organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10-Benzyl-9-(4-eth­­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
*Correspondence e-mail: saisukanyashri@gmail.com

(Received 18 July 2012; accepted 16 August 2012; online 23 August 2012)

In the title compound, C32H37NO3, the central dihydro­pyridine ring adopts a nearly planar flattened-boat conformation, whereas both cyclo­hexenone rings adopt half-chair conformations. The mean and maximum deviations from the mean plane of the dihydro­pyridine ring are 0.1252 (9) and 0.188 (1) Å, respectively. The 4-eth­oxy­phenyl and phenyl rings form dihedral angles of 75.20 (4) and 82.14 (5)° with the dihydro­pyridine mean plane, respectively.

Related literature

For general background, see: Wysocka-Skrzela & Ledochowski (1976[Wysocka-Skrzela, B. & Ledochowski, A. (1976). Rocz. Chem. 50, 127-131.]); Nasim & Brychcy (1979[Nasim, A. & Brychcy, T. (1979). Mutat. Res. 65, 261-288.]); Thull & Testa (1994[Thull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307-2310.]); Reil et al. (1994[Reil, E., Soll, M., Masson, K. & Oettmeier, W. (1994). Biochem. Soc. Trans. 22, s62. Final page?]); Mandi et al. (1994[Mandi, Y., Regely, K., Ocsovszky, I., Barbe, J., Galy, J. P. & Molnar, J. (1994). Anticancer Res. 14, 2633-2636.]). For related structures, see: Abdelhamid et al. (2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]); Khalilov et al. (2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.]); Tang et al. (2008[Tang, Z., Liu, C., Wu, S. & Hao, W. (2008). Acta Cryst. E64, o1844.]); Tu et al. (2004[Tu, S. J., Miao, C. B., Gao, Y., Fang, F., Zhuang, Q. Y., Feng, Y. J. & Shi, D. Q. (2004). Synlett, 2, 255-258.]). For a related synthesis, see: Li et al. (2003[Li, Y., Wang, X., Shi, D., Du, B. & Tu, S. (2003). Acta Cryst. E59, o1446-o1448.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C32H37NO3

  • Mr = 483.63

  • Orthorhombic, P b c a

  • a = 16.8172 (7) Å

  • b = 15.7033 (7) Å

  • c = 19.908 (1) Å

  • V = 5257.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.986

  • 54483 measured reflections

  • 6422 independent reflections

  • 4439 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.03

  • 6422 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2/SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT/XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Acridine derivatives with a dihydropyridine unit belong to a special class of compounds, because of their wide range of applications in the pharmaceutical and dye industries. They are also well known as therapeutic agents (Wysocka-Skrzela & Ledochowski, 1976; Nasim & Brychcy,1979; Thull & Testa, 1994; Reil et al., 1994; Mandi et al., 1994).

The central dihydropyridine ring is almost planar with a mean deviation from the mean plane of 0.1252 (9) Å and with a maximum deviation of 0.188 (1) Å for C9. The planar 4-ethoxyphenyl and phenyl rings form dihedral angles of 75.20 (4)° and 82.14 (5)° with the dihydropyridine mean plane. The rings A (C1–C6), B (N1/C3/C4/C9/C10/C11) and C (C10–C15) show total puckering amplitudes Q(T) of 0.506 (2) Å, 0.307 (1) Å and 0.470 (2) Å, respectively. The cyclohexenone rings A and C adopt half chair conformation, whereas the central ring B adopts flattened boat conformation. This can be understood from the Cremer & Pople (1975) puckering parameters: ϕ = = -7.10 (2)° and θ = 62.2 (2)° (for A); ϕ = 166.5 (2)°, and θ = 77.4 (2)° (for B) and ϕ = -163.97 (3)°, θ = 56.9 (2)° (for C), respectively. In the title compound, the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. In the dihydropyridine ring C10=C11 and C4=C3 are double bonds (C10—C11 = 1.3489 (18) Å and C4—C3 = 1.3540 (18) Å), as indicated by the bond distances. The C11—C10—C15 [120.39 (13)°] and C3—C4—C5 [119.51 (13)°] angles are almost the same. In this conformation C1 and C13 may be described as flap atoms being away from the plane of the ring. The observed carbonyl bond lengths (C15—O1 = 1.2232 (17) Å and C5—O2 = 1.2275 (17) Å) are also normal.

Related literature top

For general background, see: Wysocka-Skrzela & Ledochowski (1976); Nasim & Brychcy (1979); Thull & Testa (1994); Reil et al. (1994); Mandi et al. (1994). For related structures, see: Abdelhamid et al. (2011); Khalilov et al. (2011); Tang et al. (2008); Tu et al. (2004). For a related synthesis, see: Li et al. (2003). For ring-puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared in two stages. In the first stage, a mixture of 4-ethoxybenzaldehyde (1.2 g, 8 mmol), 5,5-dimethylcyclohexane-1,3-dione (2.24 g, 16 mmol) and 20 ml of ethanol was heated to 70°C for about 10 minutes. The reaction mixture was allowed to cool to room temperature and the resulting solid intermediate, 2,2'-((4-ethoxyphenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) was filtered and dried (m.p.: 411 K, yield: 78%). In the second stage about 0.8 g of this intermediate was dissoloved in 25 ml of acetic acid. The solution was refluxed together with benzylamine (0.33 g, 3 mmol) for 8 h with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and stirred well. The solid that separated was filtered and dried and then recrystallized from ethanol to yield yellow crystals of the title compound (m.p.: 433 K, yield: 82%).

Refinement top

All the hydrogen atoms were fixed in calculated positions and allowed to ride on their parent atom with d(C—H) = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for CH3, d(C—H) = 0.97 Å and Uiso(H) = 1.2 Ueq(C) for CH2, d(C—H) = 0.98 Å and Uiso(H) = 1.2 Ueq(C) for aliphatic CH and with d(C—H) = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic CH.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
A view of the structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Packing diagram for the title compound.
10-Benzyl-9-(4-ethoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10- hexahydroacridine-1,8(2H,5H)-dione top
Crystal data top
C32H37NO3Dx = 1.222 Mg m3
Mr = 483.63Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6423 reflections
a = 16.8172 (7) Åθ = 2.4–27.3°
b = 15.7033 (7) ŵ = 0.08 mm1
c = 19.908 (1) ÅT = 296 K
V = 5257.4 (4) Å3Block, colourless
Z = 80.30 × 0.20 × 0.20 mm
F(000) = 2080
Data collection top
Bruker APEXII CCD
diffractometer
6422 independent reflections
Radiation source: fine-focus sealed tube4439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ϕ scanθmax = 28.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2222
Tmin = 0.976, Tmax = 0.986k = 2020
54483 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0534P)2 + 1.5474P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6422 reflectionsΔρmax = 0.25 e Å3
326 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (3)
Crystal data top
C32H37NO3V = 5257.4 (4) Å3
Mr = 483.63Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.8172 (7) ŵ = 0.08 mm1
b = 15.7033 (7) ÅT = 296 K
c = 19.908 (1) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
6422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4439 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.986Rint = 0.040
54483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
6422 reflectionsΔρmin = 0.16 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43933 (9)0.70202 (10)0.33199 (8)0.0427 (4)
C20.44922 (8)0.61875 (9)0.29361 (8)0.0386 (3)
H2A0.49200.62510.26130.046*
H2B0.46440.57430.32490.046*
C30.37519 (8)0.59175 (8)0.25718 (7)0.0308 (3)
C40.31496 (8)0.64638 (8)0.24372 (7)0.0323 (3)
C50.32733 (9)0.73706 (9)0.25208 (7)0.0386 (3)
C60.40380 (10)0.76626 (10)0.28343 (9)0.0512 (4)
H6A0.39430.81920.30720.061*
H6B0.44210.77770.24810.061*
C70.38514 (12)0.68989 (15)0.39259 (9)0.0668 (5)
H7A0.40840.64910.42270.100*
H7B0.33420.66960.37790.100*
H7C0.37870.74330.41540.100*
C80.52092 (11)0.73258 (12)0.35585 (11)0.0629 (5)
H8A0.54300.69160.38630.094*
H8B0.51540.78640.37830.094*
H8C0.55560.73900.31790.094*
C90.23605 (8)0.61457 (9)0.21724 (7)0.0325 (3)
H90.21490.65830.18700.039*
C100.25047 (8)0.53568 (9)0.17623 (7)0.0329 (3)
C110.31540 (8)0.48656 (8)0.18523 (6)0.0307 (3)
C120.33256 (8)0.41003 (9)0.14247 (7)0.0362 (3)
H12A0.32160.35920.16850.043*
H12B0.38870.40970.13140.043*
C130.28452 (9)0.40604 (10)0.07704 (7)0.0418 (4)
C140.19796 (9)0.42652 (11)0.09332 (8)0.0462 (4)
H14A0.16760.42790.05190.055*
H14B0.17630.38160.12130.055*
C150.18853 (8)0.51014 (10)0.12889 (7)0.0382 (3)
C160.29115 (11)0.31582 (12)0.04862 (10)0.0615 (5)
H16A0.27150.27580.08100.092*
H16B0.34580.30340.03880.092*
H16C0.26030.31170.00820.092*
C170.31637 (12)0.46944 (13)0.02556 (8)0.0594 (5)
H17A0.37090.45630.01560.089*
H17B0.31300.52610.04350.089*
H17C0.28530.46590.01480.089*
C180.42660 (9)0.44408 (9)0.26170 (8)0.0385 (3)
H18A0.48060.46570.26010.046*
H18B0.42440.39320.23410.046*
C190.40643 (9)0.42094 (9)0.33302 (8)0.0390 (3)
C200.32955 (11)0.39930 (11)0.35078 (9)0.0523 (4)
H200.28970.39940.31840.063*
C210.31140 (15)0.37766 (14)0.41603 (11)0.0765 (6)
H210.25960.36260.42710.092*
C220.3683 (2)0.37810 (14)0.46431 (11)0.0875 (8)
H220.35550.36370.50830.105*
C230.4439 (2)0.39963 (15)0.44815 (12)0.0943 (9)
H230.48270.40080.48140.113*
C240.46399 (13)0.42012 (12)0.38220 (11)0.0687 (6)
H240.51640.43330.37140.082*
C250.17591 (8)0.60221 (9)0.27392 (7)0.0339 (3)
C260.14725 (9)0.52322 (10)0.29309 (7)0.0396 (3)
H260.16570.47460.27150.048*
C270.09150 (9)0.51533 (10)0.34395 (8)0.0436 (4)
H270.07300.46160.35600.052*
C280.06319 (9)0.58640 (11)0.37696 (8)0.0428 (4)
C290.09195 (9)0.66542 (11)0.35946 (9)0.0500 (4)
H290.07430.71380.38190.060*
C300.14731 (9)0.67259 (10)0.30830 (8)0.0453 (4)
H300.16590.72640.29660.054*
C310.02477 (11)0.64092 (14)0.46208 (9)0.0619 (5)
H31A0.01790.67970.47390.074*
H31B0.04820.62010.50350.074*
C320.08674 (12)0.68881 (16)0.42322 (11)0.0756 (6)
H32A0.10650.73510.45000.113*
H32B0.12970.65110.41210.113*
H32C0.06370.71090.38270.113*
N10.37233 (7)0.50849 (7)0.23366 (6)0.0327 (3)
O10.12873 (7)0.55348 (8)0.12149 (6)0.0547 (3)
O20.27853 (7)0.78993 (7)0.23301 (6)0.0527 (3)
O30.00768 (7)0.57079 (9)0.42588 (6)0.0605 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (8)0.0388 (8)0.0478 (9)0.0022 (6)0.0073 (7)0.0038 (7)
C20.0337 (7)0.0346 (8)0.0475 (8)0.0009 (6)0.0024 (6)0.0010 (6)
C30.0325 (7)0.0302 (7)0.0298 (7)0.0012 (5)0.0028 (5)0.0021 (5)
C40.0338 (7)0.0312 (7)0.0319 (7)0.0020 (5)0.0015 (5)0.0009 (5)
C50.0428 (8)0.0332 (7)0.0397 (8)0.0031 (6)0.0025 (6)0.0031 (6)
C60.0535 (9)0.0308 (8)0.0693 (11)0.0031 (7)0.0105 (8)0.0004 (7)
C70.0682 (12)0.0884 (15)0.0437 (10)0.0004 (11)0.0013 (9)0.0126 (10)
C80.0554 (10)0.0464 (10)0.0868 (14)0.0040 (8)0.0236 (10)0.0120 (9)
C90.0330 (7)0.0325 (7)0.0321 (7)0.0061 (5)0.0010 (5)0.0012 (5)
C100.0329 (6)0.0353 (7)0.0306 (7)0.0019 (6)0.0018 (5)0.0015 (5)
C110.0329 (6)0.0308 (7)0.0284 (6)0.0001 (5)0.0044 (5)0.0009 (5)
C120.0344 (7)0.0354 (8)0.0389 (7)0.0024 (6)0.0055 (6)0.0046 (6)
C130.0422 (8)0.0451 (9)0.0383 (8)0.0018 (7)0.0019 (6)0.0116 (7)
C140.0397 (8)0.0525 (10)0.0465 (9)0.0004 (7)0.0046 (7)0.0121 (7)
C150.0353 (7)0.0461 (9)0.0332 (7)0.0029 (6)0.0009 (6)0.0022 (6)
C160.0597 (11)0.0598 (11)0.0650 (12)0.0051 (9)0.0049 (9)0.0286 (9)
C170.0684 (12)0.0712 (12)0.0386 (9)0.0050 (10)0.0105 (8)0.0003 (8)
C180.0363 (7)0.0323 (7)0.0470 (8)0.0082 (6)0.0030 (6)0.0009 (6)
C190.0482 (8)0.0245 (7)0.0443 (8)0.0033 (6)0.0097 (7)0.0009 (6)
C200.0543 (10)0.0492 (10)0.0534 (10)0.0019 (8)0.0001 (8)0.0036 (8)
C210.0986 (17)0.0636 (13)0.0672 (14)0.0018 (12)0.0270 (13)0.0092 (10)
C220.162 (3)0.0540 (13)0.0459 (11)0.0053 (15)0.0005 (15)0.0041 (9)
C230.152 (3)0.0677 (15)0.0630 (14)0.0223 (16)0.0547 (16)0.0181 (11)
C240.0751 (13)0.0590 (12)0.0719 (13)0.0124 (10)0.0339 (11)0.0174 (10)
C250.0295 (6)0.0380 (8)0.0343 (7)0.0033 (6)0.0017 (5)0.0050 (6)
C260.0416 (8)0.0384 (8)0.0390 (8)0.0066 (6)0.0021 (6)0.0044 (6)
C270.0453 (8)0.0424 (9)0.0430 (8)0.0002 (7)0.0037 (7)0.0017 (7)
C280.0376 (7)0.0561 (10)0.0347 (8)0.0011 (7)0.0031 (6)0.0045 (7)
C290.0464 (9)0.0493 (10)0.0541 (10)0.0008 (7)0.0115 (7)0.0199 (8)
C300.0431 (8)0.0383 (8)0.0545 (9)0.0022 (7)0.0073 (7)0.0115 (7)
C310.0512 (10)0.0908 (15)0.0437 (9)0.0045 (10)0.0093 (8)0.0171 (9)
C320.0558 (11)0.0931 (16)0.0777 (14)0.0088 (11)0.0036 (10)0.0102 (12)
N10.0338 (6)0.0297 (6)0.0347 (6)0.0041 (5)0.0014 (5)0.0003 (5)
O10.0443 (6)0.0648 (8)0.0551 (7)0.0161 (6)0.0139 (5)0.0119 (6)
O20.0547 (7)0.0340 (6)0.0693 (8)0.0090 (5)0.0071 (6)0.0060 (5)
O30.0585 (7)0.0716 (9)0.0515 (7)0.0025 (6)0.0200 (6)0.0040 (6)
Geometric parameters (Å, º) top
C1—C61.520 (2)C16—H16B0.9600
C1—C21.523 (2)C16—H16C0.9600
C1—C71.524 (2)C17—H17A0.9600
C1—C81.529 (2)C17—H17B0.9600
C2—C31.5020 (19)C17—H17C0.9600
C2—H2A0.9700C18—N11.4723 (17)
C2—H2B0.9700C18—C191.504 (2)
C3—C41.3540 (18)C18—H18A0.9700
C3—N11.3896 (17)C18—H18B0.9700
C4—C51.449 (2)C19—C241.377 (2)
C4—C91.5127 (19)C19—C201.383 (2)
C5—O21.2275 (17)C20—C211.377 (3)
C5—C61.501 (2)C20—H200.9300
C6—H6A0.9700C21—C221.357 (3)
C6—H6B0.9700C21—H210.9300
C7—H7A0.9600C22—C231.353 (4)
C7—H7B0.9600C22—H220.9300
C7—H7C0.9600C23—C241.394 (3)
C8—H8A0.9600C23—H230.9300
C8—H8B0.9600C24—H240.9300
C8—H8C0.9600C25—C261.384 (2)
C9—C101.5033 (19)C25—C301.386 (2)
C9—C251.5277 (19)C26—C271.385 (2)
C9—H90.9800C26—H260.9300
C10—C111.3489 (18)C27—C281.380 (2)
C10—C151.4609 (19)C27—H270.9300
C11—N11.4017 (17)C28—O31.3711 (19)
C11—C121.5007 (18)C28—C291.377 (2)
C12—C131.534 (2)C29—C301.384 (2)
C12—H12A0.9700C29—H290.9300
C12—H12B0.9700C30—H300.9300
C13—C141.526 (2)C31—O31.425 (2)
C13—C171.526 (2)C31—C321.500 (3)
C13—C161.530 (2)C31—H31A0.9700
C14—C151.500 (2)C31—H31B0.9700
C14—H14A0.9700C32—H32A0.9600
C14—H14B0.9700C32—H32B0.9600
C15—O11.2232 (17)C32—H32C0.9600
C16—H16A0.9600
C6—C1—C2107.08 (13)C10—C15—C14118.00 (12)
C6—C1—C7110.58 (15)C13—C16—H16A109.5
C2—C1—C7110.80 (14)C13—C16—H16B109.5
C6—C1—C8110.00 (14)H16A—C16—H16B109.5
C2—C1—C8109.09 (13)C13—C16—H16C109.5
C7—C1—C8109.26 (15)H16A—C16—H16C109.5
C3—C2—C1113.20 (12)H16B—C16—H16C109.5
C3—C2—H2A108.9C13—C17—H17A109.5
C1—C2—H2A108.9C13—C17—H17B109.5
C3—C2—H2B108.9H17A—C17—H17B109.5
C1—C2—H2B108.9C13—C17—H17C109.5
H2A—C2—H2B107.8H17A—C17—H17C109.5
C4—C3—N1120.23 (12)H17B—C17—H17C109.5
C4—C3—C2122.47 (12)N1—C18—C19112.58 (12)
N1—C3—C2117.19 (11)N1—C18—H18A109.1
C3—C4—C5119.51 (13)C19—C18—H18A109.1
C3—C4—C9121.07 (12)N1—C18—H18B109.1
C5—C4—C9119.37 (12)C19—C18—H18B109.1
O2—C5—C4122.23 (14)H18A—C18—H18B107.8
O2—C5—C6119.65 (13)C24—C19—C20118.25 (17)
C4—C5—C6118.10 (13)C24—C19—C18120.99 (16)
C5—C6—C1113.49 (13)C20—C19—C18120.76 (14)
C5—C6—H6A108.9C21—C20—C19120.61 (19)
C1—C6—H6A108.9C21—C20—H20119.7
C5—C6—H6B108.9C19—C20—H20119.7
C1—C6—H6B108.9C22—C21—C20120.7 (2)
H6A—C6—H6B107.7C22—C21—H21119.7
C1—C7—H7A109.5C20—C21—H21119.7
C1—C7—H7B109.5C23—C22—C21119.7 (2)
H7A—C7—H7B109.5C23—C22—H22120.1
C1—C7—H7C109.5C21—C22—H22120.1
H7A—C7—H7C109.5C22—C23—C24120.6 (2)
H7B—C7—H7C109.5C22—C23—H23119.7
C1—C8—H8A109.5C24—C23—H23119.7
C1—C8—H8B109.5C19—C24—C23120.1 (2)
H8A—C8—H8B109.5C19—C24—H24120.0
C1—C8—H8C109.5C23—C24—H24120.0
H8A—C8—H8C109.5C26—C25—C30117.22 (13)
H8B—C8—H8C109.5C26—C25—C9123.23 (12)
C10—C9—C4108.65 (11)C30—C25—C9119.55 (13)
C10—C9—C25113.78 (12)C25—C26—C27121.14 (14)
C4—C9—C25111.43 (11)C25—C26—H26119.4
C10—C9—H9107.6C27—C26—H26119.4
C4—C9—H9107.6C28—C27—C26120.61 (15)
C25—C9—H9107.6C28—C27—H27119.7
C11—C10—C15120.39 (13)C26—C27—H27119.7
C11—C10—C9121.99 (12)O3—C28—C29125.46 (14)
C15—C10—C9117.48 (12)O3—C28—C27115.37 (15)
C10—C11—N1120.24 (12)C29—C28—C27119.16 (14)
C10—C11—C12122.57 (12)C28—C29—C30119.72 (14)
N1—C11—C12117.11 (11)C28—C29—H29120.1
C11—C12—C13114.40 (12)C30—C29—H29120.1
C11—C12—H12A108.7C29—C30—C25122.12 (15)
C13—C12—H12A108.7C29—C30—H30118.9
C11—C12—H12B108.7C25—C30—H30118.9
C13—C12—H12B108.7O3—C31—C32113.12 (16)
H12A—C12—H12B107.6O3—C31—H31A109.0
C14—C13—C17109.87 (14)C32—C31—H31A109.0
C14—C13—C16110.08 (13)O3—C31—H31B109.0
C17—C13—C16109.29 (14)C32—C31—H31B109.0
C14—C13—C12108.27 (12)H31A—C31—H31B107.8
C17—C13—C12111.03 (13)C31—C32—H32A109.5
C16—C13—C12108.28 (13)C31—C32—H32B109.5
C15—C14—C13112.68 (13)H32A—C32—H32B109.5
C15—C14—H14A109.1C31—C32—H32C109.5
C13—C14—H14A109.1H32A—C32—H32C109.5
C15—C14—H14B109.1H32B—C32—H32C109.5
C13—C14—H14B109.1C3—N1—C11119.12 (11)
H14A—C14—H14B107.8C3—N1—C18119.81 (11)
O1—C15—C10120.74 (13)C11—N1—C18121.02 (11)
O1—C15—C14121.13 (13)C28—O3—C31118.81 (15)
C6—C1—C2—C350.29 (17)C9—C10—C15—C14173.31 (13)
C7—C1—C2—C370.38 (17)C13—C14—C15—O1148.98 (15)
C8—C1—C2—C3169.30 (14)C13—C14—C15—C1035.1 (2)
C1—C2—C3—C418.00 (19)N1—C18—C19—C24130.50 (16)
C1—C2—C3—N1165.83 (12)N1—C18—C19—C2049.97 (19)
N1—C3—C4—C5163.38 (12)C24—C19—C20—C210.1 (3)
C2—C3—C4—C512.7 (2)C18—C19—C20—C21179.61 (16)
N1—C3—C4—C913.97 (19)C19—C20—C21—C220.8 (3)
C2—C3—C4—C9169.97 (12)C20—C21—C22—C230.3 (4)
C3—C4—C5—O2170.96 (14)C21—C22—C23—C241.0 (4)
C9—C4—C5—O26.4 (2)C20—C19—C24—C231.3 (3)
C3—C4—C5—C67.3 (2)C18—C19—C24—C23179.12 (18)
C9—C4—C5—C6175.34 (13)C22—C23—C24—C191.8 (4)
O2—C5—C6—C1153.19 (15)C10—C9—C25—C2610.19 (19)
C4—C5—C6—C128.5 (2)C4—C9—C25—C26113.05 (15)
C2—C1—C6—C555.69 (18)C10—C9—C25—C30169.34 (13)
C7—C1—C6—C565.12 (19)C4—C9—C25—C3067.41 (17)
C8—C1—C6—C5174.12 (15)C30—C25—C26—C270.8 (2)
C3—C4—C9—C1030.37 (17)C9—C25—C26—C27178.69 (13)
C5—C4—C9—C10146.99 (13)C25—C26—C27—C280.1 (2)
C3—C4—C9—C2595.76 (15)C26—C27—C28—O3179.40 (14)
C5—C4—C9—C2586.89 (15)C26—C27—C28—C291.0 (2)
C4—C9—C10—C1123.49 (18)O3—C28—C29—C30179.07 (15)
C25—C9—C10—C11101.26 (15)C27—C28—C29—C301.4 (2)
C4—C9—C10—C15160.71 (12)C28—C29—C30—C250.7 (3)
C25—C9—C10—C1574.54 (15)C26—C25—C30—C290.5 (2)
C15—C10—C11—N1176.05 (12)C9—C25—C30—C29179.10 (14)
C9—C10—C11—N10.4 (2)C4—C3—N1—C1112.70 (18)
C15—C10—C11—C127.3 (2)C2—C3—N1—C11163.56 (12)
C9—C10—C11—C12176.98 (12)C4—C3—N1—C18164.86 (12)
C10—C11—C12—C1315.91 (19)C2—C3—N1—C1818.88 (18)
N1—C11—C12—C13160.80 (12)C10—C11—N1—C319.72 (18)
C11—C12—C13—C1445.85 (17)C12—C11—N1—C3157.07 (12)
C11—C12—C13—C1774.84 (16)C10—C11—N1—C18157.81 (13)
C11—C12—C13—C16165.18 (13)C12—C11—N1—C1825.40 (18)
C17—C13—C14—C1566.36 (17)C19—C18—N1—C370.01 (16)
C16—C13—C14—C15173.24 (14)C19—C18—N1—C11107.50 (14)
C12—C13—C14—C1555.05 (18)C29—C28—O3—C310.7 (2)
C11—C10—C15—O1178.49 (14)C27—C28—O3—C31179.71 (14)
C9—C10—C15—O12.6 (2)C32—C31—O3—C2877.7 (2)
C11—C10—C15—C142.6 (2)

Experimental details

Crystal data
Chemical formulaC32H37NO3
Mr483.63
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)16.8172 (7), 15.7033 (7), 19.908 (1)
V3)5257.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.976, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
54483, 6422, 4439
Rint0.040
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.03
No. of reflections6422
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: APEX2 (Bruker, 2004), APEX2/SAINT (Bruker, 2004), SAINT/XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002).

 

Acknowledgements

The authors thank Dr Babu Varghese and SAIF, IIT Madras, for the data collection.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SADABS, APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y., Wang, X., Shi, D., Du, B. & Tu, S. (2003). Acta Cryst. E59, o1446–o1448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMandi, Y., Regely, K., Ocsovszky, I., Barbe, J., Galy, J. P. & Molnar, J. (1994). Anticancer Res. 14, 2633–2636.  CAS PubMed Web of Science Google Scholar
First citationNasim, A. & Brychcy, T. (1979). Mutat. Res. 65, 261–288.  CrossRef CAS PubMed Web of Science Google Scholar
First citationReil, E., Soll, M., Masson, K. & Oettmeier, W. (1994). Biochem. Soc. Trans. 22, s62. Final page?  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Z., Liu, C., Wu, S. & Hao, W. (2008). Acta Cryst. E64, o1844.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307–2310.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTu, S. J., Miao, C. B., Gao, Y., Fang, F., Zhuang, Q. Y., Feng, Y. J. & Shi, D. Q. (2004). Synlett, 2, 255–258.  Web of Science CSD CrossRef Google Scholar
First citationWysocka-Skrzela, B. & Ledochowski, A. (1976). Rocz. Chem. 50, 127–131.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds