organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Oxo-2,3,4,5-tetra­hydro­furan-3-yl)-1-benzo­furan-2-carbo­nitrile

aLaboratory of Medicinal and Pharmaceutical Chemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan, bLaboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan, cResearch Core for Interdisciplinary Sciences, Okayama University, Okayama 700-8530, Japan, and dDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: okuda@gifu-pu.ac.jp

(Received 23 August 2012; accepted 26 August 2012; online 31 August 2012)

The asymmetric unit of the title compound, C13H9NO3, consists of two crystallographically independent mol­ecules. In each mol­ecule, the tetra­hydro­furan (THF) ring adopts an envelope conformation with one of the methyl­ene C atoms positioned at the flap. The dihedral angles between the mean plane of the THF and the benzofuran ring system are 70.85 (5) and 89.59 (6)°. In the crystal, mol­ecules are stacked in a column along the a-axis direction through C—H⋯O hydrogen bonds, with columns further linked by C—H⋯N and C—H⋯O inter­actions.

Related literature

For a recent report on the development of complex heterocyclic skeletons for potential pharmaceutics in one step using the Truce–Smiles rearrangement, see: Okuda et al. (2011[Okuda, K., Takechi, H., Hirota, T. & Sasaki, K. (2011). Heterocycles, 83, 1315-1328.]). For the synthesis, see: Okuda et al. (2012[Okuda, K., Takano, J., Hirota, T. & Sasaki, K. (2012). J. Heterocycl. Chem. 49, 281-287.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9NO3

  • Mr = 227.22

  • Triclinic, [P \overline 1]

  • a = 5.2724 (7) Å

  • b = 10.7340 (16) Å

  • c = 19.176 (3) Å

  • α = 82.634 (4)°

  • β = 82.532 (5)°

  • γ = 80.371 (4)°

  • V = 1054.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 180 K

  • 0.36 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPIDII diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.974, Tmax = 0.990

  • 16333 measured reflections

  • 6117 independent reflections

  • 4415 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.11

  • 6117 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O6i 0.95 2.56 3.3422 (17) 140
C10—H10⋯O3ii 1.00 2.51 3.3619 (16) 143
C17—H17⋯O6ii 0.95 2.46 3.3143 (18) 150
C20—H20⋯N2iii 0.95 2.56 3.3936 (19) 146
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) -x+2, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As an extension of our work to develop complex heterocyclic skeletons for potential pharmaceutics in one step using the Truce-Smiles rearrangement (Okuda et al., 2011), we have now explored the reaction of 3-(3-ethoxycarbonylpropoxy)[1]benzofuran-2-carbonitrile with bases. In previous work, reaction of 3-(3-cyanopropoxy)benzofuran-2-carbonitrile with potassium tert-butoxide in tetrahydrofuran, afforded 5-amino-1,2-dihydro[1]benzofuro[3,2-d]furo[2,3-b]pyridine (17%, Truce-Smiles rearrangement product) and 5-amino-2,3-dihydro[1]benzofuro[3,2-b]oxepin-4-carbonitrile (39%, Thorpe-Ziegler reaction product) (Okuda et al., 2012). In the present study, we have replaced the 3-(3-cyanopropoxy) group with the 3-(3-ethoxycarbonylpropoxy) group. This change of the electrophilic moiety from nitrile to ester produces new interesting rearrangement products. Thus, the reaction of 3-(3-ethoxycarbonylpropoxy)[1]benzofuran-2-carbonitrile with postassium tert-butoxide in tetrahydrofuran affords 3-(2-oxo-2,3,4,5-tetrahydrofuran-3-yl)[1]benzofuran-2-carbonitrile (37%, Truce-Smiles rearrangement product) and ethyl 5-amino-2,3-dihydro[1]benzofuro[3,2-b]oxepin-4-carboxylate (10%, Thorpe-Ziegler reaction product) (Okuda et al., 2012).

The asymmetric unit of the title compound consists of two crystallographically independent molecules. In the molecules, the tetrahydrofuran C10/C11/O2/C12/C13 and C23/C24/O5/C25/C26 rings adopt envelope conformations with atoms C13 and C26, respectively, at the flaps. The dihedral angle between the mean plane of the tetrahydrofuran C10/C11/O2/C12/C13 ring and the benzofuran C1–C8/O1 ring system is 70.85 (5)°, while the angle between the mean plane of the C23/C24/O5/C25/C26 ring and the C14–C21/O4 ring system is 89.59 (6)°. In the crystal, molecules are stacked in column along the a axis through C10—H10···O3ii and C17—H17···O6ii (symmetry code in Table 1) hydrogen bonds. The columns are further linked by C4—H4···O6i and C20—H20···N2iii (symmetry codes in Table 1) hydrogen bonds.

Related literature top

For a recent report on the development of complex heterocyclic skeletons for potential pharmaceutics in one step using the Truce–Smiles rearrangement, see: Okuda et al. (2011). For the synthesis, see: Okuda et al. (2012).

Experimental top

The detailed experimental procedure for the synthesis of 3-(2-oxo-2,3,4,5-tetrahydrofuran-3-yl)-2-carbonitrile (m.p. 378–381 K from cyclohexane) from 3-(3-ethoxycarbonylpropoxy)[1]benzofuran-2-carbonitrile was described in our previous paper (Okuda et al., 2012). Single crystals suitable for X-ray diffraction were obtained from an n-hexane/ethyl acetate solution.

Refinement top

H atoms were located in a difference Fourier map and then were positioned geometrically (C—H = 0.95, 0.99 or 1.00 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1 The asymmetric unit of the title compound, with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Fig. 2 A packing diagram of the title compound, viewed along the a axis. Dashed lines indicate the C—H···O and C—H···N hydrogen bonds. [Symmetry codes: (i) x, y - 1, z; (iii) -x + 2, -y + 1, -z + 1.]
3-(2-Oxo-2,3,4,5-tetrahydrofuran-3-yl)-1-benzofuran-2-carbonitrile top
Crystal data top
C13H9NO3Z = 4
Mr = 227.22F(000) = 472.00
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 5.2724 (7) ÅCell parameters from 12779 reflections
b = 10.7340 (16) Åθ = 3.1–30.1°
c = 19.176 (3) ŵ = 0.10 mm1
α = 82.634 (4)°T = 180 K
β = 82.532 (5)°Block, colourless
γ = 80.371 (4)°0.36 × 0.10 × 0.10 mm
V = 1054.6 (3) Å3
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
4415 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.041
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 77
Tmin = 0.974, Tmax = 0.990k = 1515
16333 measured reflectionsl = 2625
6117 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0663P)2 + 0.0901P]
where P = (Fo2 + 2Fc2)/3
6117 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H9NO3γ = 80.371 (4)°
Mr = 227.22V = 1054.6 (3) Å3
Triclinic, P1Z = 4
a = 5.2724 (7) ÅMo Kα radiation
b = 10.7340 (16) ŵ = 0.10 mm1
c = 19.176 (3) ÅT = 180 K
α = 82.634 (4)°0.36 × 0.10 × 0.10 mm
β = 82.532 (5)°
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
6117 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4415 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.990Rint = 0.041
16333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.11Δρmax = 0.32 e Å3
6117 reflectionsΔρmin = 0.27 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58378 (18)0.34215 (9)0.03832 (5)0.0323 (2)
O20.69558 (19)0.15370 (9)0.32831 (5)0.0361 (2)
O30.81903 (19)0.32278 (10)0.26050 (5)0.0379 (2)
O40.73089 (18)0.58516 (9)0.45824 (5)0.0324 (2)
O50.60788 (19)0.78752 (9)0.16810 (5)0.0356 (2)
O60.8676 (2)0.82575 (9)0.24258 (5)0.0380 (2)
N10.0379 (3)0.50838 (13)0.11992 (7)0.0445 (3)
N21.2131 (2)0.39902 (12)0.36460 (6)0.0394 (3)
C10.4424 (2)0.34060 (12)0.10448 (7)0.0295 (3)
C20.5470 (2)0.24973 (11)0.15304 (7)0.0266 (2)
C30.7757 (2)0.18596 (11)0.11503 (6)0.0265 (3)
C40.9699 (3)0.08551 (12)0.13326 (7)0.0294 (3)
H40.96240.04050.17930.035*
C51.1724 (3)0.05397 (13)0.08222 (7)0.0353 (3)
H51.30720.01330.09360.042*
C61.1836 (3)0.11914 (14)0.01379 (8)0.0378 (3)
H61.32630.09510.01990.045*
C70.9925 (3)0.21716 (13)0.00570 (7)0.0347 (3)
H70.99870.26140.05190.042*
C80.7911 (3)0.24714 (12)0.04626 (7)0.0290 (3)
C90.2170 (3)0.43326 (13)0.11173 (7)0.0333 (3)
C100.4607 (2)0.22821 (11)0.23048 (6)0.0263 (2)
H100.30510.29220.24240.032*
C110.6764 (2)0.24452 (12)0.27295 (7)0.0286 (3)
C120.4900 (3)0.07752 (15)0.33328 (8)0.0404 (3)
H12A0.34550.10710.36860.048*
H12B0.55490.01300.34730.048*
C130.4013 (3)0.09468 (12)0.26003 (7)0.0315 (3)
H13A0.21410.09060.26260.038*
H13B0.49940.02930.23070.038*
C140.8037 (2)0.56118 (12)0.38884 (7)0.0283 (3)
C150.6447 (2)0.63010 (11)0.34307 (7)0.0261 (2)
C160.4503 (2)0.70580 (11)0.38674 (7)0.0271 (3)
C170.2297 (3)0.79571 (12)0.37446 (7)0.0327 (3)
H170.18020.81920.32810.039*
C180.0872 (3)0.84879 (14)0.43205 (8)0.0386 (3)
H180.06300.90940.42490.046*
C190.1582 (3)0.81571 (15)0.50069 (8)0.0405 (3)
H190.05570.85490.53880.049*
C200.3731 (3)0.72762 (14)0.51429 (7)0.0366 (3)
H200.42200.70430.56070.044*
C210.5136 (3)0.67511 (12)0.45587 (7)0.0301 (3)
C221.0308 (3)0.47067 (13)0.37642 (7)0.0306 (3)
C230.6739 (2)0.62988 (11)0.26448 (6)0.0264 (3)
H230.82140.56260.25110.032*
C240.7321 (2)0.75716 (12)0.22642 (7)0.0284 (3)
C250.4614 (3)0.68768 (14)0.15984 (7)0.0342 (3)
H25A0.55360.63430.12320.041*
H25B0.28810.72490.14590.041*
C260.4373 (3)0.60905 (13)0.23163 (7)0.0315 (3)
H26A0.44250.51810.22640.038*
H26B0.27480.63980.26060.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0354 (5)0.0305 (5)0.0270 (5)0.0052 (4)0.0027 (4)0.0016 (4)
O20.0398 (5)0.0368 (5)0.0322 (5)0.0040 (4)0.0094 (4)0.0020 (4)
O30.0365 (5)0.0360 (5)0.0432 (6)0.0076 (4)0.0034 (4)0.0105 (4)
O40.0361 (5)0.0327 (5)0.0255 (5)0.0058 (4)0.0050 (4)0.0055 (4)
O50.0406 (5)0.0344 (5)0.0303 (5)0.0024 (4)0.0094 (4)0.0032 (4)
O60.0402 (6)0.0323 (5)0.0423 (6)0.0081 (4)0.0082 (4)0.0003 (4)
N10.0423 (7)0.0399 (7)0.0425 (7)0.0112 (6)0.0003 (5)0.0002 (5)
N20.0389 (6)0.0426 (7)0.0328 (6)0.0092 (5)0.0057 (5)0.0081 (5)
C10.0299 (6)0.0269 (6)0.0299 (6)0.0020 (5)0.0016 (5)0.0057 (5)
C20.0269 (6)0.0231 (5)0.0292 (6)0.0005 (4)0.0022 (5)0.0073 (5)
C30.0281 (6)0.0239 (6)0.0270 (6)0.0001 (5)0.0010 (5)0.0075 (5)
C40.0320 (6)0.0252 (6)0.0293 (6)0.0015 (5)0.0028 (5)0.0047 (5)
C50.0337 (7)0.0308 (7)0.0371 (7)0.0066 (5)0.0001 (5)0.0069 (5)
C60.0365 (7)0.0383 (7)0.0343 (7)0.0034 (6)0.0047 (6)0.0091 (6)
C70.0387 (7)0.0351 (7)0.0271 (6)0.0003 (6)0.0017 (5)0.0050 (5)
C80.0309 (6)0.0257 (6)0.0290 (6)0.0018 (5)0.0035 (5)0.0053 (5)
C90.0350 (7)0.0307 (6)0.0314 (7)0.0020 (5)0.0031 (5)0.0028 (5)
C100.0249 (6)0.0252 (6)0.0270 (6)0.0022 (4)0.0008 (4)0.0062 (5)
C110.0299 (6)0.0264 (6)0.0283 (6)0.0027 (5)0.0007 (5)0.0098 (5)
C120.0474 (9)0.0386 (8)0.0351 (8)0.0102 (6)0.0044 (6)0.0007 (6)
C130.0311 (7)0.0292 (6)0.0336 (7)0.0038 (5)0.0019 (5)0.0044 (5)
C140.0312 (6)0.0261 (6)0.0266 (6)0.0006 (5)0.0035 (5)0.0051 (5)
C150.0275 (6)0.0216 (5)0.0282 (6)0.0008 (4)0.0021 (5)0.0041 (4)
C160.0299 (6)0.0237 (6)0.0274 (6)0.0018 (5)0.0029 (5)0.0051 (5)
C170.0328 (7)0.0280 (6)0.0367 (7)0.0015 (5)0.0064 (5)0.0062 (5)
C180.0334 (7)0.0335 (7)0.0468 (8)0.0076 (6)0.0049 (6)0.0121 (6)
C190.0416 (8)0.0401 (8)0.0377 (8)0.0027 (6)0.0027 (6)0.0153 (6)
C200.0417 (8)0.0384 (7)0.0279 (6)0.0009 (6)0.0017 (5)0.0084 (5)
C210.0318 (7)0.0274 (6)0.0299 (6)0.0006 (5)0.0029 (5)0.0055 (5)
C220.0334 (7)0.0307 (6)0.0261 (6)0.0006 (5)0.0044 (5)0.0037 (5)
C230.0296 (6)0.0234 (6)0.0249 (6)0.0021 (5)0.0039 (5)0.0045 (4)
C240.0275 (6)0.0278 (6)0.0272 (6)0.0021 (5)0.0019 (5)0.0024 (5)
C250.0338 (7)0.0381 (7)0.0311 (7)0.0014 (6)0.0080 (5)0.0063 (6)
C260.0354 (7)0.0293 (6)0.0307 (7)0.0038 (5)0.0056 (5)0.0060 (5)
Geometric parameters (Å, º) top
O1—C81.3741 (15)C10—H101.0000
O1—C11.3850 (15)C12—C131.5169 (19)
O2—C111.3480 (16)C12—H12A0.9900
O2—C121.4500 (18)C12—H12B0.9900
O3—C111.2005 (16)C13—H13A0.9900
O4—C211.3706 (15)C13—H13B0.9900
O4—C141.3809 (15)C14—C151.3555 (17)
O5—C241.3458 (16)C14—C221.4251 (17)
O5—C251.4568 (17)C15—C161.4440 (17)
O6—C241.2003 (16)C15—C231.4952 (17)
N1—C91.1427 (18)C16—C211.3943 (18)
N2—C221.1434 (17)C16—C171.4059 (17)
C1—C21.3576 (18)C17—C181.3825 (19)
C1—C91.4207 (17)C17—H170.9500
C2—C31.4411 (16)C18—C191.401 (2)
C2—C101.4958 (17)C18—H180.9500
C3—C81.3945 (18)C19—C201.379 (2)
C3—C41.3998 (17)C19—H190.9500
C4—C51.3804 (18)C20—C211.3886 (18)
C4—H40.9500C20—H200.9500
C5—C61.405 (2)C23—C241.5232 (18)
C5—H50.9500C23—C261.5282 (17)
C6—C71.3799 (19)C23—H231.0000
C6—H60.9500C25—C261.5220 (18)
C7—C81.3845 (18)C25—H25A0.9900
C7—H70.9500C25—H25B0.9900
C10—C111.5272 (17)C26—H26A0.9900
C10—C131.5392 (18)C26—H26B0.9900
C8—O1—C1104.64 (9)C10—C13—H13B111.2
C11—O2—C12110.37 (10)H13A—C13—H13B109.1
C21—O4—C14104.81 (9)C15—C14—O4113.40 (11)
C24—O5—C25110.35 (10)C15—C14—C22130.44 (12)
C2—C1—O1113.40 (11)O4—C14—C22116.15 (11)
C2—C1—C9130.13 (12)C14—C15—C16104.75 (11)
O1—C1—C9116.46 (11)C14—C15—C23126.85 (11)
C1—C2—C3104.72 (11)C16—C15—C23128.36 (11)
C1—C2—C10127.92 (11)C21—C16—C17118.56 (12)
C3—C2—C10127.11 (11)C21—C16—C15106.28 (11)
C8—C3—C4119.08 (11)C17—C16—C15135.16 (12)
C8—C3—C2106.54 (11)C18—C17—C16117.81 (13)
C4—C3—C2134.36 (12)C18—C17—H17121.1
C5—C4—C3117.89 (12)C16—C17—H17121.1
C5—C4—H4121.1C17—C18—C19121.84 (13)
C3—C4—H4121.1C17—C18—H18119.1
C4—C5—C6121.44 (12)C19—C18—H18119.1
C4—C5—H5119.3C20—C19—C18121.58 (13)
C6—C5—H5119.3C20—C19—H19119.2
C7—C6—C5121.68 (12)C18—C19—H19119.2
C7—C6—H6119.2C19—C20—C21115.81 (13)
C5—C6—H6119.2C19—C20—H20122.1
C6—C7—C8115.93 (12)C21—C20—H20122.1
C6—C7—H7122.0O4—C21—C20124.84 (12)
C8—C7—H7122.0O4—C21—C16110.75 (11)
O1—C8—C7125.34 (12)C20—C21—C16124.40 (12)
O1—C8—C3110.67 (11)N2—C22—C14178.21 (14)
C7—C8—C3123.96 (12)C15—C23—C24111.65 (10)
N1—C9—C1177.51 (15)C15—C23—C26116.74 (10)
C2—C10—C11109.82 (10)C24—C23—C26102.94 (10)
C2—C10—C13117.21 (10)C15—C23—H23108.4
C11—C10—C13102.61 (10)C24—C23—H23108.4
C2—C10—H10108.9C26—C23—H23108.4
C11—C10—H10108.9O6—C24—O5121.30 (12)
C13—C10—H10108.9O6—C24—C23128.18 (12)
O3—C11—O2122.11 (12)O5—C24—C23110.52 (11)
O3—C11—C10127.51 (12)O5—C25—C26105.93 (10)
O2—C11—C10110.35 (11)O5—C25—H25A110.5
O2—C12—C13105.67 (11)C26—C25—H25A110.5
O2—C12—H12A110.6O5—C25—H25B110.5
C13—C12—H12A110.6C26—C25—H25B110.5
O2—C12—H12B110.6H25A—C25—H25B108.7
C13—C12—H12B110.6C25—C26—C23103.01 (11)
H12A—C12—H12B108.7C25—C26—H26A111.2
C12—C13—C10102.80 (11)C23—C26—H26A111.2
C12—C13—H13A111.2C25—C26—H26B111.2
C10—C13—H13A111.2C23—C26—H26B111.2
C12—C13—H13B111.2H26A—C26—H26B109.1
C8—O1—C1—C20.64 (15)C21—O4—C14—C150.31 (15)
C8—O1—C1—C9178.45 (12)C21—O4—C14—C22179.12 (12)
O1—C1—C2—C30.40 (15)O4—C14—C15—C160.08 (15)
C9—C1—C2—C3179.32 (14)C22—C14—C15—C16179.42 (14)
O1—C1—C2—C10174.12 (12)O4—C14—C15—C23177.84 (11)
C9—C1—C2—C104.8 (2)C22—C14—C15—C231.5 (2)
C1—C2—C3—C81.26 (14)C14—C15—C16—C210.44 (14)
C10—C2—C3—C8173.32 (12)C23—C15—C16—C21177.44 (12)
C1—C2—C3—C4179.54 (14)C14—C15—C16—C17179.35 (15)
C10—C2—C3—C45.0 (2)C23—C15—C16—C172.8 (2)
C8—C3—C4—C51.69 (19)C21—C16—C17—C180.1 (2)
C2—C3—C4—C5176.42 (14)C15—C16—C17—C18179.70 (14)
C3—C4—C5—C60.7 (2)C16—C17—C18—C190.3 (2)
C4—C5—C6—C70.3 (2)C17—C18—C19—C200.5 (2)
C5—C6—C7—C80.2 (2)C18—C19—C20—C210.3 (2)
C1—O1—C8—C7176.97 (13)C14—O4—C21—C20179.82 (13)
C1—O1—C8—C31.47 (14)C14—O4—C21—C160.60 (14)
C6—C7—C8—O1179.11 (13)C19—C20—C21—O4179.19 (13)
C6—C7—C8—C30.9 (2)C19—C20—C21—C160.1 (2)
C4—C3—C8—O1179.67 (11)C17—C16—C21—O4179.17 (12)
C2—C3—C8—O11.74 (14)C15—C16—C21—O40.67 (15)
C4—C3—C8—C71.9 (2)C17—C16—C21—C200.0 (2)
C2—C3—C8—C7176.72 (13)C15—C16—C21—C20179.88 (13)
C1—C2—C10—C11118.27 (14)C14—C15—C23—C24113.20 (14)
C3—C2—C10—C1155.08 (16)C16—C15—C23—C2464.24 (16)
C1—C2—C10—C13125.22 (14)C14—C15—C23—C26128.77 (14)
C3—C2—C10—C1361.43 (17)C16—C15—C23—C2653.79 (17)
C12—O2—C11—O3176.41 (12)C25—O5—C24—O6178.87 (12)
C12—O2—C11—C105.30 (14)C25—O5—C24—C230.89 (14)
C2—C10—C11—O339.87 (17)C15—C23—C24—O638.50 (18)
C13—C10—C11—O3165.23 (13)C26—C23—C24—O6164.52 (14)
C2—C10—C11—O2138.30 (10)C15—C23—C24—O5141.76 (11)
C13—C10—C11—O212.94 (13)C26—C23—C24—O515.74 (13)
C11—O2—C12—C1321.84 (15)C24—O5—C25—C2617.46 (14)
O2—C12—C13—C1028.54 (14)O5—C25—C26—C2326.15 (13)
C2—C10—C13—C12145.02 (11)C15—C23—C26—C25147.42 (11)
C11—C10—C13—C1224.64 (12)C24—C23—C26—C2524.76 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O6i0.952.563.3422 (17)140
C10—H10···O3ii1.002.513.3619 (16)143
C17—H17···O6ii0.952.463.3143 (18)150
C20—H20···N2iii0.952.563.3936 (19)146
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H9NO3
Mr227.22
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)5.2724 (7), 10.7340 (16), 19.176 (3)
α, β, γ (°)82.634 (4), 82.532 (5), 80.371 (4)
V3)1054.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPIDII
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.974, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
16333, 6117, 4415
Rint0.041
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.11
No. of reflections6117
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.27

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O6i0.952.563.3422 (17)140
C10—H10···O3ii1.002.513.3619 (16)143
C17—H17···O6ii0.952.463.3143 (18)150
C20—H20···N2iii0.952.563.3936 (19)146
Symmetry codes: (i) x, y1, z; (ii) x1, y, z; (iii) x+2, y+1, z+1.
 

Footnotes

Additional corresponding author, e-mail: ishidah@cc.okayama-u.ac.jp.

Acknowledgements

The authors thank Dr K. L. Kirk (NIDDK, NIH) for helpful suggestions.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOkuda, K., Takano, J., Hirota, T. & Sasaki, K. (2012). J. Heterocycl. Chem. 49, 281–287.  CrossRef CAS Google Scholar
First citationOkuda, K., Takechi, H., Hirota, T. & Sasaki, K. (2011). Heterocycles, 83, 1315–1328.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds