organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2639-o2640

2-Propoxybenzamide

aDepartment of Chemical Engineering, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates, bDepartment of Chemistry, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates, and cAgilent Technologies UK Ltd, 10 Mead Road, Oxford Industrial Park, Oxford OX5 1QU, England
*Correspondence e-mail: thies@uaeu.ac.ae

(Received 11 July 2012; accepted 23 July 2012; online 4 August 2012)

In the title mol­ecule, C10H13NO2, the amide –NH2 group is oriented toward the prop­oxy substituent and an intra­molecular N—H⋯O hydrogen bond is formed between the N—H group and the prop­oxy O atom. The benzene ring forms dihedral angles of 12.41 (2) and 3.26 (2)° with the amide and prop­oxy group mean planes, respectively. In the crystal, N—H⋯O hydrogen bonds order pairs of mol­ecules with their mol­ecular planes parallel, but at an offset of 0.73 (2) Å to each other. These pairs are ordered into two types of symmetry-related columns extended along the a axis with the mean plane of a pair in one column approximately parallel to (-122) and in the other to (-1-22). The two planes form dihedral angle of 84.40 (1)°. Overall, in a three-dimensional network, the hydrogen-bonded pairs of mol­ecules are either located in (-1-22) or (-122) layers. In one layer, each pair is involved in four C—H⋯O contacts, twice as a donor and twice as an acceptor. Additionally, there is a short C—H⋯C contact between a benzene C—H group and the amide π-system.

Related literature

For crystal structures of similar compounds, see: Pagola & Stephens (2009[Pagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, o583-o586.]); Johnstone et al. (2010[Johnstone, R. D. L., Lennie, A. R., Parker, S. F., Parsons, S., Pidcock, E., Richardson, P. R., Warren, J. E. & Wood, P. A. (2010). CrystEngComm, 12, 1065-1078.]); Pertlik et al. (1990[Pertlik, F. (1990). Monatsh. Chem. 121, 129-139.]); Sasada et al. (1964[Sasada, Y., Takano, T. & Kakudo, M. (1964). Bull. Chem. Soc. Jpn, 37, 940-946.]). For uses of 2-alk­oxy­benzamides, see: van de Waterbeemd & Testa (1983[Waterbeemd, H. van de & Testa, B. (1983). J. Med. Chem. 26, 203-207.]); Kusunoki & Harada (1984[Kusunoki, T. & Harada, S. (1984). J. Dermatol. 11, 277-281.]). For the preparation of the title compound, see: Johnstone & Rose (1979[Johnstone, R. A. W. & Rose, M. E. (1979). Tetrahedron, 35, 2169-2173.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13NO2

  • Mr = 179.21

  • Monoclinic, P 21 /n

  • a = 6.0303 (4) Å

  • b = 11.1196 (8) Å

  • c = 14.4140 (11) Å

  • β = 98.647 (6)°

  • V = 955.54 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 100 K

  • 0.16 × 0.10 × 0.08 mm

Data collection
  • Agilent SuperNova Atlas CCD diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.810, Tmax = 1.000

  • 2959 measured reflections

  • 1676 independent reflections

  • 1253 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.03

  • 1676 reflections

  • 171 parameters

  • All H-atom parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13A⋯O7 0.94 (2) 1.95 (2) 2.669 (2) 132.2 (15)
N13—H13B⋯O12i 0.93 (2) 1.98 (2) 2.911 (2) 173.5 (19)
C6—H6⋯O12ii 0.927 (19) 2.517 (18) 3.442 (2) 175.8 (14)
C5—H5⋯C11iii 0.94 (2) 2.63 (2) 3.528 (2) 160.5 (17)
Symmetry codes: (i) -x, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the 2-propoxybenzamide molecule, the C3—C2—C11—O12 torsion angle characterizing the twist of the benzene ring relative to the amide group is -11.5 (2)° and corresponding C6—C1—O7—C8 angle for the propoxy group is 3.0 (2)°. There is an intramolecular N13—H13A···O7 hydrogen bond within each molecule. The hydrogen bond N13—H13B···O12 (Table 1) plays a significant role in the packing of the title compound, forming pairs of inversion related molecules, with the molecular planes in parallel (Figure 2). These pairs form a nested network crystal, made of two layers, (-1 -2 2) and (-1 2 2), which form an angle of 84.40 (1)° between their planes (Figure 3). The molecules in layers are linked to each other by C6—H6···O12 interaction (Table 1). Within two parallel layers, pairs are lying with an offset to each other without any noticeable, direct interaction between them. The parallel layers are at a distance of 3.69 (2) Å from each other. They are further apart than is found for a similar packing of 2-hydroxybenzamide [2.91 (1) Å] (Johnstone et al., 2010). Along the a axis the pairs are ordered in two symmetry related columns. The plane of the benzene ring (C1—C6) of the 2-propoxybenzamide forms an angle of 34.43 (2)° with the column axis.

For 2-ethoxybenzamide, a homologue of the title compound, a similar formation of inversion related molecular pairs in the crystal was reported (Pagola & Stephens, 2009). The noticable difference in the packing of the two molecules stems from the larger dihedral angle between the carboxamide group and the benzene ring in 2-ethoxybenzamide of [50.48 (2)°] than found for 2-propoxybenzamide. Thus, 2-ethoxybenzamide does not exhibit an intramolecular hydrogen bond, which leads to a different intermolecular bonding network as compared to the title compound.

Related literature top

For crystal structures of similar compounds, see: Pagola & Stephens (2009); Johnstone et al. (2010); Pertlik et al. (1990); Sasada et al. (1964). For uses of 2-alkoxybenzamides, see: van de Waterbeemd & Testa (1983); Kusunoki & Harada (1984). For the preparation of the title compound, see: Johnstone & Rose (1979).

Experimental top

To powdered KOH (1.12 g, 20.0 mmol) in DMSO (9 ml) was added salicylamide (1.37 g, 10.0 mmol), and the resulting mixture was stirred for 10 min. at rt. Thereafter, n-propyl iodide (4.2 g, mmol, 24.7 mmol) was added dropwise. The solution was stirred for 12 h at rt. Then, it was poured into water (200 ml) and extracted with chloroform (3 x 50 ml). The organic phase was dried over anhydrous MgSO4, concentrated in vacuo, and the residue was subjected to column chromatography on silica gel (CHCl3/MtBE 1:1) to give 2-propoxybenzamide (1.36 g, 77%) as colorless crystals (m.p. 375 K). The crystal was grown from chloroform/ MtBE (v/v 1:1). IR (KBr) nmax 3445, 3325, 3273, 3180, 2964, 2935, 2877, 1665, 1594, 1454, 1378, 1277, 1237, 1042, 1010, 759, 566 cm-1; 1H NMR (DMSO-d6, 400 MHz) 0.97 (3H, t, 3J = 7.6 Hz), 1.76 (2H, qt, 3J = 7.6 Hz, 3J = 6.4 Hz), 4.04 (2H, t, 3J = 6.4 Hz), 6.99 (dd, 3J = 8.0 Hz, 3J = 8.0 Hz), 7.10 (1H, d, 3J = 8.0 Hz), 7.43 (1H, ddd, 3J = 8.0 Hz, 3J = 8.0 Hz, 4J = 2.0 Hz), 7.78 (1H, dd, 3J = 8.0 Hz, 4J = 2.0 Hz); 1H NMR (CDCl3, 400 MHz) 1.07 (3H, t, 3J = 7.4 Hz), 1.90 (2H, dd, 3J = 7.4 Hz, 3J = 6.5 Hz), 4.09 (2H, t, 3J = 6.5 Hz), 6.07 (1H, bs, NH), 6.96 (1H, d, 3J = 8.0 Hz), 7.05 (1H, dd, 3J = 7.8 Hz, 3J = 7.6 Hz), 7.44 (1H, dd, 3J = 8.0 Hz, 3J = 7.6 Hz, 4J = 1.8 Hz), 7.84 (1H, bs, NH), 8.20 (1H, dd, 3J = 7.8 Hz, 4J = 1.8 Hz); 13C NMR (DMSO-d6, 400 MHz) 11.0, 22.3, 70.4, 113.3, 120.8, 123.1, 131.2, 132.9, 157.0, 166.8; 13C NMR (CDCl3, 400 MHz) 10.7, 22.6, 71.0, 112.8, 121.4, 121.7, 133.2, 134.0, 158.2, 168.1.

Refinement top

All the H-atom parameters were freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title compound molecule with the atom-numbering scheme and the intramolecular interaction within the molecule. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular and intramolecular attractions between molecules of the title compound. [Symmetry codes: (i): -x,1 - y,1 - z (ii): 1/2 - x,1/2 + y,1.5 - z (iii): 1/2 + x,1/2 - y,1/2 + z (iiii): 1 + x,y,z]
[Figure 3] Fig. 3. The crystal network formed by the layers of molecular pairs in the planes (-1 2 2) in blue, and (-1 –2 2) in green.
2-propoxybenzamide top
Crystal data top
C10H13NO2Dx = 1.246 Mg m3
Mr = 179.21Melting point: 375 K
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 6.0303 (4) ÅCell parameters from 1037 reflections
b = 11.1196 (8) Åθ = 3.1–66.6°
c = 14.4140 (11) ŵ = 0.71 mm1
β = 98.647 (6)°T = 100 K
V = 955.54 (12) Å3Block, colourless
Z = 40.16 × 0.10 × 0.08 mm
F(000) = 384
Data collection top
Agilent SuperNova Atlas CCD
diffractometer
1676 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1253 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4948 pixels mm-1θmax = 66.7°, θmin = 5.1°
ω scansh = 77
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2012)
k = 1313
Tmin = 0.810, Tmax = 1.000l = 1715
2959 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0471P)2P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1676 reflectionsΔρmax = 0.21 e Å3
171 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (4)
Crystal data top
C10H13NO2V = 955.54 (12) Å3
Mr = 179.21Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.0303 (4) ŵ = 0.71 mm1
b = 11.1196 (8) ÅT = 100 K
c = 14.4140 (11) Å0.16 × 0.10 × 0.08 mm
β = 98.647 (6)°
Data collection top
Agilent SuperNova Atlas CCD
diffractometer
1676 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2012)
1253 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 1.000Rint = 0.035
2959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.099All H-atom parameters refined
S = 1.03Δρmax = 0.21 e Å3
1676 reflectionsΔρmin = 0.17 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0319 (3)0.24260 (15)0.75450 (12)0.0205 (4)
C100.7095 (3)0.1142 (2)0.96172 (14)0.0319 (5)
C110.0529 (3)0.13553 (15)0.59371 (12)0.0210 (4)
C20.1026 (3)0.22312 (15)0.66721 (12)0.0206 (4)
C30.3032 (3)0.28748 (16)0.64722 (13)0.0246 (4)
C40.3695 (3)0.36968 (16)0.70979 (13)0.0274 (4)
C50.2326 (3)0.38823 (16)0.79474 (13)0.0263 (4)
C60.0335 (3)0.32574 (16)0.81744 (13)0.0240 (4)
C80.3557 (3)0.18715 (17)0.86630 (12)0.0240 (4)
C90.5534 (3)0.10404 (17)0.86848 (13)0.0245 (4)
H10A0.766 (3)0.198 (2)0.9734 (15)0.049 (7)*
H10B0.839 (4)0.054 (2)0.9640 (14)0.047 (6)*
H10C0.634 (4)0.092 (2)1.0150 (17)0.051 (7)*
H13A0.256 (3)0.1050 (18)0.6538 (15)0.035 (6)*
H13B0.175 (3)0.028 (2)0.5573 (15)0.043 (6)*
H30.394 (3)0.2739 (16)0.5883 (13)0.022 (5)*
H40.515 (3)0.4133 (18)0.6958 (14)0.040 (6)*
H50.273 (3)0.4440 (19)0.8381 (15)0.038 (6)*
H60.056 (3)0.3387 (15)0.8747 (13)0.020 (5)*
H8A0.408 (3)0.2707 (16)0.8776 (13)0.019 (4)*
H8B0.263 (3)0.1645 (17)0.9168 (15)0.034 (5)*
H9A0.499 (3)0.0208 (18)0.8581 (13)0.031 (5)*
H9B0.635 (3)0.1262 (16)0.8153 (14)0.027 (5)*
N130.1514 (3)0.08719 (15)0.60043 (11)0.0273 (4)
O120.2027 (2)0.10985 (11)0.52757 (8)0.0268 (3)
O70.22330 (19)0.17526 (11)0.77463 (8)0.0236 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0192 (8)0.0205 (9)0.0215 (9)0.0012 (7)0.0020 (7)0.0020 (7)
C100.0287 (11)0.0383 (12)0.0259 (11)0.0009 (10)0.0053 (8)0.0023 (9)
C110.0259 (9)0.0184 (9)0.0181 (9)0.0040 (7)0.0012 (7)0.0020 (7)
C20.0230 (9)0.0191 (9)0.0197 (9)0.0042 (7)0.0031 (7)0.0015 (7)
C30.0250 (9)0.0242 (10)0.0232 (10)0.0015 (8)0.0014 (8)0.0037 (7)
C40.0259 (10)0.0260 (10)0.0305 (11)0.0034 (8)0.0048 (8)0.0037 (8)
C50.0302 (11)0.0218 (10)0.0272 (10)0.0009 (8)0.0057 (8)0.0030 (8)
C60.0279 (10)0.0231 (9)0.0207 (10)0.0030 (8)0.0024 (8)0.0034 (8)
C80.0233 (10)0.0301 (11)0.0171 (9)0.0007 (8)0.0021 (7)0.0034 (8)
C90.0247 (10)0.0268 (10)0.0210 (10)0.0005 (8)0.0003 (7)0.0008 (8)
N130.0271 (9)0.0319 (9)0.0220 (9)0.0020 (7)0.0004 (7)0.0081 (7)
O120.0314 (7)0.0257 (7)0.0207 (7)0.0001 (6)0.0044 (5)0.0015 (5)
O70.0219 (6)0.0295 (7)0.0177 (7)0.0040 (5)0.0025 (5)0.0043 (5)
Geometric parameters (Å, º) top
C1—C21.407 (2)C6—H60.927 (19)
C1—C61.393 (2)C8—C91.505 (3)
C10—H10A1.00 (2)C8—H8A0.987 (18)
C10—H10B1.03 (2)C8—H8B1.01 (2)
C10—H10C0.98 (2)C9—C101.525 (3)
C2—C111.502 (2)C9—H9A0.99 (2)
C2—C31.398 (2)N13—C111.334 (2)
C3—C41.385 (3)N13—H13A0.94 (2)
C3—H30.951 (18)N13—H13B0.93 (2)
C4—H40.996 (19)O12—C111.244 (2)
C5—C41.386 (3)O7—C11.370 (2)
C5—H50.94 (2)O7—C81.444 (2)
C6—C51.383 (3)
C1—C6—H6119.9 (11)C8—C9—H9A109.2 (11)
C1—C2—C11125.52 (15)C8—C9—C10110.78 (16)
C1—O7—C8118.44 (13)C9—C10—H10C111.9 (14)
C10—C9—H9B110.3 (11)C9—C10—H10B110.3 (12)
C10—C9—H9A110.5 (11)C9—C10—H10A111.6 (12)
C11—N13—H13B117.9 (12)C9—C8—H8B110.7 (11)
C11—N13—H13A118.3 (12)C9—C8—H8A110.0 (11)
C2—C3—H3117.9 (11)H10A—C10—H10C106.8 (18)
C3—C4—H4121.4 (12)H10A—C10—H10B111.4 (17)
C3—C4—C5118.80 (17)H10B—C10—H10C104.6 (18)
C3—C2—C11116.41 (15)H13A—N13—H13B123.0 (17)
C3—C2—C1118.04 (16)H8A—C8—H8B108.2 (15)
C4—C5—H5120.5 (12)H9A—C9—H9B107.8 (15)
C4—C3—H3120.2 (11)N13—C11—C2119.34 (15)
C4—C3—C2121.97 (17)O12—C11—C2119.37 (15)
C5—C6—H6120.1 (11)O12—C11—N13121.30 (17)
C5—C4—H4119.7 (12)O7—C8—H8B110.2 (11)
C5—C6—C1120.01 (17)O7—C8—H8A110.9 (11)
C6—C5—H5118.5 (12)O7—C8—C9106.87 (14)
C6—C5—C4121.00 (18)O7—C1—C6122.48 (16)
C6—C1—C2120.17 (16)O7—C1—C2117.33 (15)
C8—C9—H9B108.2 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···O70.94 (2)1.95 (2)2.669 (2)132.2 (15)
N13—H13B···O12i0.93 (2)1.98 (2)2.911 (2)173.5 (19)
C6—H6···O12ii0.927 (19)2.517 (18)3.442 (2)175.8 (14)
C5—H5···C11iii0.94 (2)2.63 (2)3.528 (2)160.5 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H13NO2
Mr179.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.0303 (4), 11.1196 (8), 14.4140 (11)
β (°) 98.647 (6)
V3)955.54 (12)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.16 × 0.10 × 0.08
Data collection
DiffractometerAgilent SuperNova Atlas CCD
diffractometer
Absorption correctionGaussian
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.810, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2959, 1676, 1253
Rint0.035
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.03
No. of reflections1676
No. of parameters171
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···O70.94 (2)1.95 (2)2.669 (2)132.2 (15)
N13—H13B···O12i0.93 (2)1.98 (2)2.911 (2)173.5 (19)
C6—H6···O12ii0.927 (19)2.517 (18)3.442 (2)175.8 (14)
C5—H5···C11iii0.94 (2)2.63 (2)3.528 (2)160.5 (17)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+3/2.
 

Acknowledgements

We thank Miss M. al Hindawi for spectroscopic measurements of the title compound.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnstone, R. D. L., Lennie, A. R., Parker, S. F., Parsons, S., Pidcock, E., Richardson, P. R., Warren, J. E. & Wood, P. A. (2010). CrystEngComm, 12, 1065–1078.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnstone, R. A. W. & Rose, M. E. (1979). Tetrahedron, 35, 2169–2173.  CrossRef CAS Web of Science Google Scholar
First citationKusunoki, T. & Harada, S. (1984). J. Dermatol. 11, 277–281.  CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPagola, S. & Stephens, P. W. (2009). Acta Cryst. C65, o583–o586.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPertlik, F. (1990). Monatsh. Chem. 121, 129–139.  CSD CrossRef CAS Web of Science Google Scholar
First citationSasada, Y., Takano, T. & Kakudo, M. (1964). Bull. Chem. Soc. Jpn, 37, 940–946.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaterbeemd, H. van de & Testa, B. (1983). J. Med. Chem. 26, 203–207.  PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2639-o2640
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds