organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­bromo-2,5-dibut­­oxy­benzene

aSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, bInstitute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, UKM 43500 Bangi, Selangor, Malaysia, cDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, and dFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 28 June 2012; accepted 23 July 2012; online 11 August 2012)

The asymmetric unit of the title compound, C14H20Br2O2, contains one half-mol­ecule located on an inversion centre. The mol­ecule is essentially planar, with a maximum deviation from the best plane of the non-H atoms of 0.054 (2) Å for the O atoms. The but­oxy group adopts a fully extended all-trans conformation. In the crystal, mol­ecules are connected via C—Br⋯O halogen bonds [Br⋯O = 3.2393 (19) Å] into a two-dimensional corrugated network in the bc plane.

Related literature

For related structures, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1042.]); Fun et al. (2010[Fun, H.-K., Goh, J. H., Rai, S., Isloor, A. M. & Shetty, P. (2010). Acta Cryst. E66, o1871.]); Li et al. (2008[Li, Y.-F., Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2008). Acta Cryst. E64, o1930.]). For applications of dialk­oxy­benzenes, see: Brandon et al. (1997[Brandon, K. L., Bentley, P. G., Bradley, D. D. C. & Dunmur, D. A. (1997). Synth. Met. 91, 305-306.]); Huang et al. (2007[Huang, S.-P., Huang, G.-S. & Chen, S.-A. (2007). Synth. Met. 157, 863-871.]); Lightowler & Hird (2005[Lightowler, S. & Hird, M. (2005). Chem. Mater. 17, 5538-5549.]); Promarak & Ruchirawat (2007[Promarak, V. & Ruchirawat, S. (2007). Tetrahedron, 63, 1602-1609.]). For the synthetic procedure, see: Lopez-Alvarado et al. (2002[Lopez-Alvarado, P., Avendano, C. & Menendez, J. C. (2002). Synth. Commun. 32, 3233-3239.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20Br2O2

  • Mr = 380.10

  • Monoclinic, P 21 /c

  • a = 8.3685 (4) Å

  • b = 12.6395 (5) Å

  • c = 7.1083 (3) Å

  • β = 96.461 (5)°

  • V = 747.10 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 6.82 mm−1

  • T = 150 K

  • 0.07 × 0.06 × 0.01 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]) Tmin = 0.647, Tmax = 0.935

  • 5426 measured reflections

  • 1442 independent reflections

  • 1303 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.07

  • 1442 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Dialkoxy-substituted benzenes such as the title compound (I) are very useful intermediates to synthesize soluble poly(p-phenylene) (Huang et al., 2007; Lightowler & Hird, 2005), thiophene–phenylene co-oligomers (Promarak & Ruchirawat, 2007) and poly(phenylene vinylene) (Brandon et al., 1997), which have wide range of applications in semiconductor and electronics industries.

The title compound is similar to its analog, 1,4-dibromo-2,5-bis(hexyloxy)-benzene (II) (Li et al., 2008). The alkyl chains are nearly coplanar with the benzene ring, with C4—O1—C3—C2 torsion angles of 3.3 (4)°, which is similar to II. However, the title compound is stabilized by intermolecular Br···O interactions [3.2393 (19) Å], which has shorter distance, compared to Br···Br interactions (3.410 Å) found in II. The intermolecular Br···O interaction is shorter than the sum of the Van der Waals radii of the relevant atoms (3.37 Å) and those found in other compound [3.301 (4) Å] (Fun et al. 2010).

In the crystal, nearly linear halogen bond C1–Br1···O1(-x, 1/2 + y, 1/2 - z) [<C1-Br···O159.96 (9)°] link the molecules into a two-dimensional corrugated network along bc plane (Figure 2).

Related literature top

For related structures, see: Choi et al. (2010); Fun et al. (2010); Li et al. (2008). For applications of dialkoxybenzenes, see: Brandon et al. (1997); Huang et al. (2007); Lightowler & Hird (2005); Promarak & Ruchirawat (2007). For the synthetic procedure, see: Lopez-Alvarado et al. (2002).

Experimental top

The compound was prepared according to previously published work with a slight modification (Lopez-Alvarado et al., 2002). To 1,4-bis(butoxy)benzene (5.00 g, 22.5 mmol) was added dropwise Br2 (7. 55 g, 47.25 mmol) in glacial acetic acid. The mixture was stirred at room temperature for two hours followed by heating under reflux for another two hours. The mixture was left to cool to room temperature and water was then added to precipitate the product. The product was filtered, washed with excess water and 1.0 M sodium bicarbonate solution. Slow recrystallization of the product from methanol–ethyl acetate mixture afforded crystals suitable for single X-ray diffraction (yield: 82%).

Refinement top

The hydrogen atom positions were calculated geometrically and refined in a riding model approximation with C–H bond lengths in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) for aromatic and CH2 group, and Uiso(H) = 1.5Ueq(C) for methyl group.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Symmetry code for atoms with the A label: -x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Crystal packing of the title compound showing intermolecular halogen bonds C1–Br1···O1 [-x,1/2 + y,1/2 - z] resulting in the formation of two-dimensional network along bc plane.
1,4-Dibromo-2,5-dibutoxybenzene top
Crystal data top
C14H20Br2O2F(000) = 380
Mr = 380.10Dx = 1.690 Mg m3
Monoclinic, P21/cMelting point = 343–345 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 8.3685 (4) ÅCell parameters from 2679 reflections
b = 12.6395 (5) Åθ = 3–71°
c = 7.1083 (3) ŵ = 6.82 mm1
β = 96.461 (5)°T = 150 K
V = 747.10 (6) Å3Plate, colourless
Z = 20.07 × 0.06 × 0.01 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
1442 independent reflections
Radiation source: fine-focus sealed tube1303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 71.6°, θmin = 5.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 810
Tmin = 0.647, Tmax = 0.935k = 1515
5426 measured reflectionsl = 86
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.4756P]
where P = (Fo2 + 2Fc2)/3
1442 reflections(Δ/σ)max < 0.001
83 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H20Br2O2V = 747.10 (6) Å3
Mr = 380.10Z = 2
Monoclinic, P21/cCu Kα radiation
a = 8.3685 (4) ŵ = 6.82 mm1
b = 12.6395 (5) ÅT = 150 K
c = 7.1083 (3) Å0.07 × 0.06 × 0.01 mm
β = 96.461 (5)°
Data collection top
Oxford Diffraction Gemini
diffractometer
1442 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1303 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.935Rint = 0.029
5426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.07Δρmax = 0.73 e Å3
1442 reflectionsΔρmin = 0.38 e Å3
83 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., (1986)., J. Appl. Cryst. 105 107.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15758 (3)1.17923 (2)0.20385 (4)0.01819 (14)
O10.2931 (2)0.90585 (15)0.4561 (3)0.0186 (4)
C10.0674 (3)1.0747 (2)0.3762 (4)0.0165 (6)
C20.0787 (3)1.0299 (2)0.3466 (4)0.0170 (6)
H20.13011.05060.24310.020*
C30.1490 (3)0.9538 (2)0.4722 (4)0.0160 (5)
C40.3733 (4)0.9319 (2)0.2931 (4)0.0188 (6)
H4A0.40171.00640.29490.023*
H4B0.30340.91750.17760.023*
C50.5229 (3)0.8644 (2)0.3018 (4)0.0199 (6)
H5A0.49230.79040.29660.024*
H5B0.58830.87660.42130.024*
C60.6222 (3)0.8887 (2)0.1394 (4)0.0202 (6)
H6A0.55900.87270.01980.024*
H6B0.64830.96350.14030.024*
C70.7771 (4)0.8243 (2)0.1556 (5)0.0249 (7)
H7A0.84110.84130.27240.037*
H7B0.83630.84090.05130.037*
H7C0.75160.75030.15350.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0183 (2)0.01468 (19)0.0219 (2)0.00149 (10)0.00335 (13)0.00358 (10)
O10.0161 (10)0.0183 (9)0.0223 (10)0.0030 (8)0.0061 (8)0.0029 (8)
C10.0200 (15)0.0114 (12)0.0174 (13)0.0022 (10)0.0003 (10)0.0031 (10)
C20.0185 (14)0.0134 (12)0.0200 (14)0.0002 (10)0.0063 (11)0.0002 (10)
C30.0149 (13)0.0127 (12)0.0202 (14)0.0005 (10)0.0012 (10)0.0017 (10)
C40.0209 (15)0.0175 (13)0.0188 (14)0.0002 (11)0.0062 (11)0.0010 (11)
C50.0193 (14)0.0162 (13)0.0243 (15)0.0012 (11)0.0036 (11)0.0024 (11)
C60.0161 (14)0.0181 (13)0.0269 (15)0.0005 (11)0.0049 (11)0.0008 (11)
C70.0216 (16)0.0241 (16)0.0305 (18)0.0036 (12)0.0085 (13)0.0015 (12)
Geometric parameters (Å, º) top
Br1—C11.900 (3)C5—C61.527 (4)
O1—C31.366 (3)C5—H5A0.9700
O1—C41.441 (3)C5—H5B0.9700
C1—C21.384 (4)C6—C71.523 (4)
C1—C3i1.386 (4)C6—H6A0.9700
C2—C31.397 (4)C6—H6B0.9700
C2—H20.9300C7—H7A0.9600
C4—C51.511 (4)C7—H7B0.9600
C4—H4A0.9700C7—H7C0.9600
C4—H4B0.9700
C3—O1—C4117.5 (2)C4—C5—H5A109.2
C2—C1—C3i122.2 (3)C6—C5—H5A109.2
C2—C1—Br1118.7 (2)C4—C5—H5B109.2
C3i—C1—Br1119.1 (2)C6—C5—H5B109.2
C1—C2—C3120.0 (3)H5A—C5—H5B107.9
C1—C2—H2120.0C7—C6—C5111.5 (2)
C3—C2—H2120.0C7—C6—H6A109.3
O1—C3—C1i117.8 (2)C5—C6—H6A109.3
O1—C3—C2124.3 (3)C7—C6—H6B109.3
C1i—C3—C2117.8 (3)C5—C6—H6B109.3
O1—C4—C5107.3 (2)H6A—C6—H6B108.0
O1—C4—H4A110.3C6—C7—H7A109.5
C5—C4—H4A110.3C6—C7—H7B109.5
O1—C4—H4B110.3H7A—C7—H7B109.5
C5—C4—H4B110.3C6—C7—H7C109.5
H4A—C4—H4B108.5H7A—C7—H7C109.5
C4—C5—C6112.0 (2)H7B—C7—H7C109.5
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H20Br2O2
Mr380.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.3685 (4), 12.6395 (5), 7.1083 (3)
β (°) 96.461 (5)
V3)747.10 (6)
Z2
Radiation typeCu Kα
µ (mm1)6.82
Crystal size (mm)0.07 × 0.06 × 0.01
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.647, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
5426, 1442, 1303
Rint0.029
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.07
No. of reflections1442
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia for research grants UKM-GUP-BTT-07–26-178 and UKM-FST-06-FRGS0095–2010. This work was also supported by a National Science Fellowship (NSF) for TCH.

References

First citationBrandon, K. L., Bentley, P. G., Bradley, D. D. C. & Dunmur, D. A. (1997). Synth. Met. 91, 305–306.  Web of Science CrossRef CAS Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Rai, S., Isloor, A. M. & Shetty, P. (2010). Acta Cryst. E66, o1871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, S.-P., Huang, G.-S. & Chen, S.-A. (2007). Synth. Met. 157, 863–871.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y.-F., Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2008). Acta Cryst. E64, o1930.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLightowler, S. & Hird, M. (2005). Chem. Mater. 17, 5538–5549.  Web of Science CrossRef CAS Google Scholar
First citationLopez-Alvarado, P., Avendano, C. & Menendez, J. C. (2002). Synth. Commun. 32, 3233–3239.  CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationPromarak, V. & Ruchirawat, S. (2007). Tetrahedron, 63, 1602–1609.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds