organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2631-o2632

[1-Meth­­oxy-3-(pyridin-2-yl)indolizin-2-yl](pyridin-2-yl)methanone

aInstitut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldt-Strasse 8, 07743 Jena, Germany
*Correspondence e-mail: m.we@uni-jena.de

(Received 6 July 2012; accepted 30 July 2012; online 4 August 2012)

Methyl­ation of [1-hy­droxy-3-(pyridin-2-yl)indolizin-2-yl](pyridin-2-yl)methanone was performed via metalation with potassium tert-butano­late in toluene and a subsequent metathesis reaction with methyl iodide yielded the yellow title compound, C20H15N3O2. The substituents at the indolizine unit are twisted [the indolizine ring system makes dihedral angles of 34.67 (7) and 77.49 (5)°, respectively, with the pyridyl and pyridinoyl rings] with single bonds between the central unit and the attached pyridine ring [1.459 (3) Å] and the pyridinoyl group [1.483 (3) Å]. There are no classical hydrogen bonds in the crystal structure.

Related literature

Indolizines are used as dyes (Weidner et al., 1989[Weidner, C. H., Wadsworth, D. H., Bender, S. L. & Beltman, D. J. (1989). J. Org. Chem. 54, 3660-3664.]), pharmaceuticals (Singh & Mmatli, 2011[Singh, G. S. & Mmatli, E. E. (2011). Eur. J. Med. Chem. 46, 5237-5257.]), and spectroscopic sensitizers (Gilchrist, 2001[Gilchrist, T. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2491-2515.]; Katrizky et al., 1999[Katrizky, A. R., Qiu, G., Yang, B. & He, H.-Y. (1999). J. Org. Chem. 64, 7618-7621.]; Sarkunam & Nallu, 2005[Sarkunam, K. & Nallu, M. (2005). J. Heterocyclic Chem. 42, 5-11.]; Vemula et al., 2011[Vemula, V. R., Vurukonda, S. & Bairi, C. K. (2011). Int. J. Pharm. Sci. Rev. Res. 11, 159-163.]; Weeler, 1985a[Weeler, J. W. (1985a). Eur. Pat. Appl. EP 161 789.],b[Weeler, J. W. (1985b). Chem. Abs. 104, 170108.]). Indolizines are rather scarce in nature whereas the reduced form of these heteroaromatic bicyclic compounds, the indolizidines, are quite common, see: Michael (2007[Michael, J. P. (2007). Beilstein J. Org. Chem. 3, No. 27.]) and references therein. Well defined substitution patterns are required (Sarkunam & Nallu, 2005[Sarkunam, K. & Nallu, M. (2005). J. Heterocyclic Chem. 42, 5-11.]; Swinbourne et al., 1978[Swinbourne, F. J., Hunt, J. H. & Klinkert, G. (1978). Adv. Heterocycl. Chem. 23, 103-170.]; Uchida & Matsumoto, 1976[Uchida, T. & Matsumoto, K. (1976). Synthesis, pp. 209-236.]) and therefore, different transition-metal mediated and metal-free strategies for the synthesis of substituted indolizines have been developed (Jacobs et al., 2011[Jacobs, J., van Hende, E., Claessens, S. & De Kimpe, N. (2011). Curr. Org. Chem. 15, 1340-1362.]; Swinbourne et al., 1978[Swinbourne, F. J., Hunt, J. H. & Klinkert, G. (1978). Adv. Heterocycl. Chem. 23, 103-170.]; Kel'in et al., 2001[Kel'in, A. V., Sromek, A. W. & Gevorgyan, V. (2001). J. Am. Chem. Soc. 123, 2074-2075.]; Kim et al., 2010[Kim, H., Lee, K., Kim, S. & Lee, P. H. (2010). Chem. Commun. 46, 6341-6343.]; Liu et al., 2007[Liu, Y., Song, Z. & Yan, B. (2007). Org. Lett. 9, 409-412.]; Morra et al., 2006[Morra, N. A., Morales, C. L., Bajtos, B., Wang, X., Jang, H., Wang, J. & Pagenkopf, B. L. (2006). Adv. Synth. Catal. 348, 2385-2390.]; Seregin & Gevorgyan, 2006[Seregin, I. V. & Gevorgyan, V. (2006). J. Am. Chem. Soc. 128, 12050-12051.]; Yan & Liu, 2007[Yan, B. & Liu, Y. (2007). Org. Lett. 9, 4323-4326.]). Pyridinium N-methyl­ides react with acetyl­enes or with ethyl­enes in the presence of an oxidant to make indolizines (Miki et al., 1984[Miki, Y., Hachiken, H. & Takemura, S. (1984). Heterocycles, 22, 701-703.]; Padwa et al., 1993;[Padwa, A., Austin, D. J., Precedo, L. & Zhi, L. (1993). J. Org. Chem. 58, 1144-1150.] Wei et al., 1993[Wei, X., Hu, Y., Li, T. & Hu, H. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 2487-2489.]). For cyclization of 1,1-diacetyl-2-(2-pyrid­yl)ethyl­ene in acetic acid anhydride or in dimethyl­sulfoxide-yielding indolizines, see: Pohjala (1974[Pohjala, E. (1974). Heterocycles, 2, 585-588.], 1977[Pohjala, E. K. (1977). J. Heterocycl. Chem. 14, 273-279.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3O2

  • Mr = 329.35

  • Monoclinic, C 2/c

  • a = 25.822 (2) Å

  • b = 11.4406 (9) Å

  • c = 11.3602 (7) Å

  • β = 107.070 (4)°

  • V = 3208.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 183 K

  • 0.05 × 0.05 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 10598 measured reflections

  • 3667 independent reflections

  • 2207 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.132

  • S = 1.03

  • 3667 reflections

  • 275 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski, Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by Carter, C. W. Jr & Sweet, R. M., pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indolizines which offer manifold applications as e.g. dyes (Weidner et al., 1989), pharmaceuticals (Singh & Mmatli, 2011), and spectral sensitizers (Gilchrist, 2001; Katritzky et al., 1999; Vemula et al., 2011; Sarkunam & Nallu, 2005; Weeler, 1985a,b) are rather scarce in nature whereas the reduced form of these heteroaromatic bicyclic compounds, the indolizidines, are quite common (Michael, 2007, and references therein). In these cases, i.e. the application of indolizines themselves or as intermediates in the synthesis of indolizidines, a well defined substitution pattern is required (Sarkunam & Nallu, 2005; Swinbourne et al., 1978; Uchida & Matsumoto, 1976) and different transition-metal mediated and metal-free strategies for the synthesis of substituted indolizines have been investigated (Jacobs et al., 2011; Kel'in et al., 2001; Kim et al., 2010; Liu et al., 2007; Morra et al., 2006; Seregin & Gevorgyan, 2006, Yan & Liu, 2007). The reaction of pyridinium N-methylides with acetylenes or with ethylenes in the presence of an oxidant causes limitations on the choice of substituents (Miki et al., 1984; Padwa et al., 1993) and applied oxidizers (Wei et al., 1993). Another pathway, namely the cyclization reaction of 1,1-diacetyl-2-(2-pyridyl)ethylene in acetic acid anhydride at 60 °C or in refluxing dimethylsulfoxide, has also yielded substituted indolizines (Pohjala, 1974 and 1977).

Related literature top

Indolizines are used as dyes (Weidner et al., 1989), pharmaceuticals (Singh & Mmatli, 2011), and spectroscopic sensitizers (Gilchrist, 2001; Katrizky et al., 1999; Sarkunam & Nallu, 2005; Vemula et al., 2011; Weeler, 1985a,b). Indolizines are rather scarce in nature whereas the reduced form of these heteroaromatic bicyclic compounds, the indolizidines, are quite common, see: Michael (2007) and references therein. Well defined substitution patterns are required (Sarkunam & Nallu, 2005; Swinbourne et al., 1978; Uchida & Matsumoto, 1976) and therefore, different transition-metal mediated and metal-free strategies for the synthesis of substituted indolizines have been developed (Jacobs et al., 2011; Swinbourne et al., 1978; Kel'in et al., 2001; Kim et al., 2010; Liu et al., 2007; Morra et al., 2006; Seregin & Gevorgyan, 2006; Yan & Liu, 2007). Pyridinium N-methylides react with acetylenes or with ethylenes in the presence of an oxidant to make indolizines (Miki et al., 1984; Padwa et al., 1993; Wei et al., 1993). For cyclization of 1,1-diacetyl-2-(2-pyridyl)ethylene in acetic acid anhydride or in dimethylsulfoxide-yielding indolizines, see: Pohjala (1974, 1977).

Experimental top

[1-Hydroxy-3-(pyridin-2-yl)indolizin-2-yl](pyridin-2-yl)methanone (4.1 g, 13 mmol) was suspended in 120 ml of toluene. Potassium tert-butanolate (1.61 g, 14.33 mmol) was added and stirred for 18 h. To the resulting green reaction mixture, methyl iodide (890 µL, 14.33 mmol) was added drop-wise. Then the solution was stirred for 24 h. The reaction mixture was filtered. The removal of all volatiles from the filtrate gave a dark yellow solid. Yield: 4.05 g of 1 (12.27 mmol, 94%). – 1H NMR (200 MHz, 303 K, [D8]DMSO): δ = 8.81 (d, 1H); 8.47 (d, 1H); 8.32 (dt, 1H); 7.91 (m, 2H); 7.55(dd, 2H); 7.45 (m, 1H); 7.18 (d, 1H); 7.11 (dt, 1H); 6.80 (dt, 1H); 6.67 (dt, 1H); 3.75 (s, 3H). – MS (EI): m/z (%) = 329 (92) [M]+; 314 (100); 298 (6); 286 (6); 143 (16); 106 (33); 78 (72). – Elemental analysis for C20H15N3O2 (329.36): calcd. C72.94, H 4.59, N 12.76 found C 72.25, H 4.67 N 12.57.

Refinement top

The hydrogen atoms of the methyl-group C20 were set to idealized positions and were refined with 1.5 times the isotropic displacement parameter of the carbon atom. The methyl groups were allowed to rotate but not to tip. All other hydrogen atoms were located by difference Fourier synthesis and freely refined.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski, Minor, 1997); data reduction: DENZO (Otwinowski, Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The preparative pathway to I via metalation with potassium tert-butanolate and a subsequent metathesis reaction with methyl iodide.
[Figure 2] Fig. 2. Molecular structure and numbering scheme of the title compound I; displacement ellipsoids are at the 40% probability level.
[1-Methoxy-3-(pyridin-2-yl)indolizin-2-yl](pyridin-2-yl)methanone top
Crystal data top
C20H15N3O2F(000) = 1376
Mr = 329.35Dx = 1.364 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10598 reflections
a = 25.822 (2) Åθ = 1.7–27.5°
b = 11.4406 (9) ŵ = 0.09 mm1
c = 11.3602 (7) ÅT = 183 K
β = 107.070 (4)°Prism, brown
V = 3208.2 (4) Å30.05 × 0.05 × 0.05 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
2207 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
phi– + ω–scanh = 2933
10598 measured reflectionsk = 1414
3667 independent reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0651P)2]
where P = (Fo2 + 2Fc2)/3
3667 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C20H15N3O2V = 3208.2 (4) Å3
Mr = 329.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.822 (2) ŵ = 0.09 mm1
b = 11.4406 (9) ÅT = 183 K
c = 11.3602 (7) Å0.05 × 0.05 × 0.05 mm
β = 107.070 (4)°
Data collection top
Nonius KappaCCD
diffractometer
2207 reflections with I > 2σ(I)
10598 measured reflectionsRint = 0.070
3667 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
3667 reflectionsΔρmin = 0.28 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.04698 (6)0.09288 (12)0.06993 (13)0.0364 (4)
O20.12184 (6)0.12783 (12)0.35467 (12)0.0383 (4)
N10.15233 (6)0.26387 (13)0.01130 (13)0.0259 (4)
N20.22178 (7)0.32179 (13)0.33083 (14)0.0285 (4)
N30.08352 (7)0.41960 (14)0.28790 (15)0.0348 (4)
C10.18167 (9)0.29453 (18)0.06859 (18)0.0315 (5)
H10.2132 (10)0.3465 (18)0.0350 (19)0.042 (6)*
C20.16708 (9)0.25249 (19)0.18445 (19)0.0365 (5)
H20.1893 (9)0.2805 (18)0.238 (2)0.042 (6)*
C30.12207 (10)0.17639 (19)0.22799 (19)0.0381 (5)
H30.1124 (9)0.1416 (18)0.313 (2)0.039 (6)*
C40.09303 (9)0.14572 (17)0.15113 (17)0.0328 (5)
H40.0638 (9)0.0923 (18)0.1749 (18)0.032 (6)*
C50.10777 (8)0.18737 (16)0.02876 (17)0.0272 (4)
C60.08989 (8)0.16467 (15)0.07313 (17)0.0276 (4)
C70.12235 (8)0.22698 (15)0.17367 (16)0.0254 (4)
C80.16079 (8)0.28941 (15)0.13492 (16)0.0248 (4)
C90.20472 (8)0.35985 (16)0.21281 (16)0.0265 (4)
C100.22672 (9)0.45894 (18)0.17435 (19)0.0323 (5)
H100.2123 (9)0.4926 (19)0.095 (2)0.041 (6)*
C110.26848 (9)0.51716 (19)0.2576 (2)0.0388 (5)
H110.2828 (9)0.5875 (19)0.2335 (19)0.045 (6)*
C120.28677 (9)0.47791 (19)0.3779 (2)0.0383 (5)
H120.3157 (10)0.513 (2)0.442 (2)0.060 (7)*
C130.26168 (8)0.38150 (18)0.40973 (18)0.0328 (5)
H130.2725 (8)0.3486 (16)0.4960 (19)0.033 (5)*
C140.11818 (8)0.22114 (17)0.30094 (17)0.0270 (4)
C150.10492 (8)0.32971 (16)0.36106 (16)0.0271 (4)
C160.11300 (9)0.3300 (2)0.48702 (19)0.0372 (5)
H160.1298 (9)0.2654 (18)0.5342 (18)0.031 (5)*
C170.09646 (10)0.4251 (2)0.5409 (2)0.0424 (6)
H170.1002 (10)0.425 (2)0.629 (2)0.053 (7)*
C180.07292 (9)0.5171 (2)0.4673 (2)0.0404 (6)
H180.0603 (9)0.5834 (19)0.500 (2)0.045 (6)*
C190.06806 (10)0.5113 (2)0.3431 (2)0.0423 (6)
H190.0544 (10)0.576 (2)0.290 (2)0.056 (7)*
C200.00098 (11)0.1550 (2)0.0648 (3)0.0683 (8)
H20C0.03000.09950.06430.102*
H20B0.01170.20230.01040.102*
H20A0.00550.20610.13690.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0330 (9)0.0298 (8)0.0470 (9)0.0081 (6)0.0125 (7)0.0046 (6)
O20.0521 (10)0.0285 (8)0.0367 (8)0.0005 (7)0.0169 (7)0.0041 (6)
N10.0272 (9)0.0271 (9)0.0239 (8)0.0024 (7)0.0082 (7)0.0018 (7)
N20.0298 (10)0.0293 (8)0.0260 (8)0.0013 (7)0.0074 (7)0.0022 (7)
N30.0443 (11)0.0292 (9)0.0332 (9)0.0047 (8)0.0151 (8)0.0022 (8)
C10.0309 (12)0.0356 (12)0.0302 (11)0.0044 (10)0.0123 (9)0.0043 (9)
C20.0423 (13)0.0419 (13)0.0286 (11)0.0085 (10)0.0154 (10)0.0058 (10)
C30.0507 (15)0.0377 (12)0.0248 (11)0.0066 (11)0.0091 (10)0.0013 (9)
C40.0414 (14)0.0261 (11)0.0272 (11)0.0018 (10)0.0042 (9)0.0014 (9)
C50.0292 (11)0.0221 (9)0.0290 (10)0.0023 (8)0.0067 (8)0.0016 (8)
C60.0280 (11)0.0221 (10)0.0326 (10)0.0002 (8)0.0087 (8)0.0015 (8)
C70.0273 (11)0.0215 (9)0.0272 (10)0.0026 (8)0.0079 (8)0.0003 (8)
C80.0279 (11)0.0203 (9)0.0255 (9)0.0010 (8)0.0068 (8)0.0004 (8)
C90.0289 (11)0.0256 (10)0.0266 (10)0.0021 (8)0.0105 (8)0.0015 (8)
C100.0352 (12)0.0305 (11)0.0325 (11)0.0017 (9)0.0119 (9)0.0029 (9)
C110.0369 (13)0.0300 (11)0.0514 (14)0.0090 (10)0.0159 (10)0.0018 (10)
C120.0356 (13)0.0374 (12)0.0399 (12)0.0067 (10)0.0080 (10)0.0084 (10)
C130.0347 (13)0.0337 (11)0.0289 (11)0.0004 (9)0.0076 (9)0.0032 (9)
C140.0263 (11)0.0260 (10)0.0282 (10)0.0023 (8)0.0070 (8)0.0019 (8)
C150.0280 (11)0.0258 (10)0.0297 (10)0.0048 (8)0.0119 (8)0.0003 (8)
C160.0452 (14)0.0382 (12)0.0295 (11)0.0028 (11)0.0129 (10)0.0017 (10)
C170.0554 (16)0.0420 (13)0.0342 (12)0.0089 (11)0.0199 (11)0.0096 (11)
C180.0443 (14)0.0343 (12)0.0492 (14)0.0100 (11)0.0241 (11)0.0168 (11)
C190.0497 (15)0.0322 (12)0.0485 (14)0.0073 (11)0.0202 (11)0.0026 (11)
C200.0404 (16)0.0635 (18)0.109 (2)0.0123 (14)0.0349 (15)0.0344 (16)
Geometric parameters (Å, º) top
O1—C61.371 (2)C8—C91.459 (3)
O1—C201.414 (3)C9—C101.395 (3)
O2—C141.220 (2)C10—C111.379 (3)
N1—C11.387 (2)C10—H100.95 (2)
N1—C81.387 (2)C11—C121.383 (3)
N1—C51.411 (2)C11—H110.96 (2)
N2—C131.338 (2)C12—C131.380 (3)
N2—C91.354 (2)C12—H120.97 (2)
N3—C151.336 (2)C13—H131.01 (2)
N3—C191.341 (3)C14—C151.505 (3)
C1—C21.347 (3)C15—C161.384 (3)
C1—H10.99 (2)C16—C171.376 (3)
C2—C31.420 (3)C16—H160.94 (2)
C2—H21.00 (2)C17—C181.371 (3)
C3—C41.353 (3)C17—H170.98 (2)
C3—H31.01 (2)C18—C191.382 (3)
C4—C51.412 (3)C18—H180.94 (2)
C4—H40.95 (2)C19—H190.96 (3)
C5—C61.391 (3)C20—H20C0.9800
C6—C71.398 (3)C20—H20B0.9800
C7—C81.395 (3)C20—H20A0.9800
C7—C141.483 (3)
C6—O1—C20113.04 (16)C9—C10—H10122.9 (13)
C1—N1—C8130.92 (17)C10—C11—C12119.5 (2)
C1—N1—C5119.75 (16)C10—C11—H11119.9 (13)
C8—N1—C5109.17 (15)C12—C11—H11120.4 (13)
C13—N2—C9117.51 (17)C13—C12—C11117.9 (2)
C15—N3—C19115.91 (17)C13—C12—H12116.9 (14)
C2—C1—N1119.9 (2)C11—C12—H12125.2 (14)
C2—C1—H1123.6 (12)N2—C13—C12124.12 (19)
N1—C1—H1116.4 (12)N2—C13—H13113.5 (11)
C1—C2—C3121.7 (2)C12—C13—H13122.3 (11)
C1—C2—H2115.6 (12)O2—C14—C7120.69 (17)
C3—C2—H2122.7 (12)O2—C14—C15119.34 (17)
C4—C3—C2119.1 (2)C7—C14—C15119.79 (16)
C4—C3—H3119.4 (12)N3—C15—C16123.41 (18)
C2—C3—H3121.5 (12)N3—C15—C14117.44 (16)
C3—C4—C5120.5 (2)C16—C15—C14119.08 (18)
C3—C4—H4122.0 (12)C17—C16—C15119.3 (2)
C5—C4—H4117.4 (12)C17—C16—H16121.3 (12)
C6—C5—N1106.62 (15)C15—C16—H16119.4 (12)
C6—C5—C4134.18 (19)C18—C17—C16118.4 (2)
N1—C5—C4119.05 (18)C18—C17—H17120.9 (14)
O1—C6—C5123.57 (16)C16—C17—H17120.6 (14)
O1—C6—C7127.84 (17)C17—C18—C19118.5 (2)
C5—C6—C7108.59 (17)C17—C18—H18121.3 (13)
C8—C7—C6108.36 (16)C19—C18—H18120.2 (13)
C8—C7—C14126.37 (16)N3—C19—C18124.4 (2)
C6—C7—C14125.17 (17)N3—C19—H19115.0 (14)
N1—C8—C7107.24 (15)C18—C19—H19120.6 (14)
N1—C8—C9126.40 (17)O1—C20—H20C109.5
C7—C8—C9126.14 (16)O1—C20—H20B109.5
N2—C9—C10121.83 (17)H20C—C20—H20B109.5
N2—C9—C8113.07 (16)O1—C20—H20A109.5
C10—C9—C8125.07 (17)H20C—C20—H20A109.5
C11—C10—C9119.08 (19)H20B—C20—H20A109.5
C11—C10—H10117.7 (13)

Experimental details

Crystal data
Chemical formulaC20H15N3O2
Mr329.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)183
a, b, c (Å)25.822 (2), 11.4406 (9), 11.3602 (7)
β (°) 107.070 (4)
V3)3208.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.05 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10598, 3667, 2207
Rint0.070
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.132, 1.03
No. of reflections3667
No. of parameters275
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski, Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG, Bonn–Bad Godesberg, Germany) for generous financial support. We also acknowledge funding from the Fonds der Chemischen Industrie (Frankfurt/Main, Germany).

References

First citationGilchrist, T. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2491–2515.  Web of Science CrossRef Google Scholar
First citationJacobs, J., van Hende, E., Claessens, S. & De Kimpe, N. (2011). Curr. Org. Chem. 15, 1340–1362.  CrossRef CAS Google Scholar
First citationKatrizky, A. R., Qiu, G., Yang, B. & He, H.-Y. (1999). J. Org. Chem. 64, 7618–7621.  Google Scholar
First citationKel'in, A. V., Sromek, A. W. & Gevorgyan, V. (2001). J. Am. Chem. Soc. 123, 2074–2075.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, H., Lee, K., Kim, S. & Lee, P. H. (2010). Chem. Commun. 46, 6341–6343.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y., Song, Z. & Yan, B. (2007). Org. Lett. 9, 409–412.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMichael, J. P. (2007). Beilstein J. Org. Chem. 3, No. 27.  Google Scholar
First citationMiki, Y., Hachiken, H. & Takemura, S. (1984). Heterocycles, 22, 701–703.  CrossRef CAS Google Scholar
First citationMorra, N. A., Morales, C. L., Bajtos, B., Wang, X., Jang, H., Wang, J. & Pagenkopf, B. L. (2006). Adv. Synth. Catal. 348, 2385–2390.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by Carter, C. W. Jr & Sweet, R. M., pp. 307–326. New York: Academic Press.  Google Scholar
First citationPadwa, A., Austin, D. J., Precedo, L. & Zhi, L. (1993). J. Org. Chem. 58, 1144–1150.  CSD CrossRef CAS Web of Science Google Scholar
First citationPohjala, E. (1974). Heterocycles, 2, 585–588.  CrossRef CAS Google Scholar
First citationPohjala, E. K. (1977). J. Heterocycl. Chem. 14, 273–279.  CrossRef CAS Google Scholar
First citationSarkunam, K. & Nallu, M. (2005). J. Heterocyclic Chem. 42, 5–11.  CrossRef CAS Google Scholar
First citationSeregin, I. V. & Gevorgyan, V. (2006). J. Am. Chem. Soc. 128, 12050–12051.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G. S. & Mmatli, E. E. (2011). Eur. J. Med. Chem. 46, 5237–5257.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSwinbourne, F. J., Hunt, J. H. & Klinkert, G. (1978). Adv. Heterocycl. Chem. 23, 103–170.  CrossRef CAS Google Scholar
First citationUchida, T. & Matsumoto, K. (1976). Synthesis, pp. 209–236.  CrossRef Google Scholar
First citationVemula, V. R., Vurukonda, S. & Bairi, C. K. (2011). Int. J. Pharm. Sci. Rev. Res. 11, 159–163.  CAS Google Scholar
First citationWeeler, J. W. (1985a). Eur. Pat. Appl. EP 161 789.  Google Scholar
First citationWeeler, J. W. (1985b). Chem. Abs. 104, 170108.  Google Scholar
First citationWei, X., Hu, Y., Li, T. & Hu, H. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 2487–2489.  CrossRef Web of Science Google Scholar
First citationWeidner, C. H., Wadsworth, D. H., Bender, S. L. & Beltman, D. J. (1989). J. Org. Chem. 54, 3660–3664.  CrossRef CAS Web of Science Google Scholar
First citationYan, B. & Liu, Y. (2007). Org. Lett. 9, 4323–4326.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2631-o2632
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds