organic compounds
2-Propoxybenzamide
aDepartment of Chemical Engineering, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates, bDepartment of Chemistry, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates, and cAgilent Technologies UK Ltd, 10 Mead Road, Oxford Industrial Park, Oxford OX5 1QU, England
*Correspondence e-mail: thies@uaeu.ac.ae
In the title molecule, C10H13NO2, the amide –NH2 group is oriented toward the propoxy substituent and an intramolecular N—H⋯O hydrogen bond is formed between the N—H group and the propoxy O atom. The benzene ring forms dihedral angles of 12.41 (2) and 3.26 (2)° with the amide and propoxy group mean planes, respectively. In the crystal, N—H⋯O hydrogen bonds order pairs of molecules with their molecular planes parallel, but at an offset of 0.73 (2) Å to each other. These pairs are ordered into two types of symmetry-related columns extended along the a axis with the mean plane of a pair in one column approximately parallel to (-122) and in the other to (-1-22). The two planes form dihedral angle of 84.40 (1)°. Overall, in a three-dimensional network, the hydrogen-bonded pairs of molecules are either located in (-1-22) or (-122) layers. In one layer, each pair is involved in four C—H⋯O contacts, twice as a donor and twice as an acceptor. Additionally, there is a short C—H⋯C contact between a benzene C—H group and the amide π-system.
Related literature
For crystal structures of similar compounds, see: Pagola & Stephens (2009); Johnstone et al. (2010); Pertlik et al. (1990); Sasada et al. (1964). For uses of 2-alkoxybenzamides, see: van de Waterbeemd & Testa (1983); Kusunoki & Harada (1984). For the preparation of the title compound, see: Johnstone & Rose (1979).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812033326/gk2512sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812033326/gk2512Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812033326/gk2512Isup3.cml
To powdered KOH (1.12 g, 20.0 mmol) in DMSO (9 ml) was added salicylamide (1.37 g, 10.0 mmol), and the resulting mixture was stirred for 10 min. at rt. Thereafter, n-propyl iodide (4.2 g, mmol, 24.7 mmol) was added dropwise. The solution was stirred for 12 h at rt. Then, it was poured into water (200 ml) and extracted with chloroform (3 x 50 ml). The organic phase was dried over anhydrous MgSO4, concentrated in vacuo, and the residue was subjected to
on silica gel (CHCl3/MtBE 1:1) to give 2-propoxybenzamide (1.36 g, 77%) as colorless crystals (m.p. 375 K). The crystal was grown from chloroform/ MtBE (v/v 1:1). IR (KBr) nmax 3445, 3325, 3273, 3180, 2964, 2935, 2877, 1665, 1594, 1454, 1378, 1277, 1237, 1042, 1010, 759, 566 cm-1; 1H NMR (DMSO-d6, 400 MHz) 0.97 (3H, t, 3J = 7.6 Hz), 1.76 (2H, qt, 3J = 7.6 Hz, 3J = 6.4 Hz), 4.04 (2H, t, 3J = 6.4 Hz), 6.99 (dd, 3J = 8.0 Hz, 3J = 8.0 Hz), 7.10 (1H, d, 3J = 8.0 Hz), 7.43 (1H, ddd, 3J = 8.0 Hz, 3J = 8.0 Hz, 4J = 2.0 Hz), 7.78 (1H, dd, 3J = 8.0 Hz, 4J = 2.0 Hz); 1H NMR (CDCl3, 400 MHz) 1.07 (3H, t, 3J = 7.4 Hz), 1.90 (2H, dd, 3J = 7.4 Hz, 3J = 6.5 Hz), 4.09 (2H, t, 3J = 6.5 Hz), 6.07 (1H, bs, NH), 6.96 (1H, d, 3J = 8.0 Hz), 7.05 (1H, dd, 3J = 7.8 Hz, 3J = 7.6 Hz), 7.44 (1H, dd, 3J = 8.0 Hz, 3J = 7.6 Hz, 4J = 1.8 Hz), 7.84 (1H, bs, NH), 8.20 (1H, dd, 3J = 7.8 Hz, 4J = 1.8 Hz); 13C NMR (DMSO-d6, 400 MHz) 11.0, 22.3, 70.4, 113.3, 120.8, 123.1, 131.2, 132.9, 157.0, 166.8; 13C NMR (CDCl3, 400 MHz) 10.7, 22.6, 71.0, 112.8, 121.4, 121.7, 133.2, 134.0, 158.2, 168.1.Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C10H13NO2 | Dx = 1.246 Mg m−3 |
Mr = 179.21 | Melting point: 375 K |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.5418 Å |
a = 6.0303 (4) Å | Cell parameters from 1037 reflections |
b = 11.1196 (8) Å | θ = 3.1–66.6° |
c = 14.4140 (11) Å | µ = 0.71 mm−1 |
β = 98.647 (6)° | T = 100 K |
V = 955.54 (12) Å3 | Block, colourless |
Z = 4 | 0.16 × 0.10 × 0.08 mm |
F(000) = 384 |
Agilent SuperNova Atlas CCD diffractometer | 1676 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 1253 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.035 |
Detector resolution: 10.4948 pixels mm-1 | θmax = 66.7°, θmin = 5.1° |
ω scans | h = −7→7 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2012) | k = −13→13 |
Tmin = 0.810, Tmax = 1.000 | l = −17→15 |
2959 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | All H-atom parameters refined |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0471P)2P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1676 reflections | Δρmax = 0.21 e Å−3 |
171 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0017 (4) |
C10H13NO2 | V = 955.54 (12) Å3 |
Mr = 179.21 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 6.0303 (4) Å | µ = 0.71 mm−1 |
b = 11.1196 (8) Å | T = 100 K |
c = 14.4140 (11) Å | 0.16 × 0.10 × 0.08 mm |
β = 98.647 (6)° |
Agilent SuperNova Atlas CCD diffractometer | 1676 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2012) | 1253 reflections with I > 2σ(I) |
Tmin = 0.810, Tmax = 1.000 | Rint = 0.035 |
2959 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.099 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.21 e Å−3 |
1676 reflections | Δρmin = −0.17 e Å−3 |
171 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0319 (3) | 0.24260 (15) | 0.75450 (12) | 0.0205 (4) | |
C10 | 0.7095 (3) | 0.1142 (2) | 0.96172 (14) | 0.0319 (5) | |
C11 | −0.0529 (3) | 0.13553 (15) | 0.59371 (12) | 0.0210 (4) | |
C2 | −0.1026 (3) | 0.22312 (15) | 0.66721 (12) | 0.0206 (4) | |
C3 | −0.3032 (3) | 0.28748 (16) | 0.64722 (13) | 0.0246 (4) | |
C4 | −0.3695 (3) | 0.36968 (16) | 0.70979 (13) | 0.0274 (4) | |
C5 | −0.2326 (3) | 0.38823 (16) | 0.79474 (13) | 0.0263 (4) | |
C6 | −0.0335 (3) | 0.32574 (16) | 0.81744 (13) | 0.0240 (4) | |
C8 | 0.3557 (3) | 0.18715 (17) | 0.86630 (12) | 0.0240 (4) | |
C9 | 0.5534 (3) | 0.10404 (17) | 0.86848 (13) | 0.0245 (4) | |
H10A | 0.766 (3) | 0.198 (2) | 0.9734 (15) | 0.049 (7)* | |
H10B | 0.839 (4) | 0.054 (2) | 0.9640 (14) | 0.047 (6)* | |
H10C | 0.634 (4) | 0.092 (2) | 1.0150 (17) | 0.051 (7)* | |
H13A | 0.256 (3) | 0.1050 (18) | 0.6538 (15) | 0.035 (6)* | |
H13B | 0.175 (3) | 0.028 (2) | 0.5573 (15) | 0.043 (6)* | |
H3 | −0.394 (3) | 0.2739 (16) | 0.5883 (13) | 0.022 (5)* | |
H4 | −0.515 (3) | 0.4133 (18) | 0.6958 (14) | 0.040 (6)* | |
H5 | −0.273 (3) | 0.4440 (19) | 0.8381 (15) | 0.038 (6)* | |
H6 | 0.056 (3) | 0.3387 (15) | 0.8747 (13) | 0.020 (5)* | |
H8A | 0.408 (3) | 0.2707 (16) | 0.8776 (13) | 0.019 (4)* | |
H8B | 0.263 (3) | 0.1645 (17) | 0.9168 (15) | 0.034 (5)* | |
H9A | 0.499 (3) | 0.0208 (18) | 0.8581 (13) | 0.031 (5)* | |
H9B | 0.635 (3) | 0.1262 (16) | 0.8153 (14) | 0.027 (5)* | |
N13 | 0.1514 (3) | 0.08719 (15) | 0.60043 (11) | 0.0273 (4) | |
O12 | −0.2027 (2) | 0.10985 (11) | 0.52757 (8) | 0.0268 (3) | |
O7 | 0.22330 (19) | 0.17526 (11) | 0.77463 (8) | 0.0236 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0192 (8) | 0.0205 (9) | 0.0215 (9) | −0.0012 (7) | 0.0020 (7) | 0.0020 (7) |
C10 | 0.0287 (11) | 0.0383 (12) | 0.0259 (11) | 0.0009 (10) | −0.0053 (8) | 0.0023 (9) |
C11 | 0.0259 (9) | 0.0184 (9) | 0.0181 (9) | −0.0040 (7) | 0.0012 (7) | 0.0020 (7) |
C2 | 0.0230 (9) | 0.0191 (9) | 0.0197 (9) | −0.0042 (7) | 0.0031 (7) | 0.0015 (7) |
C3 | 0.0250 (9) | 0.0242 (10) | 0.0232 (10) | −0.0015 (8) | −0.0014 (8) | 0.0037 (7) |
C4 | 0.0259 (10) | 0.0260 (10) | 0.0305 (11) | 0.0034 (8) | 0.0048 (8) | 0.0037 (8) |
C5 | 0.0302 (11) | 0.0218 (10) | 0.0272 (10) | 0.0009 (8) | 0.0057 (8) | −0.0030 (8) |
C6 | 0.0279 (10) | 0.0231 (9) | 0.0207 (10) | −0.0030 (8) | 0.0024 (8) | −0.0034 (8) |
C8 | 0.0233 (10) | 0.0301 (11) | 0.0171 (9) | −0.0007 (8) | −0.0021 (7) | −0.0034 (8) |
C9 | 0.0247 (10) | 0.0268 (10) | 0.0210 (10) | 0.0005 (8) | 0.0003 (7) | −0.0008 (8) |
N13 | 0.0271 (9) | 0.0319 (9) | 0.0220 (9) | 0.0020 (7) | 0.0004 (7) | −0.0081 (7) |
O12 | 0.0314 (7) | 0.0257 (7) | 0.0207 (7) | −0.0001 (6) | −0.0044 (5) | −0.0015 (5) |
O7 | 0.0219 (6) | 0.0295 (7) | 0.0177 (7) | 0.0040 (5) | −0.0025 (5) | −0.0043 (5) |
C1—C2 | 1.407 (2) | C6—H6 | 0.927 (19) |
C1—C6 | 1.393 (2) | C8—C9 | 1.505 (3) |
C10—H10A | 1.00 (2) | C8—H8A | 0.987 (18) |
C10—H10B | 1.03 (2) | C8—H8B | 1.01 (2) |
C10—H10C | 0.98 (2) | C9—C10 | 1.525 (3) |
C2—C11 | 1.502 (2) | C9—H9A | 0.99 (2) |
C2—C3 | 1.398 (2) | N13—C11 | 1.334 (2) |
C3—C4 | 1.385 (3) | N13—H13A | 0.94 (2) |
C3—H3 | 0.951 (18) | N13—H13B | 0.93 (2) |
C4—H4 | 0.996 (19) | O12—C11 | 1.244 (2) |
C5—C4 | 1.386 (3) | O7—C1 | 1.370 (2) |
C5—H5 | 0.94 (2) | O7—C8 | 1.444 (2) |
C6—C5 | 1.383 (3) | ||
C1—C6—H6 | 119.9 (11) | C8—C9—H9A | 109.2 (11) |
C1—C2—C11 | 125.52 (15) | C8—C9—C10 | 110.78 (16) |
C1—O7—C8 | 118.44 (13) | C9—C10—H10C | 111.9 (14) |
C10—C9—H9B | 110.3 (11) | C9—C10—H10B | 110.3 (12) |
C10—C9—H9A | 110.5 (11) | C9—C10—H10A | 111.6 (12) |
C11—N13—H13B | 117.9 (12) | C9—C8—H8B | 110.7 (11) |
C11—N13—H13A | 118.3 (12) | C9—C8—H8A | 110.0 (11) |
C2—C3—H3 | 117.9 (11) | H10A—C10—H10C | 106.8 (18) |
C3—C4—H4 | 121.4 (12) | H10A—C10—H10B | 111.4 (17) |
C3—C4—C5 | 118.80 (17) | H10B—C10—H10C | 104.6 (18) |
C3—C2—C11 | 116.41 (15) | H13A—N13—H13B | 123.0 (17) |
C3—C2—C1 | 118.04 (16) | H8A—C8—H8B | 108.2 (15) |
C4—C5—H5 | 120.5 (12) | H9A—C9—H9B | 107.8 (15) |
C4—C3—H3 | 120.2 (11) | N13—C11—C2 | 119.34 (15) |
C4—C3—C2 | 121.97 (17) | O12—C11—C2 | 119.37 (15) |
C5—C6—H6 | 120.1 (11) | O12—C11—N13 | 121.30 (17) |
C5—C4—H4 | 119.7 (12) | O7—C8—H8B | 110.2 (11) |
C5—C6—C1 | 120.01 (17) | O7—C8—H8A | 110.9 (11) |
C6—C5—H5 | 118.5 (12) | O7—C8—C9 | 106.87 (14) |
C6—C5—C4 | 121.00 (18) | O7—C1—C6 | 122.48 (16) |
C6—C1—C2 | 120.17 (16) | O7—C1—C2 | 117.33 (15) |
C8—C9—H9B | 108.2 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13A···O7 | 0.94 (2) | 1.95 (2) | 2.669 (2) | 132.2 (15) |
N13—H13B···O12i | 0.93 (2) | 1.98 (2) | 2.911 (2) | 173.5 (19) |
C6—H6···O12ii | 0.927 (19) | 2.517 (18) | 3.442 (2) | 175.8 (14) |
C5—H5···C11iii | 0.94 (2) | 2.63 (2) | 3.528 (2) | 160.5 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x−1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C10H13NO2 |
Mr | 179.21 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 6.0303 (4), 11.1196 (8), 14.4140 (11) |
β (°) | 98.647 (6) |
V (Å3) | 955.54 (12) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.16 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Agilent SuperNova Atlas CCD diffractometer |
Absorption correction | Gaussian (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.810, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2959, 1676, 1253 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.099, 1.03 |
No. of reflections | 1676 |
No. of parameters | 171 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.21, −0.17 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13A···O7 | 0.94 (2) | 1.95 (2) | 2.669 (2) | 132.2 (15) |
N13—H13B···O12i | 0.93 (2) | 1.98 (2) | 2.911 (2) | 173.5 (19) |
C6—H6···O12ii | 0.927 (19) | 2.517 (18) | 3.442 (2) | 175.8 (14) |
C5—H5···C11iii | 0.94 (2) | 2.63 (2) | 3.528 (2) | 160.5 (17) |
Symmetry codes: (i) −x, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x−1/2, y+1/2, −z+3/2. |
Acknowledgements
We thank Miss M. al Hindawi for spectroscopic measurements of the title compound.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Johnstone, R. D. L., Lennie, A. R., Parker, S. F., Parsons, S., Pidcock, E., Richardson, P. R., Warren, J. E. & Wood, P. A. (2010). CrystEngComm, 12, 1065–1078. Web of Science CSD CrossRef CAS Google Scholar
Johnstone, R. A. W. & Rose, M. E. (1979). Tetrahedron, 35, 2169–2173. CrossRef CAS Web of Science Google Scholar
Kusunoki, T. & Harada, S. (1984). J. Dermatol. 11, 277–281. CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, o583–o586. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pertlik, F. (1990). Monatsh. Chem. 121, 129–139. CSD CrossRef CAS Web of Science Google Scholar
Sasada, Y., Takano, T. & Kakudo, M. (1964). Bull. Chem. Soc. Jpn, 37, 940–946. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Waterbeemd, H. van de & Testa, B. (1983). J. Med. Chem. 26, 203–207. PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the 2-propoxybenzamide molecule, the C3—C2—C11—O12 torsion angle characterizing the twist of the benzene ring relative to the amide group is -11.5 (2)° and corresponding C6—C1—O7—C8 angle for the propoxy group is 3.0 (2)°. There is an intramolecular N13—H13A···O7 hydrogen bond within each molecule. The hydrogen bond N13—H13B···O12 (Table 1) plays a significant role in the packing of the title compound, forming pairs of inversion related molecules, with the molecular planes in parallel (Figure 2). These pairs form a nested network crystal, made of two layers, (-1 -2 2) and (-1 2 2), which form an angle of 84.40 (1)° between their planes (Figure 3). The molecules in layers are linked to each other by C6—H6···O12 interaction (Table 1). Within two parallel layers, pairs are lying with an offset to each other without any noticeable, direct interaction between them. The parallel layers are at a distance of 3.69 (2) Å from each other. They are further apart than is found for a similar packing of 2-hydroxybenzamide [2.91 (1) Å] (Johnstone et al., 2010). Along the a axis the pairs are ordered in two symmetry related columns. The plane of the benzene ring (C1—C6) of the 2-propoxybenzamide forms an angle of 34.43 (2)° with the column axis.
For 2-ethoxybenzamide, a homologue of the title compound, a similar formation of inversion related molecular pairs in the crystal was reported (Pagola & Stephens, 2009). The noticable difference in the packing of the two molecules stems from the larger dihedral angle between the carboxamide group and the benzene ring in 2-ethoxybenzamide of [50.48 (2)°] than found for 2-propoxybenzamide. Thus, 2-ethoxybenzamide does not exhibit an intramolecular hydrogen bond, which leads to a different intermolecular bonding network as compared to the title compound.