organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy­benzamide 1,4-dioxane hemisolvate

aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: desiraju@sscu.iisc.ernet.in

(Received 6 July 2012; accepted 2 August 2012; online 8 August 2012)

The asymmetric unit of the title compound, C7H7NO2·0.5C4H8O2, is composed of one 4-hy­droxy­benzamide mol­ecule and half of a 1,4-dioxane mol­ecule. The complete dioxin molecule is generated by crystallographic inversion symmetry. The crystal has an extensive system of hydrogen bonds, in which the three donor H atoms are fully utilized: these result in amide–amide homodimers, and N—H⋯O(dioxane) and O—H⋯O(amide) links.

Related literature

For the structure and properties of 4-hy­droxy­benzamide and its hydrate, see: Kashino et al. (1991[Kashino, S., Tateno, S., Tanabe, H., Haisa, M. & Katsube, Y. (1991). Acta Cryst. C47, 2236-2239.]); Perlovich et al. (2007[Perlovich, G. L., Hansen, L. K., Volkova, T. V., Mirza, S., Manin, A. N. & Bauer-Brandl, A. (2007). Cryst. Growth Des. 7, 2643-2648.]); Hansen et al. (2007[Hansen, L. K., Perlovich, G. L. & Bauer-Brandl, A. (2007). Acta Cryst. E63, o2362.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO2·0.5C4H8O2

  • Mr = 181.19

  • Monoclinic, P 21 /c

  • a = 5.4062 (15) Å

  • b = 14.530 (3) Å

  • c = 12.027 (2) Å

  • β = 113.117 (10)°

  • V = 868.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury375R (2x2 bin mode) diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.969, Tmax = 0.979

  • 9077 measured reflections

  • 1987 independent reflections

  • 1841 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.01

  • 1987 reflections

  • 162 parameters

  • All H-atom parameters refined

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H5⋯O1i 0.893 (18) 2.050 (18) 2.9349 (16) 170.8 (16)
N1—H6⋯O3ii 0.895 (19) 2.057 (19) 2.9171 (16) 161 (2)
O2—H9⋯O1iii 0.909 (19) 1.78 (2) 2.6808 (14) 173 (2)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x, y+1, z; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydroxybenzamides and their derivates are extensively used as starting materials in the synthesis of fine chemicals and agrochemicals (Perlovich et al., 2007). Their physicochemical properties are recurrently studied in environmental and biological systems in descriptions of transport and metabolism. The molecular structure of the title compound is shown in Figure 1. In the solvated crystal, molecules are linked by amide···amide homodimers and other O—H···O and N—H···O synthons. The dioxane molecules form a channel along the a axis. Their position in the channel is stabilized by N—H···O hydrogen-bonded synthons (Figure 2).

Related literature top

For the structure and properties of 4-hydroxybenzamide and its hydrate, see: Kashino et al. (1991); Perlovich et al. (2007); Hansen et al. (2007).

Experimental top

Crystals of the title compound were obtained by slow evaporation of a saturated solution of 4-hydroxybenzamide in 1,4-dioxane at ambient temperature. Good diffraction quality crystals were obtained after five days.

Refinement top

All hydrogen atoms were located from difference Fourier maps and refined isotropically.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of title the compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. O—H···O, N—H···O supramolecular synthons and amide···amide homodimers in the crystal structure.
4-Hydroxybenzamide 1,4-dioxane hemisolvate top
Crystal data top
C7H7NO2·0.5C4H8O2F(000) = 384
Mr = 181.19Dx = 1.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2599 reflections
a = 5.4062 (15) Åθ = 3.4–27.5°
b = 14.530 (3) ŵ = 0.11 mm1
c = 12.027 (2) ÅT = 150 K
β = 113.117 (10)°Block, colourless
V = 868.9 (3) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
1987 independent reflections
Radiation source: fine-focus sealed tube1841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
profile data from ω–scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 77
Tmin = 0.969, Tmax = 0.979k = 1818
9077 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.111All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.059P)2 + 0.2987P]
where P = (Fo2 + 2Fc2)/3
1987 reflections(Δ/σ)max = 0.028
162 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C7H7NO2·0.5C4H8O2V = 868.9 (3) Å3
Mr = 181.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.4062 (15) ŵ = 0.11 mm1
b = 14.530 (3) ÅT = 150 K
c = 12.027 (2) Å0.30 × 0.30 × 0.20 mm
β = 113.117 (10)°
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
1987 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1841 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.064
9077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.01Δρmax = 0.28 e Å3
1987 reflectionsΔρmin = 0.22 e Å3
162 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80614 (16)0.92851 (6)1.04228 (7)0.0225 (2)
O21.18374 (17)0.64369 (6)0.74199 (8)0.0260 (3)
N10.5317 (2)0.97339 (7)0.85611 (9)0.0239 (3)
C10.7279 (2)0.92062 (7)0.93018 (10)0.0188 (3)
C20.8467 (2)0.85033 (7)0.87597 (10)0.0188 (3)
C30.6951 (2)0.80863 (8)0.76593 (10)0.0223 (3)
C40.8032 (2)0.73933 (8)0.71972 (10)0.0221 (3)
C51.0678 (2)0.71106 (8)0.78283 (10)0.0198 (3)
C61.2219 (2)0.75283 (8)0.89296 (10)0.0233 (3)
C71.1109 (2)0.82067 (8)0.93947 (10)0.0222 (3)
O30.24469 (18)0.02513 (7)0.59392 (8)0.0324 (3)
C80.0104 (3)0.04862 (11)0.40326 (13)0.0355 (4)
C90.2203 (3)0.05905 (9)0.52870 (12)0.0294 (4)
H50.442 (3)1.0084 (12)0.8887 (15)0.033 (4)*
H60.481 (4)0.9703 (13)0.7759 (17)0.043 (5)*
H71.217 (3)0.8496 (11)1.0151 (15)0.032 (4)*
H81.405 (3)0.7330 (11)0.9349 (14)0.032 (4)*
H91.060 (4)0.6223 (13)0.6709 (17)0.047 (5)*
H100.693 (3)0.7102 (11)0.6426 (14)0.029 (4)*
H110.513 (3)0.8257 (11)0.7213 (14)0.030 (4)*
H10.014 (4)0.1061 (14)0.3610 (17)0.052 (5)*
H20.071 (4)0.0023 (14)0.3589 (16)0.044 (5)*
H30.173 (3)0.1079 (13)0.5718 (15)0.039 (4)*
H40.402 (3)0.0711 (11)0.5297 (15)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0245 (4)0.0243 (4)0.0172 (4)0.0054 (3)0.0067 (3)0.0014 (3)
O20.0231 (4)0.0265 (5)0.0249 (5)0.0029 (3)0.0056 (3)0.0086 (3)
N10.0250 (5)0.0264 (5)0.0184 (5)0.0079 (4)0.0066 (4)0.0017 (4)
C10.0186 (5)0.0185 (5)0.0189 (5)0.0008 (4)0.0071 (4)0.0014 (4)
C20.0201 (5)0.0179 (5)0.0187 (5)0.0002 (4)0.0078 (4)0.0010 (4)
C30.0180 (5)0.0255 (6)0.0197 (5)0.0020 (4)0.0035 (4)0.0002 (4)
C40.0207 (5)0.0242 (6)0.0182 (5)0.0010 (4)0.0041 (4)0.0030 (4)
C50.0209 (5)0.0181 (5)0.0207 (5)0.0009 (4)0.0085 (4)0.0016 (4)
C60.0171 (5)0.0253 (6)0.0234 (6)0.0017 (4)0.0035 (4)0.0037 (4)
C70.0198 (5)0.0236 (6)0.0195 (5)0.0004 (4)0.0038 (4)0.0040 (4)
O30.0234 (5)0.0407 (6)0.0269 (5)0.0015 (4)0.0033 (4)0.0110 (4)
C80.0300 (7)0.0439 (8)0.0309 (7)0.0002 (6)0.0103 (5)0.0147 (6)
C90.0267 (6)0.0254 (6)0.0347 (7)0.0032 (5)0.0106 (5)0.0012 (5)
Geometric parameters (Å, º) top
O1—C11.2498 (14)C4—C51.3923 (17)
O2—C51.3543 (15)C5—C61.3965 (16)
O2—H90.909 (19)C6—C71.3814 (17)
O3—C91.4309 (17)C3—H110.951 (17)
O3—C8i1.434 (2)C4—H100.980 (16)
N1—C11.3284 (16)C6—H80.962 (17)
N1—H50.893 (18)C7—H70.961 (17)
N1—H60.895 (19)C8—C91.498 (2)
C1—C21.4864 (16)C8—H10.96 (2)
C2—C71.3973 (17)C8—H21.04 (2)
C2—C31.3924 (16)C9—H30.971 (18)
C3—C41.3854 (17)C9—H40.993 (18)
O1···C5ii3.3571 (17)C9···H4xiv3.060 (17)
O1···N1iii2.9349 (16)C9···H6vi3.033 (19)
O1···C1iv3.2567 (17)H1···C3xii2.98 (2)
O1···O2ii2.6808 (14)H1···C4xii2.86 (2)
O1···C4ii3.2448 (17)H2···H3i2.38 (3)
O2···O1v2.6808 (14)H2···O2xv2.69 (2)
O3···O3i2.8184 (16)H3···H2i2.38 (3)
O3···N1vi2.9171 (16)H3···C5xvi2.964 (18)
O1···H72.632 (17)H4···C9xiv3.060 (17)
O1···H5iii2.050 (18)H4···H8xvii2.54 (2)
O1···H10ii2.544 (16)H4···H4xiv2.55 (2)
O1···H9ii1.78 (2)H5···C1iii2.868 (17)
O2···H2vii2.69 (2)H5···H5iii2.51 (2)
O2···H7v2.806 (17)H5···O1iii2.050 (18)
O3···H11vi2.721 (16)H6···C32.64 (2)
O3···H6vi2.057 (19)H6···C9ix3.033 (19)
N1···C8viii3.353 (2)H6···H112.23 (2)
N1···O3ix2.9171 (16)H6···C8viii2.70 (2)
N1···O1iii2.9349 (16)H6···O3ix2.057 (19)
N1···H112.668 (16)H7···O12.632 (17)
C1···O1iv3.2567 (17)H7···O2ii2.806 (17)
C1···C1iv3.5941 (19)H7···H10xviii2.58 (2)
C1···C6x3.5589 (19)H7···H9ii2.38 (3)
C3···C6x3.5503 (19)H8···H4xix2.54 (2)
C4···O1v3.2448 (17)H8···H10xviii2.51 (2)
C5···O1v3.3571 (17)H9···O1v1.78 (2)
C6···C1xi3.5589 (19)H9···H102.27 (3)
C6···C3xi3.5503 (19)H9···H7v2.38 (3)
C8···N1viii3.353 (2)H9···C1v2.813 (19)
C1···H5iii2.868 (17)H9···C7v3.02 (2)
C1···H9ii2.813 (19)H10···H7xx2.58 (2)
C3···H1xii2.98 (2)H10···H8xx2.51 (2)
C3···H62.64 (2)H10···H92.27 (3)
C4···H1xii2.86 (2)H10···O1v2.544 (16)
C5···H3xiii2.964 (18)H11···H62.23 (2)
C7···H9ii3.02 (2)H11···O3ix2.721 (16)
C8···H6viii2.70 (2)H11···N12.668 (16)
C5—O2—H9108.3 (14)C4—C3—H11118.0 (10)
C8i—O3—C9109.51 (11)C5—C4—H10120.1 (10)
H5—N1—H6120.9 (17)C3—C4—H10119.9 (10)
C1—N1—H5117.6 (11)C5—C6—H8118.4 (9)
C1—N1—H6121.3 (14)C7—C6—H8121.5 (9)
N1—C1—C2118.11 (10)C2—C7—H7119.0 (10)
O1—C1—N1120.89 (10)C6—C7—H7120.2 (10)
O1—C1—C2120.98 (10)O3i—C8—C9110.84 (12)
C1—C2—C7119.81 (10)O3—C9—C8109.64 (12)
C3—C2—C7118.63 (10)C9—C8—H1109.7 (12)
C1—C2—C3121.43 (10)C9—C8—H2108.8 (11)
C2—C3—C4120.93 (11)H1—C8—H2110.7 (16)
C3—C4—C5120.04 (10)O3i—C8—H1106.6 (14)
O2—C5—C4122.57 (10)O3i—C8—H2110.1 (12)
C4—C5—C6119.44 (11)O3—C9—H3108.6 (10)
O2—C5—C6118.00 (10)O3—C9—H4105.4 (9)
C5—C6—C7120.13 (11)C8—C9—H3111.0 (10)
C2—C7—C6120.80 (10)C8—C9—H4112.6 (10)
C2—C3—H11121.1 (10)H3—C9—H4109.4 (14)
C9—O3—C8i—C9i58.92 (14)C3—C2—C7—C61.44 (17)
C8i—O3—C9—C858.20 (15)C2—C3—C4—C50.65 (18)
N1—C1—C2—C330.42 (16)C3—C4—C5—C60.29 (17)
N1—C1—C2—C7153.69 (11)C3—C4—C5—O2180.00 (13)
O1—C1—C2—C727.88 (16)O2—C5—C6—C7178.77 (11)
O1—C1—C2—C3148.02 (11)C4—C5—C6—C70.93 (17)
C1—C2—C7—C6177.45 (10)C5—C6—C7—C21.81 (18)
C1—C2—C3—C4176.15 (11)O3i—C8—C9—O358.99 (16)
C7—C2—C3—C40.21 (17)
Symmetry codes: (i) x, y, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+2, z+2; (iv) x+2, y+2, z+2; (v) x, y+3/2, z1/2; (vi) x, y1, z; (vii) x+1, y+1/2, z+1/2; (viii) x, y+1, z+1; (ix) x, y+1, z; (x) x1, y, z; (xi) x+1, y, z; (xii) x+1, y+1, z+1; (xiii) x+1, y+1/2, z+3/2; (xiv) x+1, y, z+1; (xv) x1, y+1/2, z1/2; (xvi) x+1, y1/2, z+3/2; (xvii) x+2, y1/2, z+3/2; (xviii) x+1, y+3/2, z+1/2; (xix) x+2, y+1/2, z+3/2; (xx) x1, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O1iii0.893 (18)2.050 (18)2.9349 (16)170.8 (16)
N1—H6···O3ix0.895 (19)2.057 (19)2.9171 (16)161 (2)
O2—H9···O1v0.909 (19)1.78 (2)2.6808 (14)173 (2)
Symmetry codes: (iii) x+1, y+2, z+2; (v) x, y+3/2, z1/2; (ix) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC7H7NO2·0.5C4H8O2
Mr181.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)5.4062 (15), 14.530 (3), 12.027 (2)
β (°) 113.117 (10)
V3)868.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury375R (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
9077, 1987, 1841
Rint0.064
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.01
No. of reflections1987
No. of parameters162
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H5···O1i0.893 (18)2.050 (18)2.9349 (16)170.8 (16)
N1—H6···O3ii0.895 (19)2.057 (19)2.9171 (16)161 (2)
O2—H9···O1iii0.909 (19)1.78 (2)2.6808 (14)173 (2)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x, y+3/2, z1/2.
 

Acknowledgements

ST thanks UGC for a SRF and GRD thanks the DST for the award of a J. C. Bose fellowship. The authors thank the Rigaku Corporation, Tokyo, for their support through a generous loan of a Rigaku Mercury375R/M CCD (XtaLAB mini) diffractometer.

References

First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHansen, L. K., Perlovich, G. L. & Bauer-Brandl, A. (2007). Acta Cryst. E63, o2362.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKashino, S., Tateno, S., Tanabe, H., Haisa, M. & Katsube, Y. (1991). Acta Cryst. C47, 2236–2239.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerlovich, G. L., Hansen, L. K., Volkova, T. V., Mirza, S., Manin, A. N. & Bauer–Brandl, A. (2007). Cryst. Growth Des. 7, 2643–2648.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds