—H1D0.9200
Cl8B—C231.803 (11)C4—H40.9300
Cl9A—C231.775 (4)C5—H50.9300
Cl9B—C231.703 (9)C7—H70.9800
O1—C181.288 (5)C9—H90.9300
O2—C181.189 (5)C10—H100.9300
O1—H1B0.8200C11—H1C0.93 (6)
O3—C201.234 (3)C12—H120.9300
O4—C201.218 (3)C13—H130.9300
O5—C221.218 (3)C14—H14B0.9700
O6—C221.222 (4)C14—H14A0.9700
N1—C171.502 (3)C15—H15B0.9700
N1—C141.499 (3)C15—H15A0.9700
N1—C71.530 (3)C16—H16A0.9700
N2—C161.481 (3)C16—H16B0.9700
N2—C151.478 (4)C17—H17B0.9700
N1—H1A0.9100C17—H17A0.9700
N2—H2B0.9000C18—C191.535 (5)
N2—H2A0.9000C20—C211.563 (4)
C1—C21.381 (4)C22—C231.558 (4)
C1—C61.383 (4)
C18—O1—H1B110.00C15—C14—H14A109.00
C7—N1—C17111.81 (16)C15—C14—H14B110.00
C14—N1—C17108.77 (17)N1—C14—H14B110.00
C7—N1—C14110.75 (17)H14A—C14—H14B108.00
C15—N2—C16111.02 (19)N2—C15—H15B110.00
C17—N1—H1A109.00C14—C15—H15A109.00
C7—N1—H1A108.00C14—C15—H15B110.00
C14—N1—H1A108.00H15A—C15—H15B108.00
C16—N2—H2A109.00N2—C15—H15A110.00
C16—N2—H2B109.00N2—C16—H16B110.00
H2A—N2—H2B108.00C17—C16—H16A110.00
C15—N2—H2B109.00N2—C16—H16A110.00
C15—N2—H2A109.00H16A—C16—H16B108.00
C2—C1—C6121.3 (3)C17—C16—H16B110.00
C1—C2—C3119.0 (3)N1—C17—H17A110.00
C2—C3—C4121.0 (3)N1—C17—H17B110.00
Cl1C—C3—C4120.7 (2)C16—C17—H17B110.00
Cl1C—C3—C2118.3 (3)H17A—C17—H17B108.00
C3—C4—C5119.6 (3)C16—C17—H17A110.00
C4—C5—C6120.5 (3)O1—C18—C19110.2 (3)
C1—C6—C5118.6 (2)O2—C18—C19122.1 (3)
C1—C6—C7118.4 (2)O1—C18—O2127.6 (4)
C5—C6—C7123.0 (2)Cl1B—C19—Cl2B110.1 (4)
N1—C7—C6111.45 (17)Cl1B—C19—Cl3B109.5 (4)
C6—C7—C8112.71 (17)Cl2B—C19—Cl3B109.3 (4)
N1—C7—C8111.75 (17)Cl2B—C19—C18106.4 (3)
C7—C8—C9123.6 (2)Cl1B—C19—C18106.7 (3)
C9—C8—C13119.0 (2)Cl1A—C19—C18109.9 (5)
C7—C8—C13117.3 (3)Cl2A—C19—C18116.1 (5)
C8—C9—C10120.3 (2)Cl3A—C19—C18103.2 (7)
C9—C10—C11120.4 (3)Cl1A—C19—Cl2A108.3 (6)
Cl1D—C11—C12131.9 (6)Cl1A—C19—Cl3A108.3 (7)
Cl1D—C11—C10107.6 (6)Cl2A—C19—Cl3A110.7 (5)
C10—C11—C12119.5 (3)Cl3B—C19—C18114.8 (5)
C11—C12—C13121.0 (3)O3—C20—O4128.7 (2)
C8—C13—C12119.8 (3)O3—C20—C21113.0 (2)
N1—C14—C15110.6 (2)O4—C20—C21118.3 (2)
N2—C15—C14110.7 (2)Cl4B—C21—Cl5B109.1 (5)
N2—C16—C17110.42 (19)Cl4B—C21—Cl6B111.0 (4)
N1—C17—C16110.10 (19)Cl4B—C21—C20114.3 (3)
C2—C1—H1119.00Cl5B—C21—Cl6B105.5 (4)
C6—C1—H1119.00Cl5B—C21—C20103.6 (3)
C3—C2—H2121.00Cl6B—C21—C20112.6 (2)
C1—C2—H2120.00Cl4A—C21—C20104.9 (2)
C2—C3—H1D119.00Cl5A—C21—C20112.1 (3)
C4—C3—H1D120.00Cl6A—C21—C20115.9 (3)
C5—C4—H4120.00Cl4A—C21—Cl5A107.8 (3)
C3—C4—H4120.00Cl4A—C21—Cl6A106.1 (3)
C4—C5—H5120.00Cl5A—C21—Cl6A109.6 (4)
C6—C5—H5120.00O5—C22—O6127.3 (3)
N1—C7—H7107.00O5—C22—C23116.3 (2)
C6—C7—H7107.00O6—C22—C23116.5 (3)
C8—C7—H7107.00Cl7A—C23—Cl8A108.5 (3)
C10—C9—H9120.00Cl7A—C23—Cl9A105.8 (2)
C8—C9—H9120.00Cl7A—C23—C22109.7 (2)
C9—C10—H10120.00Cl8A—C23—Cl9A110.3 (3)
C11—C10—H10120.00Cl8A—C23—C22110.3 (2)
C12—C11—H1C114 (4)Cl9A—C23—C22112.1 (2)
C10—C11—H1C127 (4)Cl7B—C23—C22113.7 (5)
C11—C12—H12119.00Cl8B—C23—C22100.1 (4)
C13—C12—H12120.00Cl9B—C23—C22111.2 (3)
C12—C13—H13120.00Cl7B—C23—Cl8B108.9 (6)
C8—C13—H13120.00Cl7B—C23—Cl9B114.1 (6)
N1—C14—H14A110.00Cl8B—C23—Cl9B107.7 (6)
C17—N1—C14—C1558.3 (3)C9—C8—C13—C120.7 (4)
C14—N1—C7—C858.7 (2)C7—C8—C13—C12176.1 (2)
C17—N1—C7—C8179.79 (17)C13—C8—C9—C100.0 (4)
C14—N1—C17—C1659.2 (2)C7—C8—C9—C10176.6 (2)
C14—N1—C7—C6174.17 (19)C8—C9—C10—C110.5 (4)
C7—N1—C17—C16178.22 (18)C9—C10—C11—C120.3 (4)
C7—N1—C14—C15178.4 (2)C10—C11—C12—C130.4 (4)
C17—N1—C7—C652.7 (2)C11—C12—C13—C80.9 (4)
C16—N2—C15—C1456.4 (3)N1—C14—C15—N257.3 (3)
C15—N2—C16—C1757.4 (3)N2—C16—C17—N159.0 (3)
C2—C1—C6—C7177.0 (2)O1—C18—C19—Cl1B58.1 (4)
C6—C1—C2—C30.2 (4)O1—C18—C19—Cl2B59.4 (4)
C2—C1—C6—C50.1 (4)O1—C18—C19—Cl3B179.6 (4)
C1—C2—C3—Cl1C178.9 (2)O2—C18—C19—Cl1B121.0 (4)
C1—C2—C3—C40.2 (4)O2—C18—C19—Cl2B121.5 (4)
Cl1C—C3—C4—C5179.0 (2)O2—C18—C19—Cl3B0.4 (5)
C2—C3—C4—C50.1 (4)O3—C20—C21—Cl4B45.2 (5)
C3—C4—C5—C60.0 (4)O3—C20—C21—Cl5B73.4 (4)
C4—C5—C6—C10.1 (4)O3—C20—C21—Cl6B173.0 (2)
C4—C5—C6—C7176.8 (2)O4—C20—C21—Cl4B135.6 (5)
C5—C6—C7—C854.2 (3)O4—C20—C21—Cl5B105.8 (4)
C1—C6—C7—C8122.6 (2)O4—C20—C21—Cl6B7.7 (3)
C5—C6—C7—N172.4 (3)O5—C22—C23—Cl7A26.7 (3)
C1—C6—C7—N1110.8 (2)O5—C22—C23—Cl8A92.7 (3)
C6—C7—C8—C985.5 (3)O5—C22—C23—Cl9A144.0 (2)
N1—C7—C8—C940.9 (3)O6—C22—C23—Cl7A154.0 (3)
N1—C7—C8—C13142.5 (2)O6—C22—C23—Cl8A86.7 (3)
C6—C7—C8—C1391.1 (2)O6—C22—C23—Cl9A36.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.911.782.685 (3)172
O1—H1B···O6i0.821.742.560 (4)178
N2—H2A···Cl6Bii0.902.743.299 (5)121
N2—H2A···O4ii0.901.842.716 (3)162
N2—H2B···O5iii0.901.842.710 (3)161
C7—H7···O2iv0.982.473.435 (4)167
C9—H9···O30.932.393.270 (3)157
C14—H14B···O6iii0.972.423.323 (4)156
C15—H15B···Cl7Av0.972.793.526 (5)133
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H21ClN22+·2C2Cl3O2·C2HCl3O2
Mr776.93
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.746 (2), 13.096 (3), 13.725 (3)
α, β, γ (°)88.317 (3), 73.127 (3), 77.169 (3)
V3)1633.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.27 × 0.22 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.790, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
10010, 7039, 5186
Rint0.012
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.04
No. of reflections7039
No. of parameters468
No. of restraints38
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.911.782.685 (3)172
O1—H1B···O6i0.821.742.560 (4)178
N2—H2A···Cl6Bii0.902.743.299 (5)121
N2—H2A···O4ii0.901.842.716 (3)162
N2—H2B···O5iii0.901.842.710 (3)161
C7—H7···O2iv0.982.473.435 (4)167
C9—H9···O30.932.393.270 (3)157
C14—H14B···O6iii0.972.423.323 (4)156
C15—H15B···Cl7Av0.972.793.526 (5)133
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+2, y+1, z.
 

Acknowledgements

This work was supported in part by the Council for the Chemical Sciences of the Netherlands Organization for Scientific Research. YS and HL acknowledge financial support by the Fundamental Research Funds for the Central Universities.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBerkheij, M., van der Sluis, L., Sewing, C., den Boer, D. J., Terpstra, J. W., Heimstra, H., Bakker, W. I. I., van den Hoogen Band, A. & van Maarseveen, J. H. (2005). Tetrahedron, 46, 2369–2371.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, H., Cline, W., Evans, M., Lloyd, J. & Peck, A. W. (1973). Eur. J. Clin. Pharmacol. 6, 170–176.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDinsmore, C. J. & Beshore, D. C. (2002). Tetrahedron, 58, 3297–3312.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHumle, C. & Cherrier, M. P. (1999). Tetrahedron Lett. 40, 5295–5299.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500–o501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Chidan Kumar, C. S., Nethravathi, G. B., Naveen, S. & Li, H. (2012). Acta Cryst. E68, o1747.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2695-o2696
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds