organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Carbamoylpyridin-1-ium 2,2,2-tri­chloro­acetate–isonicotinamide (1/1)

aFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia, and bCO EN–FIST, Dunajska 156, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: franc.perdih@fkkt.uni-lj.si

(Received 9 August 2012; accepted 27 August 2012; online 31 August 2012)

In the crystal structure of the title 1:1 co-crystal, C6H7N2O+·C2Cl3O2·C6H6N2O, the amide groups of the 4-carbamoylpyridin-1-ium ion and the isonicotinamide mol­ecule are twisted out of the plane of the aromatic ring with C—C—C—N torsion angles of 21.5 (4) and −33.5 (4)°, respectively. The 4-carbamoylpyridin-1-ium and isonicotinamide amide groups form R22(8) hydrogen-bonded dimers via N—H⋯O=C inter­actions. The two remaining amide H atoms (i) link dimers via the cation to an isonicotinamide and (ii) from the isonicotinamide to a trichloro­acetate anion. The pyridinium H atom also forms an N—H⋯O hydrogen bond with the trichloro­acetate anion. Due to the extended hydrogen bonding, including C—H⋯O and C—H⋯Cl interactions, all components in the structure aggregate into a three-dimensional supra­molecular framework.

Related literature

For applications of co-crystals, see: Karki et al. (2009[Karki, S., Friščić, T., Fábián, L., Laity, P. R., Day, G. M. & Jones, W. (2009). Adv. Mater. 21, 3905-3909.]); Friščić & Jones (2010[Friščić, T. & Jones, W. (2010). J. Pharm. Pharmacol. 62, 1547-1559.]). For related structures, see: Madeley et al. (2011[Madeley, L. G., Levendis, D. C. & Lemmerer, A. (2011). Acta Cryst. E67, o3440.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N2O+·C2Cl3O2·C6H6N2O

  • Mr = 407.63

  • Orthorhombic, P n a 21

  • a = 13.7910 (3) Å

  • b = 22.6680 (5) Å

  • c = 5.6340 (1) Å

  • V = 1761.27 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 293 K

  • 0.4 × 0.1 × 0.1 mm

Data collection
  • Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.811, Tmax = 0.947

  • 16297 measured reflections

  • 4017 independent reflections

  • 3575 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.04

  • wR(F2) = 0.091

  • S = 1.04

  • 4017 reflections

  • 241 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 1791 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H15⋯O2i 0.90 (3) 1.78 (3) 2.679 (3) 175 (3)
N2—H16A⋯N3ii 0.87 (3) 2.11 (3) 2.958 (3) 164 (3)
N2—H16B⋯O3 0.90 (4) 1.99 (4) 2.887 (3) 178 (3)
N4—H17A⋯O4 0.91 (4) 2.08 (4) 2.972 (3) 167 (4)
N4—H17B⋯O1 0.89 (4) 1.98 (4) 2.839 (3) 160 (3)
C1—H1⋯O1i 0.93 2.58 3.211 (3) 126
C2—H2⋯O4iii 0.93 2.55 3.358 (3) 146
C7—H7⋯O3iv 0.93 2.58 3.489 (3) 166
C11—H11⋯Cl2v 0.93 2.82 3.711 (3) 162
Symmetry codes: (i) [-x, -y+1, z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+1]; (iii) [-x, -y+1, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Co-crystals have attracted much attention in recent years owing to their contributions to crystal engineering and pharmaceutical chemistry. They were found to be useful in improving the stability, solubility, dissolution rate and mechanical properties (Karki et al., 2009; Friščić & Jones, 2010). Here we present the structure obtained by reacting isonicotinamide and trichloroacetic acid in 2:1 molar ratio.

The asymmetric unit of (I) consists of one 4-carbamoylpyridin-1-ium cation, one trichloroacetate anion and one isonicotinamide molecule (Fig. 1). The amide groups of 4-carbamoylpyridin-1-ium ion and isonicotinamide molecule are twisted out of the plane of the aromatic ring with a C—C—C—N torsion angle of 21.5 (4)° and -33.5 (4)°, respectively. Similar twisting was observed for example in isonicotinamide–2-naphthoic acid (1/1) (Madeley et al., 2011). Aromatic rings of 4-carbamoylpyridin-1-ium ion and isonicotinamide molecule are not coplanar, but are inclined by 35.05 (12)°. In the crystal, all the components of the structure are associated via the extended system of hydrogen bonds (N—H···O and N—H···N) and weak C—H···O and C—H···Cl interactions into extended three-dimensional supramolecular framework (Figs. 2, 3). The 4-carbamoylpyridin-1-ium ion is hydrogen bonded via N—H···O hydrogen bonding of the pyridinium unit to the trichloroacetate ion. The amide groups from 4-carbamoylpyridin-1-ium and isonicotinamide form a dimer via N—H···O hydrogen bonding, that is a typical supramolecular hydrogen-bonded synthon observed for amide-amide homodimers. Furthermore, the amide group of the cation is hydrogen bonded to the pyridine unit of isonicotinamide and the amide group of the isonicotinamide is hydrogen bonded to the trichloroacetate ion.

Related literature top

For applications of co-crystals, see: Karki et al. (2009); Friščić & Jones (2010). For related structures, see: Madeley et al. (2011).

Experimental top

Crystals of the title compound were obtained by slow evaporation of a 2:1 mol. mixture of isonicotinamide and trichloroacetic acid in methanol at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier maps. H atoms attached to N atoms were refined isotropically with Uiso(H) = 1.5Ueq(N). Other H atoms were treated as riding atoms in geometrically idealized positions, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Hydrogen bonding diagram. Dashed lines indicate intermolecular N—H···O, N—H···N, C—H···O and C—H···Cl hydrogen bonding. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Symmetry codes: ix, –y + 1, z + 3/2; ii x – 1/2, –y + 3/2, z + 1; iv x + 1/2, –y + 3/2, z; v x – 1/2, –y + 3/2, z – 1.

Fig. 3. Crystal packing of the title compound. For the sake of clarity, hydrogen bonding is not presented.
4-Carbamoylpyridin-1-ium 2,2,2-trichloroacetate–isonicotinamide (1/1) top
Crystal data top
C6H7N2O+·C2Cl3O2·C6H6N2OF(000) = 832
Mr = 407.63Dx = 1.537 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 7898 reflections
a = 13.7910 (3) Åθ = 3.1–30.4°
b = 22.6680 (5) ŵ = 0.55 mm1
c = 5.6340 (1) ÅT = 293 K
V = 1761.27 (6) Å3Prism, colourless
Z = 40.4 × 0.1 × 0.1 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
4017 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3575 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4933 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2929
Tmin = 0.811, Tmax = 0.947l = 77
16297 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.04H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.8943P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4017 reflectionsΔρmax = 0.41 e Å3
241 parametersΔρmin = 0.57 e Å3
1 restraintAbsolute structure: Flack (1983), 1791 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C6H7N2O+·C2Cl3O2·C6H6N2OV = 1761.27 (6) Å3
Mr = 407.63Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.7910 (3) ŵ = 0.55 mm1
b = 22.6680 (5) ÅT = 293 K
c = 5.6340 (1) Å0.4 × 0.1 × 0.1 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
4017 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3575 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.947Rint = 0.031
16297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091Δρmax = 0.41 e Å3
S = 1.03Δρmin = 0.57 e Å3
4017 reflectionsAbsolute structure: Flack (1983), 1791 Friedel pairs
241 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49348 (5)0.58322 (3)0.45563 (14)0.04547 (17)
Cl20.44990 (9)0.67585 (4)0.11741 (18)0.0850 (4)
Cl30.32105 (7)0.65069 (5)0.50880 (15)0.0770 (3)
N10.29717 (16)0.50785 (9)1.1681 (4)0.0377 (5)
H150.330 (2)0.4892 (15)1.285 (6)0.057*
N20.16743 (16)0.62843 (10)0.4929 (5)0.0396 (5)
H16A0.217 (2)0.6478 (14)0.551 (7)0.059*
H16B0.135 (3)0.6394 (15)0.362 (6)0.059*
N30.19060 (17)0.78523 (10)0.3220 (5)0.0425 (5)
N40.06680 (19)0.61873 (11)0.1998 (5)0.0495 (7)
H17A0.030 (3)0.5952 (17)0.294 (8)0.074*
H17B0.131 (3)0.6133 (15)0.197 (7)0.074*
O10.25905 (13)0.57929 (9)0.1146 (4)0.0524 (5)
O20.40234 (13)0.54301 (8)0.0115 (4)0.0426 (4)
O30.06660 (12)0.66646 (9)0.0707 (4)0.0473 (5)
O40.05512 (13)0.55797 (8)0.5595 (4)0.0488 (5)
C10.20142 (19)0.49801 (11)1.1584 (5)0.0384 (6)
H10.17210.47421.27220.046*
C20.14636 (17)0.52287 (10)0.9812 (5)0.0356 (5)
H20.08010.51550.97290.043*
C30.19079 (17)0.55906 (10)0.8150 (4)0.0293 (5)
C40.29018 (18)0.56864 (11)0.8322 (5)0.0335 (5)
H40.32140.59290.72330.04*
C50.34193 (18)0.54211 (11)1.0107 (5)0.0387 (6)
H50.40850.54811.02170.046*
C60.13130 (17)0.58311 (10)0.6111 (5)0.0320 (5)
C70.2246 (2)0.76108 (12)0.1226 (6)0.0454 (7)
H70.28480.77350.06750.055*
C80.17586 (17)0.71890 (11)0.0064 (5)0.0396 (6)
H80.20340.70270.14240.048*
C90.08482 (16)0.70091 (10)0.0701 (5)0.0305 (5)
C100.0493 (2)0.72548 (12)0.2753 (5)0.0384 (6)
H100.01140.71450.33260.046*
C110.1043 (2)0.76648 (11)0.3955 (5)0.0433 (6)
H110.07970.78190.53610.052*
C120.02224 (18)0.65981 (11)0.0724 (5)0.0358 (6)
C130.34726 (17)0.57605 (10)0.1255 (4)0.0306 (5)
C140.40010 (19)0.61971 (11)0.2972 (5)0.0368 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0384 (3)0.0586 (4)0.0395 (3)0.0069 (3)0.0118 (3)0.0020 (3)
Cl20.1224 (9)0.0644 (5)0.0681 (6)0.0526 (6)0.0447 (6)0.0302 (5)
Cl30.0848 (6)0.0950 (6)0.0510 (5)0.0508 (5)0.0198 (4)0.0362 (5)
N10.0414 (12)0.0353 (11)0.0365 (13)0.0078 (9)0.0084 (10)0.0028 (9)
N20.0375 (12)0.0379 (11)0.0435 (13)0.0082 (9)0.0147 (11)0.0077 (11)
N30.0423 (13)0.0351 (11)0.0503 (14)0.0051 (9)0.0080 (11)0.0057 (10)
N40.0317 (12)0.0490 (14)0.0678 (17)0.0069 (10)0.0141 (12)0.0256 (13)
O10.0277 (9)0.0589 (12)0.0706 (14)0.0023 (8)0.0027 (10)0.0192 (12)
O20.0346 (9)0.0506 (10)0.0426 (10)0.0042 (8)0.0017 (8)0.0179 (9)
O30.0278 (9)0.0557 (11)0.0585 (13)0.0039 (8)0.0068 (9)0.0201 (10)
O40.0367 (10)0.0514 (11)0.0585 (14)0.0153 (8)0.0200 (9)0.0148 (10)
C10.0444 (15)0.0377 (13)0.0332 (15)0.0002 (11)0.0051 (11)0.0055 (11)
C20.0307 (11)0.0348 (12)0.0413 (14)0.0014 (9)0.0001 (12)0.0002 (12)
C30.0297 (12)0.0279 (11)0.0304 (12)0.0023 (9)0.0021 (10)0.0034 (9)
C40.0300 (13)0.0340 (13)0.0364 (13)0.0012 (10)0.0031 (11)0.0044 (10)
C50.0347 (13)0.0381 (13)0.0435 (14)0.0010 (10)0.0099 (12)0.0013 (12)
C60.0295 (12)0.0343 (12)0.0321 (12)0.0013 (9)0.0071 (10)0.0003 (11)
C70.0327 (14)0.0460 (16)0.0577 (18)0.0081 (12)0.0007 (12)0.0027 (14)
C80.0317 (12)0.0450 (14)0.0422 (15)0.0006 (10)0.0029 (11)0.0061 (13)
C90.0288 (11)0.0289 (11)0.0337 (12)0.0018 (9)0.0050 (10)0.0020 (10)
C100.0337 (13)0.0412 (14)0.0404 (14)0.0027 (11)0.0053 (11)0.0025 (12)
C110.0490 (15)0.0441 (14)0.0369 (14)0.0005 (12)0.0016 (13)0.0113 (13)
C120.0313 (13)0.0343 (12)0.0418 (15)0.0018 (10)0.0064 (11)0.0060 (11)
C130.0323 (12)0.0325 (11)0.0269 (11)0.0016 (9)0.0010 (10)0.0008 (10)
C140.0435 (15)0.0342 (14)0.0327 (12)0.0039 (11)0.0083 (11)0.0023 (11)
Geometric parameters (Å, º) top
Cl1—C141.772 (3)C1—H10.93
Cl2—C141.765 (3)C2—C31.387 (4)
Cl3—C141.762 (3)C2—H20.93
N1—C51.331 (4)C3—C41.391 (3)
N1—C11.340 (3)C3—C61.513 (3)
N1—H150.90 (3)C4—C51.372 (4)
N2—C61.322 (3)C4—H40.93
N2—H16A0.87 (3)C5—H50.93
N2—H16B0.90 (4)C7—C81.376 (4)
N3—C111.330 (4)C7—H70.93
N3—C71.335 (4)C8—C91.389 (3)
N4—C121.326 (3)C8—H80.93
N4—H17A0.91 (4)C9—C101.374 (4)
N4—H17B0.89 (4)C9—C121.503 (3)
O1—C131.220 (3)C10—C111.378 (4)
O2—C131.245 (3)C10—H100.93
O3—C121.234 (3)C11—H110.93
O4—C61.230 (3)C13—C141.564 (3)
C1—C21.375 (4)
C5—N1—C1121.8 (2)N3—C7—C8123.9 (3)
C5—N1—H15122 (2)N3—C7—H7118
C1—N1—H15116 (2)C8—C7—H7118
C6—N2—H16A120 (2)C7—C8—C9118.8 (3)
C6—N2—H16B116 (2)C7—C8—H8120.6
H16A—N2—H16B124 (3)C9—C8—H8120.6
C11—N3—C7116.4 (2)C10—C9—C8117.7 (2)
C12—N4—H17A118 (2)C10—C9—C12119.7 (2)
C12—N4—H17B123 (2)C8—C9—C12122.4 (2)
H17A—N4—H17B119 (3)C9—C10—C11119.4 (2)
N1—C1—C2120.3 (2)C9—C10—H10120.3
N1—C1—H1119.8C11—C10—H10120.3
C2—C1—H1119.8N3—C11—C10123.7 (3)
C1—C2—C3119.2 (2)N3—C11—H11118.1
C1—C2—H2120.4C10—C11—H11118.1
C3—C2—H2120.4O3—C12—N4123.4 (2)
C2—C3—C4118.7 (2)O3—C12—C9119.3 (2)
C2—C3—C6119.1 (2)N4—C12—C9117.3 (2)
C4—C3—C6122.1 (2)O1—C13—O2128.2 (2)
C5—C4—C3119.7 (2)O1—C13—C14117.2 (2)
C5—C4—H4120.2O2—C13—C14114.6 (2)
C3—C4—H4120.2C13—C14—Cl3112.49 (18)
N1—C5—C4120.2 (2)C13—C14—Cl2106.43 (18)
N1—C5—H5119.9Cl3—C14—Cl2109.97 (15)
C4—C5—H5119.9C13—C14—Cl1110.78 (17)
O4—C6—N2124.3 (2)Cl3—C14—Cl1107.15 (15)
O4—C6—C3118.4 (2)Cl2—C14—Cl1110.04 (15)
N2—C6—C3117.3 (2)
C5—N1—C1—C20.8 (4)C7—C8—C9—C12173.6 (2)
N1—C1—C2—C31.1 (4)C8—C9—C10—C110.1 (4)
C1—C2—C3—C40.5 (4)C12—C9—C10—C11175.2 (2)
C1—C2—C3—C6176.0 (2)C7—N3—C11—C101.5 (4)
C2—C3—C4—C50.4 (4)C9—C10—C11—N31.5 (4)
C6—C3—C4—C5175.0 (2)C10—C9—C12—O330.3 (4)
C1—N1—C5—C40.1 (4)C8—C9—C12—O3144.8 (3)
C3—C4—C5—N10.7 (4)C10—C9—C12—N4151.4 (3)
C2—C3—C6—O420.0 (4)C8—C9—C12—N433.5 (4)
C4—C3—C6—O4155.4 (3)O1—C13—C14—Cl317.9 (3)
C2—C3—C6—N2163.1 (2)O2—C13—C14—Cl3163.93 (19)
C4—C3—C6—N221.5 (4)O1—C13—C14—Cl2102.6 (3)
C11—N3—C7—C80.1 (4)O2—C13—C14—Cl275.6 (2)
N3—C7—C8—C91.6 (4)O1—C13—C14—Cl1137.8 (2)
C7—C8—C9—C101.5 (4)O2—C13—C14—Cl144.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H15···O2i0.90 (3)1.78 (3)2.679 (3)175 (3)
N2—H16A···N3ii0.87 (3)2.11 (3)2.958 (3)164 (3)
N2—H16B···O30.90 (4)1.99 (4)2.887 (3)178 (3)
N4—H17A···O40.91 (4)2.08 (4)2.972 (3)167 (4)
N4—H17B···O10.89 (4)1.98 (4)2.839 (3)160 (3)
C1—H1···O1i0.932.583.211 (3)126
C2—H2···O4iii0.932.553.358 (3)146
C7—H7···O3iv0.932.583.489 (3)166
C11—H11···Cl2v0.932.823.711 (3)162
Symmetry codes: (i) x, y+1, z+3/2; (ii) x1/2, y+3/2, z+1; (iii) x, y+1, z+1/2; (iv) x+1/2, y+3/2, z; (v) x1/2, y+3/2, z1.

Experimental details

Crystal data
Chemical formulaC6H7N2O+·C2Cl3O2·C6H6N2O
Mr407.63
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)13.7910 (3), 22.6680 (5), 5.6340 (1)
V3)1761.27 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.4 × 0.1 × 0.1
Data collection
DiffractometerAgilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.811, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
16297, 4017, 3575
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.04, 0.091, 1.03
No. of reflections4017
No. of parameters241
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.57
Absolute structureFlack (1983), 1791 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H15···O2i0.90 (3)1.78 (3)2.679 (3)175 (3)
N2—H16A···N3ii0.87 (3)2.11 (3)2.958 (3)164 (3)
N2—H16B···O30.90 (4)1.99 (4)2.887 (3)178 (3)
N4—H17A···O40.91 (4)2.08 (4)2.972 (3)167 (4)
N4—H17B···O10.89 (4)1.98 (4)2.839 (3)160 (3)
C1—H1···O1i0.932.583.211 (3)125.9
C2—H2···O4iii0.932.553.358 (3)145.8
C7—H7···O3iv0.932.583.489 (3)165.8
C11—H11···Cl2v0.932.823.711 (3)161.8
Symmetry codes: (i) x, y+1, z+3/2; (ii) x1/2, y+3/2, z+1; (iii) x, y+1, z+1/2; (iv) x+1/2, y+3/2, z; (v) x1/2, y+3/2, z1.
 

Acknowledgements

The author thanks the Ministry of Education, Science, Culture and Sport of the Republic of Slovenia and the Slovenian Research Agency for financial support through grants P1–0230–0175 as well as the EN–FIST Centre of Excellence, Dunajska 156, 1000 Ljubljana, Slovenia for use of the Supernova diffractometer.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriščić, T. & Jones, W. (2010). J. Pharm. Pharmacol. 62, 1547–1559.  Web of Science PubMed Google Scholar
First citationKarki, S., Friščić, T., Fábián, L., Laity, P. R., Day, G. M. & Jones, W. (2009). Adv. Mater. 21, 3905–3909.  Web of Science CSD CrossRef CAS Google Scholar
First citationMadeley, L. G., Levendis, D. C. & Lemmerer, A. (2011). Acta Cryst. E67, o3440.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds