organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3-nitro-N-{(E)-[5-(4-nitro­phen­yl)furan-2-yl]methyl­­idene}aniline

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, dFaculty of Sciences, Department of Physics, Erciyes University, 38039 Kayseri, Turkey, and eHoward University, College of Arts & Sciences, Department of Chemistry, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: merve.pekdemir@oposta.omu.edu.tr

(Received 17 May 2012; accepted 27 July 2012; online 4 August 2012)

In the title Schiff-base type compound, C18H13N3O5, the central furan ring makes dihedral angles of 12.80 (7) and 51.43 (4)° with the terminal benzene rings. The dihedral angle between the benzene rings is 45.43 (3)°. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (010). In addition, there are ππ stacking inter­actions within the layer [centroid–centroid distance = 3.584 (1) Å] and between the layers [centroid–centroid distance 3.751 (1) Å].

Related literature

For similar Schiff bases, see: Yamada et al. (2002[Yamada, A., Kakitani, T., Yamamoto, S. & Yamato, T. (2002). Chem. Phys. Lett. 366, 670-675.]); Cukurovali et al. (2002[Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Abu Thaher et al. (2012[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012). Acta Cryst. E68, o633.]). For the biological activity of Schiff bases, see: Vijesh et al. (2010[Vijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460-5464.]); Tarafder et al. (2002[Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547-2554.]); Ghorab et al. (2010[Ghorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171-178.]); Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). J. Inorg. Biochem. 92, 141-148.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N3O5

  • Mr = 351.31

  • Monoclinic, P 21 /c

  • a = 10.9026 (3) Å

  • b = 10.2798 (3) Å

  • c = 14.2962 (3) Å

  • β = 101.529 (2)°

  • V = 1569.94 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.93 mm−1

  • T = 123 K

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Oxford Diffraction Gemini-R diffractometer

  • Absorption correction: multi-scan [CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), and Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.671, Tmax = 0.688

  • 6460 measured reflections

  • 3171 independent reflections

  • 2764 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.05

  • 3171 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O5i 0.93 2.58 3.4895 (19) 165
C13—H13A⋯O1ii 0.93 2.53 3.432 (2) 162
C14—H14A⋯O2iii 0.93 2.55 3.361 (2) 147
Symmetry codes: (i) x, y, z-1; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been very important as ligands in the area of coordination chemistry. These ligands and their metal complexes have shown important activity in the field of biology in the past years. Several new examples have been tested for their antitumor, antimicrobial, anticancer and antibacterial activities (Ali et al., 2002; Ghorab et al., 2010; Tarafder et al., 2002; Vijesh et al., 2010). In view of these facts, the aim of this present study is to obtain a structure of the Schiff base, 2-methyl-3-nitro-N-{(E)-[5-(4-nitrophenyl)furan-2-yl]methylideneaniline.

In the title compound (Fig 1), the molecule presents an E configuration with the 2-(4-nitrophenyl)furan group opposite to 1-methyl-2-nitrobenzene group about the N2 C11 double bond. This N2 C11 double bond distance [1.2783 (19) Å] is longer than the N C typical bond distance (Allen et al., 1987), probably due to π conjugation along all the molecule. The torsion angle is 171.79 (14) ° formed by C10—C11—N2—C12. All other bond lengths and angles are within normal ranges (Allen et al., 1987). The central furan ring (C7—C10/O3) is planar, with an r.m.s. deviation for fitted atoms of 0.0019 Å. This plane makes dihedral angles of 12.80 (7) and 51.43 (4) ° with the terminal benzene rings C1—C6 and C12—C17, respectively. The dihedral angle between the two benzene ring is 45.43 (3)°.

In the crystal, C—H···O intermolecular interactions are observed (Table 1) as well as ππ stacking interactions [Cg1···Cg3 (-x,1 - y,-z) = 3.584 (1) Å and Cg3···Cg3 (x, 1 + y, z) = 3.751 (1) Å, where Cg1(O3/C7—C10) and Cg3(C12—C17) are the centroids of the furan and benzene ring, respectively] (Fig. 2).

Related literature top

For similar Schiff bases, see: Yamada et al. (2002); Cukurovali et al. (2002); Isloor et al. (2009); Abu Thaher et al. (2012). For the biological activity of Schiff bases, see: Vijesh et al. (2010); Tarafder et al. (2002); Ghorab et al. (2010); Ali et al. (2002). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was prepared by refluxing a mixture containing 5-(4-nitrophenyl)furan-2 carbaldehyde (0.011 g 0.051 mmol) and 2-methyl-3-nitroaniline (0.0077 g 0.051 mmol) in 40 ml of ethanol. The reaction mixture was stirred for 1 h under reflux. The crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield 62%; m.p: 471–474 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms. The intramolecular interaction is shown as a dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-Methyl-3-nitro-N-{(E)-[5-(4-nitrophenyl)furan- 2-yl]methylidene}aniline top
Crystal data top
C18H13N3O5F(000) = 728
Mr = 351.31Dx = 1.486 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 3039 reflections
a = 10.9026 (3) Åθ = 3.2–75.5°
b = 10.2798 (3) ŵ = 0.93 mm1
c = 14.2962 (3) ÅT = 123 K
β = 101.529 (2)°Block, light yellow
V = 1569.94 (7) Å30.50 × 0.40 × 0.40 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-R
diffractometer
3171 independent reflections
Radiation source: Enhance (Cu) X-ray Source2764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.5081 pixels mm-1θmax = 75.7°, θmin = 4.1°
ω scansh = 1213
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2007), and Clark & Reid (1995)]
k = 1212
Tmin = 0.671, Tmax = 0.688l = 177
6460 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.3233P]
where P = (Fo2 + 2Fc2)/3
3171 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H13N3O5V = 1569.94 (7) Å3
Mr = 351.31Z = 4
Monoclinic, P21/cCu Kα radiation
a = 10.9026 (3) ŵ = 0.93 mm1
b = 10.2798 (3) ÅT = 123 K
c = 14.2962 (3) Å0.50 × 0.40 × 0.40 mm
β = 101.529 (2)°
Data collection top
Oxford Diffraction Gemini-R
diffractometer
3171 independent reflections
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2007), and Clark & Reid (1995)]
2764 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.688Rint = 0.028
6460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3171 reflectionsΔρmin = 0.23 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.22774 (12)0.22828 (14)0.24867 (10)0.0309 (3)
N20.28795 (11)0.40005 (12)0.30426 (9)0.0224 (3)
N30.26983 (13)0.41136 (13)0.64618 (9)0.0281 (3)
O10.32515 (11)0.21084 (14)0.21964 (10)0.0412 (3)
O20.21821 (12)0.20872 (15)0.33171 (9)0.0448 (3)
O30.20668 (9)0.40126 (10)0.10398 (7)0.0206 (2)
O40.15778 (13)0.43153 (18)0.63095 (9)0.0537 (4)
O50.33489 (12)0.41218 (14)0.72703 (8)0.0403 (3)
C10.11759 (13)0.27566 (15)0.18146 (10)0.0247 (3)
C20.01288 (15)0.31134 (16)0.21649 (11)0.0280 (3)
H2A0.01210.30410.28120.034*
C30.09029 (14)0.35784 (16)0.15327 (10)0.0258 (3)
H3A0.16110.38320.17560.031*
C40.08916 (13)0.36719 (14)0.05598 (10)0.0209 (3)
C50.01791 (13)0.32932 (14)0.02242 (10)0.0224 (3)
H5A0.01870.33450.04240.027*
C60.12221 (13)0.28430 (14)0.08556 (11)0.0242 (3)
H6A0.19400.26030.06410.029*
C70.20003 (13)0.41645 (14)0.00792 (10)0.0204 (3)
C80.30432 (14)0.47801 (15)0.00873 (10)0.0236 (3)
H8A0.32170.49990.06790.028*
C90.38082 (14)0.50202 (15)0.08172 (10)0.0236 (3)
H9A0.45850.54280.09360.028*
C100.31886 (13)0.45401 (14)0.14813 (10)0.0215 (3)
C110.35804 (13)0.44480 (14)0.25000 (10)0.0222 (3)
H11A0.43820.47270.27780.027*
C120.34377 (13)0.38033 (14)0.40136 (10)0.0216 (3)
C130.46195 (14)0.32360 (15)0.42596 (11)0.0248 (3)
H13A0.50560.30280.37830.030*
C140.51519 (14)0.29778 (15)0.52044 (11)0.0270 (3)
H14A0.59450.26080.53610.032*
C150.45026 (14)0.32705 (15)0.59109 (10)0.0248 (3)
H15A0.48490.30990.65480.030*
C160.33171 (13)0.38282 (14)0.56546 (10)0.0221 (3)
C170.27330 (13)0.41176 (14)0.47145 (10)0.0208 (3)
C180.14791 (14)0.47584 (16)0.43966 (11)0.0267 (3)
H18A0.14860.55960.46940.040*
H18B0.08410.42270.45770.040*
H18C0.13100.48610.37150.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0263 (7)0.0291 (7)0.0333 (7)0.0015 (5)0.0037 (5)0.0025 (6)
N20.0224 (6)0.0234 (6)0.0213 (6)0.0002 (5)0.0040 (5)0.0015 (5)
N30.0339 (7)0.0280 (7)0.0237 (6)0.0029 (6)0.0091 (5)0.0007 (5)
O10.0234 (6)0.0482 (8)0.0492 (7)0.0046 (5)0.0003 (5)0.0067 (6)
O20.0407 (7)0.0580 (9)0.0306 (6)0.0050 (6)0.0051 (5)0.0087 (6)
O30.0211 (5)0.0228 (5)0.0177 (5)0.0007 (4)0.0034 (4)0.0005 (4)
O40.0355 (7)0.0957 (13)0.0336 (7)0.0182 (8)0.0155 (5)0.0061 (7)
O50.0425 (7)0.0572 (8)0.0218 (6)0.0081 (6)0.0076 (5)0.0048 (5)
C10.0221 (7)0.0231 (7)0.0263 (7)0.0025 (6)0.0015 (6)0.0012 (6)
C20.0282 (7)0.0338 (8)0.0212 (7)0.0010 (6)0.0031 (6)0.0012 (6)
C30.0238 (7)0.0314 (8)0.0230 (7)0.0001 (6)0.0067 (5)0.0022 (6)
C40.0213 (7)0.0194 (7)0.0215 (7)0.0028 (5)0.0031 (5)0.0013 (5)
C50.0234 (7)0.0221 (7)0.0220 (7)0.0029 (6)0.0056 (5)0.0008 (6)
C60.0209 (7)0.0226 (7)0.0295 (8)0.0024 (6)0.0061 (6)0.0025 (6)
C70.0229 (7)0.0206 (7)0.0182 (7)0.0043 (5)0.0051 (5)0.0020 (5)
C80.0234 (7)0.0265 (7)0.0218 (7)0.0022 (6)0.0064 (5)0.0030 (6)
C90.0212 (7)0.0245 (7)0.0254 (7)0.0009 (6)0.0052 (5)0.0004 (6)
C100.0190 (6)0.0206 (7)0.0247 (7)0.0002 (5)0.0043 (5)0.0011 (6)
C110.0217 (7)0.0208 (7)0.0239 (7)0.0005 (6)0.0038 (5)0.0022 (6)
C120.0229 (7)0.0211 (7)0.0205 (7)0.0037 (6)0.0037 (5)0.0014 (5)
C130.0246 (7)0.0262 (7)0.0246 (7)0.0001 (6)0.0073 (6)0.0020 (6)
C140.0226 (7)0.0270 (8)0.0299 (8)0.0025 (6)0.0016 (6)0.0013 (6)
C150.0271 (7)0.0234 (7)0.0219 (7)0.0036 (6)0.0001 (5)0.0000 (6)
C160.0254 (7)0.0205 (7)0.0215 (7)0.0050 (6)0.0069 (5)0.0023 (5)
C170.0204 (7)0.0189 (7)0.0236 (7)0.0033 (5)0.0053 (5)0.0012 (5)
C180.0237 (7)0.0295 (8)0.0270 (7)0.0022 (6)0.0056 (6)0.0001 (6)
Geometric parameters (Å, º) top
N1—O11.2282 (18)C7—C81.363 (2)
N1—O21.2288 (19)C8—C91.413 (2)
N1—C11.4633 (19)C8—H8A0.9300
N2—C111.2783 (19)C9—C101.363 (2)
N2—C121.4145 (18)C9—H9A0.9300
N3—O41.2151 (19)C10—C111.437 (2)
N3—O51.2294 (18)C11—H11A0.9300
N3—C161.4779 (18)C12—C131.394 (2)
O3—C71.3696 (16)C12—C171.417 (2)
O3—C101.3711 (17)C13—C141.385 (2)
C1—C21.385 (2)C13—H13A0.9300
C1—C61.385 (2)C14—C151.378 (2)
C2—C31.380 (2)C14—H14A0.9300
C2—H2A0.9300C15—C161.394 (2)
C3—C41.397 (2)C15—H15A0.9300
C3—H3A0.9300C16—C171.399 (2)
C4—C51.403 (2)C17—C181.504 (2)
C4—C71.453 (2)C18—H18A0.9600
C5—C61.383 (2)C18—H18B0.9600
C5—H5A0.9300C18—H18C0.9600
C6—H6A0.9300
O1—N1—O2123.25 (14)C10—C9—H9A126.6
O1—N1—C1118.58 (14)C8—C9—H9A126.6
O2—N1—C1118.17 (14)C9—C10—O3110.08 (12)
C11—N2—C12117.06 (12)C9—C10—C11129.92 (13)
O4—N3—O5122.54 (14)O3—C10—C11119.85 (12)
O4—N3—C16119.57 (13)N2—C11—C10123.11 (13)
O5—N3—C16117.89 (13)N2—C11—H11A118.4
C7—O3—C10106.26 (11)C10—C11—H11A118.4
C2—C1—C6122.47 (14)C13—C12—N2120.15 (13)
C2—C1—N1118.59 (14)C13—C12—C17121.44 (13)
C6—C1—N1118.94 (14)N2—C12—C17118.28 (13)
C3—C2—C1118.55 (14)C14—C13—C12120.82 (14)
C3—C2—H2A120.7C14—C13—H13A119.6
C1—C2—H2A120.7C12—C13—H13A119.6
C2—C3—C4120.52 (14)C15—C14—C13119.77 (14)
C2—C3—H3A119.7C15—C14—H14A120.1
C4—C3—H3A119.7C13—C14—H14A120.1
C3—C4—C5119.67 (13)C14—C15—C16118.84 (14)
C3—C4—C7118.58 (13)C14—C15—H15A120.6
C5—C4—C7121.76 (13)C16—C15—H15A120.6
C6—C5—C4120.11 (13)C15—C16—C17124.04 (14)
C6—C5—H5A119.9C15—C16—N3114.85 (13)
C4—C5—H5A119.9C17—C16—N3121.10 (13)
C5—C6—C1118.68 (14)C16—C17—C12115.08 (13)
C5—C6—H6A120.7C16—C17—C18126.53 (13)
C1—C6—H6A120.7C12—C17—C18118.35 (13)
C8—C7—O3110.44 (13)C17—C18—H18A109.5
C8—C7—C4132.08 (13)C17—C18—H18B109.5
O3—C7—C4117.48 (12)H18A—C18—H18B109.5
C7—C8—C9106.36 (13)C17—C18—H18C109.5
C7—C8—H8A126.8H18A—C18—H18C109.5
C9—C8—H8A126.8H18B—C18—H18C109.5
C10—C9—C8106.86 (13)
O1—N1—C1—C2171.75 (15)C7—O3—C10—C90.44 (15)
O2—N1—C1—C27.8 (2)C7—O3—C10—C11175.51 (13)
O1—N1—C1—C67.7 (2)C12—N2—C11—C10171.79 (14)
O2—N1—C1—C6172.80 (15)C9—C10—C11—N2178.09 (15)
C6—C1—C2—C30.3 (2)O3—C10—C11—N26.9 (2)
N1—C1—C2—C3179.05 (14)C11—N2—C12—C1343.4 (2)
C1—C2—C3—C40.7 (2)C11—N2—C12—C17140.62 (14)
C2—C3—C4—C50.2 (2)N2—C12—C13—C14176.78 (14)
C2—C3—C4—C7179.87 (14)C17—C12—C13—C140.9 (2)
C3—C4—C5—C60.7 (2)C12—C13—C14—C150.7 (2)
C7—C4—C5—C6179.25 (13)C13—C14—C15—C160.2 (2)
C4—C5—C6—C11.0 (2)C14—C15—C16—C170.1 (2)
C2—C1—C6—C50.5 (2)C14—C15—C16—N3179.66 (13)
N1—C1—C6—C5179.91 (13)O4—N3—C16—C15163.26 (16)
C10—O3—C7—C80.50 (15)O5—N3—C16—C1515.9 (2)
C10—O3—C7—C4179.55 (12)O4—N3—C16—C1717.2 (2)
C3—C4—C7—C812.5 (2)O5—N3—C16—C17163.65 (14)
C5—C4—C7—C8167.42 (15)C15—C16—C17—C120.1 (2)
C3—C4—C7—O3167.53 (13)N3—C16—C17—C12179.45 (12)
C5—C4—C7—O312.5 (2)C15—C16—C17—C18177.78 (14)
O3—C7—C8—C90.36 (17)N3—C16—C17—C181.8 (2)
C4—C7—C8—C9179.70 (15)C13—C12—C17—C160.6 (2)
C7—C8—C9—C100.08 (17)N2—C12—C17—C16176.52 (12)
C8—C9—C10—O30.23 (17)C13—C12—C17—C18178.50 (14)
C8—C9—C10—C11175.19 (15)N2—C12—C17—C185.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···N20.962.302.8047 (19)112
C3—H3A···O5i0.932.583.4895 (19)165
C13—H13A···O1ii0.932.533.432 (2)162
C14—H14A···O2iii0.932.553.361 (2)147
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H13N3O5
Mr351.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)10.9026 (3), 10.2798 (3), 14.2962 (3)
β (°) 101.529 (2)
V3)1569.94 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.93
Crystal size (mm)0.50 × 0.40 × 0.40
Data collection
DiffractometerOxford Diffraction Gemini-R
diffractometer
Absorption correctionMulti-scan
[CrysAlis RED (Oxford Diffraction, 2007), and Clark & Reid (1995)]
Tmin, Tmax0.671, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
6460, 3171, 2764
Rint0.028
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.05
No. of reflections3171
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O5i0.932.583.4895 (19)165
C13—H13A···O1ii0.932.533.432 (2)162
C14—H14A···O2iii0.932.553.361 (2)147
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z+1.
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012). Acta Cryst. E68, o633.  CSD CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). J. Inorg. Biochem. 92, 141–148.  PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176.  Web of Science CrossRef CAS Google Scholar
First citationGhorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171–178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M. & Yamin, B. M. (2002). Polyhedron, 21, 2547–2554.  Web of Science CSD CrossRef CAS Google Scholar
First citationVijesh, A. M., Isloor, A. M., Prabhu, V., Ahmad, S. & Malladi, S. (2010). Eur. J. Med. Chem. 45, 5460–5464.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYamada, A., Kakitani, T., Yamamoto, S. & Yamato, T. (2002). Chem. Phys. Lett. 366, 670–675.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds