organic compounds
4-Carbamoylpyridin-1-ium 2,2,2-trichloroacetate–isonicotinamide (1/1)
aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia, and bCO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si
In the 6H7N2O+·C2Cl3O2−·C6H6N2O, the amide groups of the 4-carbamoylpyridin-1-ium ion and the isonicotinamide molecule are twisted out of the plane of the aromatic ring with C—C—C—N torsion angles of 21.5 (4) and −33.5 (4)°, respectively. The 4-carbamoylpyridin-1-ium and isonicotinamide amide groups form R22(8) hydrogen-bonded dimers via N—H⋯O=C interactions. The two remaining amide H atoms (i) link dimers via the cation to an isonicotinamide and (ii) from the isonicotinamide to a trichloroacetate anion. The pyridinium H atom also forms an N—H⋯O hydrogen bond with the trichloroacetate anion. Due to the extended hydrogen bonding, including C—H⋯O and C—H⋯Cl interactions, all components in the structure aggregate into a three-dimensional supramolecular framework.
of the title 1:1 CRelated literature
For applications of co-crystals, see: Karki et al. (2009); Friščić & Jones (2010). For related structures, see: Madeley et al. (2011).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812037002/gg2095sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812037002/gg2095Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812037002/gg2095Isup3.cml
Crystals of the title compound were obtained by slow evaporation of a 2:1 mol. mixture of isonicotinamide and trichloroacetic acid in methanol at room temperature.
All H atoms were initially located in a difference Fourier maps. H atoms attached to N atoms were refined isotropically with Uiso(H) = 1.5Ueq(N). Other H atoms were treated as riding atoms in geometrically idealized positions, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Fig. 2. Hydrogen bonding diagram. Dashed lines indicate intermolecular N—H···O, N—H···N, C—H···O and C—H···Cl hydrogen bonding. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Symmetry codes: i –x, –y + 1, z + 3/2; ii x – 1/2, –y + 3/2, z + 1; iv x + 1/2, –y + 3/2, z; v x – 1/2, –y + 3/2, z – 1. Fig. 3. Crystal packing of the title compound. For the sake of clarity, hydrogen bonding is not presented. |
C6H7N2O+·C2Cl3O2−·C6H6N2O | F(000) = 832 |
Mr = 407.63 | Dx = 1.537 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 7898 reflections |
a = 13.7910 (3) Å | θ = 3.1–30.4° |
b = 22.6680 (5) Å | µ = 0.55 mm−1 |
c = 5.6340 (1) Å | T = 293 K |
V = 1761.27 (6) Å3 | Prism, colourless |
Z = 4 | 0.4 × 0.1 × 0.1 mm |
Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer | 4017 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3575 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.031 |
Detector resolution: 10.4933 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −17→17 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −29→29 |
Tmin = 0.811, Tmax = 0.947 | l = −7→7 |
16297 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.04 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0359P)2 + 0.8943P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
4017 reflections | Δρmax = 0.41 e Å−3 |
241 parameters | Δρmin = −0.57 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1791 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (6) |
C6H7N2O+·C2Cl3O2−·C6H6N2O | V = 1761.27 (6) Å3 |
Mr = 407.63 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 13.7910 (3) Å | µ = 0.55 mm−1 |
b = 22.6680 (5) Å | T = 293 K |
c = 5.6340 (1) Å | 0.4 × 0.1 × 0.1 mm |
Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer | 4017 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 3575 reflections with I > 2σ(I) |
Tmin = 0.811, Tmax = 0.947 | Rint = 0.031 |
16297 measured reflections |
R[F2 > 2σ(F2)] = 0.04 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | Δρmax = 0.41 e Å−3 |
S = 1.03 | Δρmin = −0.57 e Å−3 |
4017 reflections | Absolute structure: Flack (1983), 1791 Friedel pairs |
241 parameters | Absolute structure parameter: 0.01 (6) |
1 restraint |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.49348 (5) | 0.58322 (3) | 0.45563 (14) | 0.04547 (17) | |
Cl2 | 0.44990 (9) | 0.67585 (4) | 0.11741 (18) | 0.0850 (4) | |
Cl3 | 0.32105 (7) | 0.65069 (5) | 0.50880 (15) | 0.0770 (3) | |
N1 | −0.29717 (16) | 0.50785 (9) | 1.1681 (4) | 0.0377 (5) | |
H15 | −0.330 (2) | 0.4892 (15) | 1.285 (6) | 0.057* | |
N2 | −0.16743 (16) | 0.62843 (10) | 0.4929 (5) | 0.0396 (5) | |
H16A | −0.217 (2) | 0.6478 (14) | 0.551 (7) | 0.059* | |
H16B | −0.135 (3) | 0.6394 (15) | 0.362 (6) | 0.059* | |
N3 | 0.19060 (17) | 0.78523 (10) | −0.3220 (5) | 0.0425 (5) | |
N4 | 0.06680 (19) | 0.61873 (11) | 0.1998 (5) | 0.0495 (7) | |
H17A | 0.030 (3) | 0.5952 (17) | 0.294 (8) | 0.074* | |
H17B | 0.131 (3) | 0.6133 (15) | 0.197 (7) | 0.074* | |
O1 | 0.25905 (13) | 0.57929 (9) | 0.1146 (4) | 0.0524 (5) | |
O2 | 0.40234 (13) | 0.54301 (8) | 0.0115 (4) | 0.0426 (4) | |
O3 | −0.06660 (12) | 0.66646 (9) | 0.0707 (4) | 0.0473 (5) | |
O4 | −0.05512 (13) | 0.55797 (8) | 0.5595 (4) | 0.0488 (5) | |
C1 | −0.20142 (19) | 0.49801 (11) | 1.1584 (5) | 0.0384 (6) | |
H1 | −0.1721 | 0.4742 | 1.2722 | 0.046* | |
C2 | −0.14636 (17) | 0.52287 (10) | 0.9812 (5) | 0.0356 (5) | |
H2 | −0.0801 | 0.5155 | 0.9729 | 0.043* | |
C3 | −0.19079 (17) | 0.55906 (10) | 0.8150 (4) | 0.0293 (5) | |
C4 | −0.29018 (18) | 0.56864 (11) | 0.8322 (5) | 0.0335 (5) | |
H4 | −0.3214 | 0.5929 | 0.7233 | 0.04* | |
C5 | −0.34193 (18) | 0.54211 (11) | 1.0107 (5) | 0.0387 (6) | |
H5 | −0.4085 | 0.5481 | 1.0217 | 0.046* | |
C6 | −0.13130 (17) | 0.58311 (10) | 0.6111 (5) | 0.0320 (5) | |
C7 | 0.2246 (2) | 0.76108 (12) | −0.1226 (6) | 0.0454 (7) | |
H7 | 0.2848 | 0.7735 | −0.0675 | 0.055* | |
C8 | 0.17586 (17) | 0.71890 (11) | 0.0064 (5) | 0.0396 (6) | |
H8 | 0.2034 | 0.7027 | 0.1424 | 0.048* | |
C9 | 0.08482 (16) | 0.70091 (10) | −0.0701 (5) | 0.0305 (5) | |
C10 | 0.0493 (2) | 0.72548 (12) | −0.2753 (5) | 0.0384 (6) | |
H10 | −0.0114 | 0.7145 | −0.3326 | 0.046* | |
C11 | 0.1043 (2) | 0.76648 (11) | −0.3955 (5) | 0.0433 (6) | |
H11 | 0.0797 | 0.7819 | −0.5361 | 0.052* | |
C12 | 0.02224 (18) | 0.65981 (11) | 0.0724 (5) | 0.0358 (6) | |
C13 | 0.34726 (17) | 0.57605 (10) | 0.1255 (4) | 0.0306 (5) | |
C14 | 0.40010 (19) | 0.61971 (11) | 0.2972 (5) | 0.0368 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0384 (3) | 0.0586 (4) | 0.0395 (3) | 0.0069 (3) | −0.0118 (3) | 0.0020 (3) |
Cl2 | 0.1224 (9) | 0.0644 (5) | 0.0681 (6) | −0.0526 (6) | −0.0447 (6) | 0.0302 (5) |
Cl3 | 0.0848 (6) | 0.0950 (6) | 0.0510 (5) | 0.0508 (5) | −0.0198 (4) | −0.0362 (5) |
N1 | 0.0414 (12) | 0.0353 (11) | 0.0365 (13) | −0.0078 (9) | 0.0084 (10) | 0.0028 (9) |
N2 | 0.0375 (12) | 0.0379 (11) | 0.0435 (13) | 0.0082 (9) | 0.0147 (11) | 0.0077 (11) |
N3 | 0.0423 (13) | 0.0351 (11) | 0.0503 (14) | −0.0051 (9) | 0.0080 (11) | 0.0057 (10) |
N4 | 0.0317 (12) | 0.0490 (14) | 0.0678 (17) | 0.0069 (10) | 0.0141 (12) | 0.0256 (13) |
O1 | 0.0277 (9) | 0.0589 (12) | 0.0706 (14) | 0.0023 (8) | −0.0027 (10) | −0.0192 (12) |
O2 | 0.0346 (9) | 0.0506 (10) | 0.0426 (10) | 0.0042 (8) | −0.0017 (8) | −0.0179 (9) |
O3 | 0.0278 (9) | 0.0557 (11) | 0.0585 (13) | 0.0039 (8) | 0.0068 (9) | 0.0201 (10) |
O4 | 0.0367 (10) | 0.0514 (11) | 0.0585 (14) | 0.0153 (8) | 0.0200 (9) | 0.0148 (10) |
C1 | 0.0444 (15) | 0.0377 (13) | 0.0332 (15) | 0.0002 (11) | −0.0051 (11) | 0.0055 (11) |
C2 | 0.0307 (11) | 0.0348 (12) | 0.0413 (14) | 0.0014 (9) | 0.0001 (12) | 0.0002 (12) |
C3 | 0.0297 (12) | 0.0279 (11) | 0.0304 (12) | −0.0023 (9) | 0.0021 (10) | −0.0034 (9) |
C4 | 0.0300 (13) | 0.0340 (13) | 0.0364 (13) | 0.0012 (10) | 0.0031 (11) | 0.0044 (10) |
C5 | 0.0347 (13) | 0.0381 (13) | 0.0435 (14) | −0.0010 (10) | 0.0099 (12) | 0.0013 (12) |
C6 | 0.0295 (12) | 0.0343 (12) | 0.0321 (12) | −0.0013 (9) | 0.0071 (10) | −0.0003 (11) |
C7 | 0.0327 (14) | 0.0460 (16) | 0.0577 (18) | −0.0081 (12) | −0.0007 (12) | 0.0027 (14) |
C8 | 0.0317 (12) | 0.0450 (14) | 0.0422 (15) | 0.0006 (10) | −0.0029 (11) | 0.0061 (13) |
C9 | 0.0288 (11) | 0.0289 (11) | 0.0337 (12) | 0.0018 (9) | 0.0050 (10) | 0.0020 (10) |
C10 | 0.0337 (13) | 0.0412 (14) | 0.0404 (14) | −0.0027 (11) | −0.0053 (11) | 0.0025 (12) |
C11 | 0.0490 (15) | 0.0441 (14) | 0.0369 (14) | 0.0005 (12) | −0.0016 (13) | 0.0113 (13) |
C12 | 0.0313 (13) | 0.0343 (12) | 0.0418 (15) | 0.0018 (10) | 0.0064 (11) | 0.0060 (11) |
C13 | 0.0323 (12) | 0.0325 (11) | 0.0269 (11) | −0.0016 (9) | −0.0010 (10) | −0.0008 (10) |
C14 | 0.0435 (15) | 0.0342 (14) | 0.0327 (12) | 0.0039 (11) | −0.0083 (11) | −0.0023 (11) |
Cl1—C14 | 1.772 (3) | C1—H1 | 0.93 |
Cl2—C14 | 1.765 (3) | C2—C3 | 1.387 (4) |
Cl3—C14 | 1.762 (3) | C2—H2 | 0.93 |
N1—C5 | 1.331 (4) | C3—C4 | 1.391 (3) |
N1—C1 | 1.340 (3) | C3—C6 | 1.513 (3) |
N1—H15 | 0.90 (3) | C4—C5 | 1.372 (4) |
N2—C6 | 1.322 (3) | C4—H4 | 0.93 |
N2—H16A | 0.87 (3) | C5—H5 | 0.93 |
N2—H16B | 0.90 (4) | C7—C8 | 1.376 (4) |
N3—C11 | 1.330 (4) | C7—H7 | 0.93 |
N3—C7 | 1.335 (4) | C8—C9 | 1.389 (3) |
N4—C12 | 1.326 (3) | C8—H8 | 0.93 |
N4—H17A | 0.91 (4) | C9—C10 | 1.374 (4) |
N4—H17B | 0.89 (4) | C9—C12 | 1.503 (3) |
O1—C13 | 1.220 (3) | C10—C11 | 1.378 (4) |
O2—C13 | 1.245 (3) | C10—H10 | 0.93 |
O3—C12 | 1.234 (3) | C11—H11 | 0.93 |
O4—C6 | 1.230 (3) | C13—C14 | 1.564 (3) |
C1—C2 | 1.375 (4) | ||
C5—N1—C1 | 121.8 (2) | N3—C7—C8 | 123.9 (3) |
C5—N1—H15 | 122 (2) | N3—C7—H7 | 118 |
C1—N1—H15 | 116 (2) | C8—C7—H7 | 118 |
C6—N2—H16A | 120 (2) | C7—C8—C9 | 118.8 (3) |
C6—N2—H16B | 116 (2) | C7—C8—H8 | 120.6 |
H16A—N2—H16B | 124 (3) | C9—C8—H8 | 120.6 |
C11—N3—C7 | 116.4 (2) | C10—C9—C8 | 117.7 (2) |
C12—N4—H17A | 118 (2) | C10—C9—C12 | 119.7 (2) |
C12—N4—H17B | 123 (2) | C8—C9—C12 | 122.4 (2) |
H17A—N4—H17B | 119 (3) | C9—C10—C11 | 119.4 (2) |
N1—C1—C2 | 120.3 (2) | C9—C10—H10 | 120.3 |
N1—C1—H1 | 119.8 | C11—C10—H10 | 120.3 |
C2—C1—H1 | 119.8 | N3—C11—C10 | 123.7 (3) |
C1—C2—C3 | 119.2 (2) | N3—C11—H11 | 118.1 |
C1—C2—H2 | 120.4 | C10—C11—H11 | 118.1 |
C3—C2—H2 | 120.4 | O3—C12—N4 | 123.4 (2) |
C2—C3—C4 | 118.7 (2) | O3—C12—C9 | 119.3 (2) |
C2—C3—C6 | 119.1 (2) | N4—C12—C9 | 117.3 (2) |
C4—C3—C6 | 122.1 (2) | O1—C13—O2 | 128.2 (2) |
C5—C4—C3 | 119.7 (2) | O1—C13—C14 | 117.2 (2) |
C5—C4—H4 | 120.2 | O2—C13—C14 | 114.6 (2) |
C3—C4—H4 | 120.2 | C13—C14—Cl3 | 112.49 (18) |
N1—C5—C4 | 120.2 (2) | C13—C14—Cl2 | 106.43 (18) |
N1—C5—H5 | 119.9 | Cl3—C14—Cl2 | 109.97 (15) |
C4—C5—H5 | 119.9 | C13—C14—Cl1 | 110.78 (17) |
O4—C6—N2 | 124.3 (2) | Cl3—C14—Cl1 | 107.15 (15) |
O4—C6—C3 | 118.4 (2) | Cl2—C14—Cl1 | 110.04 (15) |
N2—C6—C3 | 117.3 (2) | ||
C5—N1—C1—C2 | −0.8 (4) | C7—C8—C9—C12 | −173.6 (2) |
N1—C1—C2—C3 | 1.1 (4) | C8—C9—C10—C11 | −0.1 (4) |
C1—C2—C3—C4 | −0.5 (4) | C12—C9—C10—C11 | 175.2 (2) |
C1—C2—C3—C6 | −176.0 (2) | C7—N3—C11—C10 | 1.5 (4) |
C2—C3—C4—C5 | −0.4 (4) | C9—C10—C11—N3 | −1.5 (4) |
C6—C3—C4—C5 | 175.0 (2) | C10—C9—C12—O3 | −30.3 (4) |
C1—N1—C5—C4 | −0.1 (4) | C8—C9—C12—O3 | 144.8 (3) |
C3—C4—C5—N1 | 0.7 (4) | C10—C9—C12—N4 | 151.4 (3) |
C2—C3—C6—O4 | 20.0 (4) | C8—C9—C12—N4 | −33.5 (4) |
C4—C3—C6—O4 | −155.4 (3) | O1—C13—C14—Cl3 | 17.9 (3) |
C2—C3—C6—N2 | −163.1 (2) | O2—C13—C14—Cl3 | −163.93 (19) |
C4—C3—C6—N2 | 21.5 (4) | O1—C13—C14—Cl2 | −102.6 (3) |
C11—N3—C7—C8 | 0.1 (4) | O2—C13—C14—Cl2 | 75.6 (2) |
N3—C7—C8—C9 | −1.6 (4) | O1—C13—C14—Cl1 | 137.8 (2) |
C7—C8—C9—C10 | 1.5 (4) | O2—C13—C14—Cl1 | −44.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H15···O2i | 0.90 (3) | 1.78 (3) | 2.679 (3) | 175 (3) |
N2—H16A···N3ii | 0.87 (3) | 2.11 (3) | 2.958 (3) | 164 (3) |
N2—H16B···O3 | 0.90 (4) | 1.99 (4) | 2.887 (3) | 178 (3) |
N4—H17A···O4 | 0.91 (4) | 2.08 (4) | 2.972 (3) | 167 (4) |
N4—H17B···O1 | 0.89 (4) | 1.98 (4) | 2.839 (3) | 160 (3) |
C1—H1···O1i | 0.93 | 2.58 | 3.211 (3) | 126 |
C2—H2···O4iii | 0.93 | 2.55 | 3.358 (3) | 146 |
C7—H7···O3iv | 0.93 | 2.58 | 3.489 (3) | 166 |
C11—H11···Cl2v | 0.93 | 2.82 | 3.711 (3) | 162 |
Symmetry codes: (i) −x, −y+1, z+3/2; (ii) x−1/2, −y+3/2, z+1; (iii) −x, −y+1, z+1/2; (iv) x+1/2, −y+3/2, z; (v) x−1/2, −y+3/2, z−1. |
Experimental details
Crystal data | |
Chemical formula | C6H7N2O+·C2Cl3O2−·C6H6N2O |
Mr | 407.63 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 293 |
a, b, c (Å) | 13.7910 (3), 22.6680 (5), 5.6340 (1) |
V (Å3) | 1761.27 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.55 |
Crystal size (mm) | 0.4 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.811, 0.947 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16297, 4017, 3575 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.04, 0.091, 1.03 |
No. of reflections | 4017 |
No. of parameters | 241 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.41, −0.57 |
Absolute structure | Flack (1983), 1791 Friedel pairs |
Absolute structure parameter | 0.01 (6) |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H15···O2i | 0.90 (3) | 1.78 (3) | 2.679 (3) | 175 (3) |
N2—H16A···N3ii | 0.87 (3) | 2.11 (3) | 2.958 (3) | 164 (3) |
N2—H16B···O3 | 0.90 (4) | 1.99 (4) | 2.887 (3) | 178 (3) |
N4—H17A···O4 | 0.91 (4) | 2.08 (4) | 2.972 (3) | 167 (4) |
N4—H17B···O1 | 0.89 (4) | 1.98 (4) | 2.839 (3) | 160 (3) |
C1—H1···O1i | 0.93 | 2.58 | 3.211 (3) | 125.9 |
C2—H2···O4iii | 0.93 | 2.55 | 3.358 (3) | 145.8 |
C7—H7···O3iv | 0.93 | 2.58 | 3.489 (3) | 165.8 |
C11—H11···Cl2v | 0.93 | 2.82 | 3.711 (3) | 161.8 |
Symmetry codes: (i) −x, −y+1, z+3/2; (ii) x−1/2, −y+3/2, z+1; (iii) −x, −y+1, z+1/2; (iv) x+1/2, −y+3/2, z; (v) x−1/2, −y+3/2, z−1. |
Acknowledgements
The author thanks the Ministry of Education, Science, Culture and Sport of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 as well as the EN–FIST Centre of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia for use of the Supernova diffractometer.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Friščić, T. & Jones, W. (2010). J. Pharm. Pharmacol. 62, 1547–1559. Web of Science PubMed Google Scholar
Karki, S., Friščić, T., Fábián, L., Laity, P. R., Day, G. M. & Jones, W. (2009). Adv. Mater. 21, 3905–3909. Web of Science CSD CrossRef CAS Google Scholar
Madeley, L. G., Levendis, D. C. & Lemmerer, A. (2011). Acta Cryst. E67, o3440. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Co-crystals have attracted much attention in recent years owing to their contributions to crystal engineering and pharmaceutical chemistry. They were found to be useful in improving the stability, solubility, dissolution rate and mechanical properties (Karki et al., 2009; Friščić & Jones, 2010). Here we present the structure obtained by reacting isonicotinamide and trichloroacetic acid in 2:1 molar ratio.
The asymmetric unit of (I) consists of one 4-carbamoylpyridin-1-ium cation, one trichloroacetate anion and one isonicotinamide molecule (Fig. 1). The amide groups of 4-carbamoylpyridin-1-ium ion and isonicotinamide molecule are twisted out of the plane of the aromatic ring with a C—C—C—N torsion angle of 21.5 (4)° and -33.5 (4)°, respectively. Similar twisting was observed for example in isonicotinamide–2-naphthoic acid (1/1) (Madeley et al., 2011). Aromatic rings of 4-carbamoylpyridin-1-ium ion and isonicotinamide molecule are not coplanar, but are inclined by 35.05 (12)°. In the crystal, all the components of the structure are associated via the extended system of hydrogen bonds (N—H···O and N—H···N) and weak C—H···O and C—H···Cl interactions into extended three-dimensional supramolecular framework (Figs. 2, 3). The 4-carbamoylpyridin-1-ium ion is hydrogen bonded via N—H···O hydrogen bonding of the pyridinium unit to the trichloroacetate ion. The amide groups from 4-carbamoylpyridin-1-ium and isonicotinamide form a dimer via N—H···O hydrogen bonding, that is a typical supramolecular hydrogen-bonded synthon observed for amide-amide homodimers. Furthermore, the amide group of the cation is hydrogen bonded to the pyridine unit of isonicotinamide and the amide group of the isonicotinamide is hydrogen bonded to the trichloroacetate ion.