organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-[(7S)-7-Aza­niumyl-5-aza­spiro­[2.4]hept-5-yl]-8-chloro-6-fluoro-1-[(1S,2R)-2-fluoro­cyclo­prop­yl]-4-oxo-1,4-di­hydro­quinoline-3-carboxyl­ate methanol monosolvate

aShenzhen Salubris Pharmaceuticals Co. Ltd, Guangdong Shenzhen 361021, People's Republic of China, and bGuangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guanzhou, Guangdong 510530, People's Republic of China
*Correspondence e-mail: ding_haiyan@gibh.ac.cn

(Received 17 August 2012; accepted 20 August 2012; online 25 August 2012)

Sitafloxacin is a newly developed fluoro­quinolone anti­bacterial drug. The crystal studied, C19H18ClF2N3O3·CH3OH, consists of one mol­ecule of sitafloxacin and one methanol solvent mol­ecule. The mol­ecule of sitafloxacin is a zwitterion with a protonated primary amine group and a deprotonated carboxylate group. The cyclopropane ring and the CO2 group make dihedral angles of 79.5 (3) and 35.4 (4)°, respectively, with the fused ring system. The supra­molecular structure is defined by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the synthesis, applications and pseudopolymorphic structure of the title compound, see: Yamazaki et al. (1998[Yamazaki, K. & Suzuki, M. (1998). Anal. Sci. 14, 463-464.]), Suzuki et al. (2000[Suzuki, M., Kitaoka, H., Miwa, Y. & Taga, T. (2000). Anal. Sci. 16, 343-344.]) and Suzuki et al. (2010[Suzuki, T., Araki, T., Kitaoka, H. & Tereda, K. (2010). Int. J. Pharm. 402, 110-116.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C19H18ClF2N3O3·CH4O

  • Mr = 441.86

  • Monoclinic, P 21

  • a = 8.7455 (3) Å

  • b = 8.2968 (3) Å

  • c = 14.0638 (4) Å

  • β = 104.474 (3)°

  • V = 988.07 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.18 mm−1

  • T = 293 K

  • 0.2 × 0.1 × 0.05 mm

Data collection
  • Agilent Xcalibur Sapphire3 Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.990, Tmax = 1.000

  • 5115 measured reflections

  • 2745 independent reflections

  • 2537 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.08

  • 2745 reflections

  • 273 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack, (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 856 Friedel pairs

  • Flack parameter: −0.024 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.89 2.07 2.929 (3) 161
N3—H3A⋯O2i 0.89 2.43 3.022 (3) 124
O4—H4O⋯O3ii 0.82 1.84 2.654 (4) 173
N3—H3C⋯O2iii 0.89 1.82 2.675 (4) 159
N3—H3B⋯O4 0.89 1.91 2.788 (4) 171
Symmetry codes: (i) x+1, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: OLEX2; molecular graphics: OLEX2; software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Three hydrate forms (hemihydrate, monohydrade and sesqiuhydrate) and three anhydrate forms (alpha,beta and gamma forms) of sitafloxacin crystals have been found so far. The polymorphic and pseudopolymorphic crystals show different physicochemical properties (Yamazaki et al., 1998, Suzuki et al., 2000). The crystal structures of the beta form, the monohydrate and the sesquihydrate have been already reported (Yamazaki et al., 1998, Suzuki et al., 2000). Preparation of the title compound has been reported earlier (Suzuki et al., 2010). In this paper, we report the X-ray crystal structure of the title compound. All donor H atoms are involved in the hydrogen bonding as well as all acceptor O atoms with exception made for O1, Table 1.

Related literature top

For the synthesis, applications and pseudopolymorphic structure of the title compound, see: Yamazaki et al. (1998), Suzuki et al. (2000) and Suzuki et al. (2010), respectively.

Experimental top

The preparation of the titled compound was made following a similar procedure described earlier (Suzuki et al., 2010). The 7-[(7S)-7-Boc-NH-5-azaspiro[2.4]hept-5-yl]-6-fluoro-1-[(1S,2R)-2- fluorocyclopropyl]-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid reacted with thionyl chloride in dichloromethane for 8 h. The yield was 78%. The Boc functional group was removed with trifluoroacetic acid,. The resulting solution was concentrated, washed giving the colorless crystals of the title compound, yield: 68%. 0.2g of this material was dissolved in 20 ml of methanol at 323K. Slow evaporation gave needle-like crystals suitable for X-ray analysis.

Refinement top

The asymmetric unit was selected so that the molecule and the methanol solvent form a hydrgen bonded unit. All hydrogen atoms were located. The carbon-bonded H atoms were placed in idealized positions C—H = 0.93–0.98, Uiso(H) = 1.2–1.5Ueq(C) and were included in the refinement in the riding model approximation. The H atom of the methanol OH group were located in a difference Fourier map and then allowed to ride on his parent O atom, with O—H = 0.82Å and Uiso(H) = 1.5Ueq(O). The three H atoms of the idealized NH3+ group were created by an AFIX 137 instruction N—H = 0.89Å, Uiso(H) = 1.5Ueq(N).

The positions of these H atoms were checked on a final difference map.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
Figure 1. The molecular structure of the title compound showing the atom numbering scheme. Hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 50% probability level.
7-[(7S)-7-Azaniumyl-5-azaspiro[2.4]hept-5-yl]-8-chloro-6-fluoro-1- [(1S,2R)-2-fluorocyclopropyl]-4-oxo-1,4-dihydroquinoline- 3-carboxylate methanol monosolvate top
Crystal data top
C19H18ClF2N3O3·CH4OF(000) = 460
Mr = 441.86Dx = 1.485 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 8.7455 (3) Åθ = 3.3–66.9°
b = 8.2968 (3) ŵ = 2.18 mm1
c = 14.0638 (4) ÅT = 293 K
β = 104.474 (3)°Block, colourless
V = 988.07 (5) Å30.2 × 0.1 × 0.05 mm
Z = 2
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
2745 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 66.9°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 910
Tmin = 0.990, Tmax = 1.000k = 99
5115 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0956P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2745 reflectionsΔρmax = 0.21 e Å3
273 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack, (1983), 856 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (19)
Crystal data top
C19H18ClF2N3O3·CH4OV = 988.07 (5) Å3
Mr = 441.86Z = 2
Monoclinic, P21Cu Kα radiation
a = 8.7455 (3) ŵ = 2.18 mm1
b = 8.2968 (3) ÅT = 293 K
c = 14.0638 (4) Å0.2 × 0.1 × 0.05 mm
β = 104.474 (3)°
Data collection top
Agilent Xcalibur Sapphire3 Gemini ultra
diffractometer
2745 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2537 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 1.000Rint = 0.033
5115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.21 e Å3
S = 1.08Δρmin = 0.21 e Å3
2745 reflectionsAbsolute structure: Flack, (1983), 856 Friedel pairs
273 parametersAbsolute structure parameter: 0.024 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85678 (8)0.70137 (11)0.46653 (5)0.02508 (19)
F10.4439 (2)0.5006 (3)0.63177 (12)0.0273 (5)
F20.7157 (2)0.3005 (3)0.33304 (16)0.0357 (5)
N10.5964 (3)0.6077 (3)0.27925 (18)0.0203 (6)
N20.7559 (3)0.5849 (4)0.63790 (17)0.0230 (6)
N30.9156 (3)0.6914 (4)0.89555 (17)0.0243 (6)
H3A1.01520.67280.92810.036*
H3B0.85190.62400.91650.036*
H3C0.88990.79250.90600.036*
O10.1338 (2)0.5512 (3)0.28669 (16)0.0259 (5)
O20.0906 (2)0.5100 (3)0.07641 (15)0.0263 (5)
O30.2332 (2)0.6989 (3)0.02739 (14)0.0258 (5)
C10.4763 (4)0.6164 (4)0.1961 (2)0.0210 (7)
H1A0.50390.63220.13710.025*
C20.3199 (4)0.6040 (4)0.1921 (2)0.0225 (7)
C30.2715 (3)0.5742 (4)0.2817 (2)0.0211 (7)
C40.3635 (4)0.5465 (4)0.4621 (2)0.0228 (7)
H4A0.25890.53220.46420.027*
C50.4807 (4)0.5417 (4)0.5467 (2)0.0209 (7)
C60.6391 (4)0.5778 (4)0.5504 (2)0.0225 (7)
C70.6742 (3)0.6140 (4)0.4608 (2)0.0213 (7)
C80.5596 (4)0.5974 (4)0.3706 (2)0.0200 (7)
C90.4007 (3)0.5730 (4)0.3720 (2)0.0205 (7)
C100.8951 (4)0.4780 (5)0.6564 (2)0.0253 (8)
H10A0.96150.50220.61240.030*
H10B0.86390.36560.64900.030*
C110.9791 (3)0.5169 (4)0.7627 (2)0.0208 (7)
C120.8986 (3)0.6661 (4)0.7881 (2)0.0202 (7)
H12A0.94020.76070.76120.024*
C130.7270 (4)0.6385 (4)0.7308 (2)0.0232 (7)
H13A0.67570.55610.76070.028*
H13B0.66550.73710.72330.028*
C141.0352 (4)0.3823 (4)0.8350 (2)0.0243 (7)
H14A1.02150.27250.81070.029*
H14B1.02490.39660.90160.029*
C151.1523 (4)0.4884 (5)0.8009 (2)0.0275 (8)
H15A1.21220.56580.84720.033*
H15B1.20880.44180.75640.033*
C160.7537 (3)0.5663 (4)0.2680 (2)0.0207 (7)
H16A0.83110.65410.27900.025*
C170.8167 (4)0.4026 (5)0.3007 (2)0.0255 (8)
H17A0.92970.39380.33240.031*
C180.7710 (4)0.4402 (5)0.1939 (2)0.0274 (8)
H18A0.67550.39110.15430.033*
H18B0.85490.45440.16070.033*
C190.2061 (4)0.6049 (4)0.0915 (2)0.0226 (7)
O40.6931 (2)0.5098 (3)0.96034 (16)0.0306 (6)
H4O0.71680.41430.95930.046*
C200.5279 (4)0.5273 (6)0.9249 (3)0.0400 (10)
H20A0.49630.49290.85770.060*
H20B0.49960.63830.92930.060*
H20C0.47550.46250.96380.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0194 (3)0.0357 (5)0.0191 (3)0.0057 (3)0.0029 (3)0.0007 (4)
F10.0257 (10)0.0426 (13)0.0147 (9)0.0042 (9)0.0073 (7)0.0033 (9)
F20.0397 (11)0.0307 (12)0.0426 (12)0.0026 (9)0.0213 (9)0.0067 (10)
N10.0178 (12)0.0267 (17)0.0157 (12)0.0005 (11)0.0029 (10)0.0018 (12)
N20.0193 (13)0.0366 (17)0.0124 (12)0.0030 (12)0.0027 (10)0.0009 (12)
N30.0237 (12)0.0302 (16)0.0159 (12)0.0016 (13)0.0004 (10)0.0028 (14)
O10.0216 (11)0.0337 (15)0.0212 (11)0.0012 (10)0.0031 (9)0.0013 (11)
O20.0255 (12)0.0295 (14)0.0201 (11)0.0029 (10)0.0018 (9)0.0025 (11)
O30.0270 (11)0.0330 (14)0.0167 (10)0.0022 (12)0.0040 (8)0.0017 (12)
C10.0234 (15)0.0207 (18)0.0179 (14)0.0015 (13)0.0030 (12)0.0016 (14)
C20.0239 (16)0.0204 (19)0.0212 (16)0.0015 (13)0.0019 (13)0.0007 (15)
C30.0208 (16)0.0220 (17)0.0193 (15)0.0005 (13)0.0027 (12)0.0016 (14)
C40.0181 (15)0.030 (2)0.0202 (15)0.0001 (13)0.0051 (12)0.0003 (15)
C50.0241 (16)0.0242 (19)0.0159 (14)0.0005 (13)0.0079 (12)0.0003 (13)
C60.0219 (15)0.0264 (19)0.0182 (14)0.0011 (13)0.0032 (12)0.0011 (15)
C70.0184 (15)0.0281 (19)0.0173 (15)0.0009 (13)0.0039 (12)0.0014 (14)
C80.0223 (15)0.0203 (18)0.0170 (14)0.0000 (13)0.0043 (12)0.0003 (14)
C90.0200 (15)0.0235 (18)0.0168 (14)0.0009 (13)0.0026 (12)0.0018 (14)
C100.0273 (18)0.030 (2)0.0175 (15)0.0056 (14)0.0036 (13)0.0011 (15)
C110.0193 (15)0.0259 (18)0.0160 (14)0.0018 (13)0.0024 (12)0.0002 (14)
C120.0192 (14)0.027 (2)0.0139 (13)0.0003 (12)0.0023 (11)0.0019 (13)
C130.0230 (16)0.0320 (19)0.0136 (14)0.0012 (14)0.0030 (12)0.0001 (14)
C140.0294 (17)0.0232 (18)0.0191 (15)0.0027 (14)0.0042 (13)0.0013 (14)
C150.0248 (18)0.028 (2)0.0273 (17)0.0037 (14)0.0030 (13)0.0040 (16)
C160.0190 (15)0.0270 (18)0.0161 (14)0.0009 (13)0.0043 (11)0.0002 (14)
C170.0239 (16)0.031 (2)0.0233 (16)0.0005 (14)0.0089 (13)0.0045 (15)
C180.0276 (18)0.035 (2)0.0195 (16)0.0015 (15)0.0064 (13)0.0025 (16)
C190.0217 (16)0.024 (2)0.0214 (16)0.0034 (14)0.0046 (13)0.0009 (15)
O40.0255 (12)0.0366 (15)0.0283 (12)0.0029 (11)0.0040 (9)0.0031 (12)
C200.0300 (19)0.055 (3)0.036 (2)0.0090 (18)0.0104 (16)0.005 (2)
Geometric parameters (Å, º) top
Cl1—C71.737 (3)C10—C111.526 (4)
F1—C51.358 (3)C10—H10A0.9700
F2—C171.381 (4)C10—H10B0.9700
N1—C11.364 (4)C11—C151.494 (4)
N1—C81.402 (4)C11—C141.507 (5)
N1—C161.464 (4)C11—C121.510 (5)
N2—C61.390 (4)C12—C131.533 (4)
N2—C131.460 (4)C12—H12A0.9800
N2—C101.476 (4)C13—H13A0.9700
N3—C121.496 (4)C13—H13B0.9700
N3—H3A0.8900C14—C151.516 (5)
N3—H3B0.8900C14—H14A0.9700
N3—H3C0.8900C14—H14B0.9700
O1—C31.239 (4)C15—H15A0.9700
O2—C191.256 (4)C15—H15B0.9700
O3—C191.258 (4)C16—C171.494 (5)
C1—C21.359 (4)C16—C181.511 (5)
C1—H1A0.9300C16—H16A0.9800
C2—C31.448 (4)C17—C181.488 (5)
C2—C191.513 (4)C17—H17A0.9800
C3—C91.474 (4)C18—H18A0.9700
C4—C51.363 (4)C18—H18B0.9700
C4—C91.402 (4)O4—C201.414 (4)
C4—H4A0.9300O4—H4O0.8200
C5—C61.406 (4)C20—H20A0.9600
C6—C71.401 (4)C20—H20B0.9600
C7—C81.414 (4)C20—H20C0.9600
C8—C91.409 (4)
C1—N1—C8118.9 (3)N3—C12—C13112.9 (2)
C1—N1—C16117.6 (2)C11—C12—C13101.9 (3)
C8—N1—C16121.5 (2)N3—C12—H12A109.0
C6—N2—C13123.5 (3)C11—C12—H12A109.0
C6—N2—C10121.4 (3)C13—C12—H12A109.0
C13—N2—C10110.1 (2)N2—C13—C1298.7 (2)
C12—N3—H3A109.5N2—C13—H13A112.0
C12—N3—H3B109.5C12—C13—H13A112.0
H3A—N3—H3B109.5N2—C13—H13B112.0
C12—N3—H3C109.5C12—C13—H13B112.0
H3A—N3—H3C109.5H13A—C13—H13B109.7
H3B—N3—H3C109.5C11—C14—C1559.2 (2)
C2—C1—N1125.7 (3)C11—C14—H14A117.9
C2—C1—H1A117.2C15—C14—H14A117.9
N1—C1—H1A117.2C11—C14—H14B117.9
C1—C2—C3119.1 (3)C15—C14—H14B117.9
C1—C2—C19117.3 (3)H14A—C14—H14B115.0
C3—C2—C19123.2 (3)C11—C15—C1460.1 (2)
O1—C3—C2125.2 (3)C11—C15—H15A117.8
O1—C3—C9119.8 (3)C14—C15—H15A117.8
C2—C3—C9115.0 (3)C11—C15—H15B117.8
C5—C4—C9120.0 (3)C14—C15—H15B117.8
C5—C4—H4A120.0H15A—C15—H15B114.9
C9—C4—H4A120.0N1—C16—C17117.6 (3)
F1—C5—C4119.0 (3)N1—C16—C18119.7 (3)
F1—C5—C6118.0 (3)C17—C16—C1859.4 (2)
C4—C5—C6123.0 (3)N1—C16—H16A116.1
N2—C6—C7120.6 (3)C17—C16—H16A116.1
N2—C6—C5122.7 (3)C18—C16—H16A116.1
C7—C6—C5116.6 (3)F2—C17—C18115.4 (3)
C6—C7—C8121.4 (3)F2—C17—C16116.3 (3)
C6—C7—Cl1116.9 (2)C18—C17—C1660.9 (2)
C8—C7—Cl1121.3 (2)F2—C17—H17A117.4
N1—C8—C9118.3 (2)C18—C17—H17A117.4
N1—C8—C7122.8 (3)C16—C17—H17A117.4
C9—C8—C7118.8 (3)C17—C18—C1659.8 (2)
C4—C9—C8119.2 (3)C17—C18—H18A117.8
C4—C9—C3118.6 (3)C16—C18—H18A117.8
C8—C9—C3122.2 (3)C17—C18—H18B117.8
N2—C10—C11102.7 (3)C16—C18—H18B117.8
N2—C10—H10A111.2H18A—C18—H18B114.9
C11—C10—H10A111.2O2—C19—O3123.7 (3)
N2—C10—H10B111.2O2—C19—C2117.9 (3)
C11—C10—H10B111.2O3—C19—C2118.4 (3)
H10A—C10—H10B109.1C20—O4—H4O109.5
C15—C11—C1460.7 (2)O4—C20—H20A109.5
C15—C11—C12122.4 (3)O4—C20—H20B109.5
C14—C11—C12122.7 (3)H20A—C20—H20B109.5
C15—C11—C10121.0 (3)O4—C20—H20C109.5
C14—C11—C10120.0 (3)H20A—C20—H20C109.5
C12—C11—C10105.4 (2)H20B—C20—H20C109.5
N3—C12—C11114.8 (3)
C8—N1—C1—C25.3 (5)O1—C3—C9—C40.4 (5)
C16—N1—C1—C2158.7 (3)C2—C3—C9—C4179.4 (3)
N1—C1—C2—C32.0 (5)O1—C3—C9—C8179.6 (3)
N1—C1—C2—C19175.7 (3)C2—C3—C9—C80.6 (5)
C1—C2—C3—O1175.5 (3)C6—N2—C10—C11174.7 (3)
C19—C2—C3—O12.2 (6)C13—N2—C10—C1118.7 (3)
C1—C2—C3—C94.7 (5)N2—C10—C11—C15155.8 (3)
C19—C2—C3—C9178.1 (3)N2—C10—C11—C14132.4 (3)
C9—C4—C5—F1173.7 (3)N2—C10—C11—C1211.3 (3)
C9—C4—C5—C66.4 (6)C15—C11—C12—N358.4 (4)
C13—N2—C6—C7144.3 (4)C14—C11—C12—N315.2 (4)
C10—N2—C6—C762.9 (5)C10—C11—C12—N3157.7 (3)
C13—N2—C6—C532.8 (5)C15—C11—C12—C13179.1 (3)
C10—N2—C6—C5120.0 (4)C14—C11—C12—C13107.2 (3)
F1—C5—C6—N25.0 (5)C10—C11—C12—C1335.3 (3)
C4—C5—C6—N2174.8 (3)C6—N2—C13—C12164.6 (3)
F1—C5—C6—C7177.7 (3)C10—N2—C13—C1240.0 (3)
C4—C5—C6—C72.4 (5)N3—C12—C13—N2168.4 (3)
N2—C6—C7—C8175.9 (3)C11—C12—C13—N244.7 (3)
C5—C6—C7—C86.8 (5)C12—C11—C14—C15111.7 (3)
N2—C6—C7—Cl111.2 (5)C10—C11—C14—C15111.0 (3)
C5—C6—C7—Cl1166.1 (3)C12—C11—C15—C14112.2 (3)
C1—N1—C8—C99.1 (5)C10—C11—C15—C14109.3 (4)
C16—N1—C8—C9154.2 (3)C1—N1—C16—C17108.0 (3)
C1—N1—C8—C7169.5 (3)C8—N1—C16—C1755.5 (4)
C16—N1—C8—C727.1 (5)C1—N1—C16—C1839.3 (4)
C6—C7—C8—N1169.6 (3)C8—N1—C16—C18124.2 (3)
Cl1—C7—C8—N117.8 (5)N1—C16—C17—F24.1 (4)
C6—C7—C8—C911.8 (5)C18—C16—C17—F2105.8 (3)
Cl1—C7—C8—C9160.8 (3)N1—C16—C17—C18109.9 (3)
C5—C4—C9—C81.2 (5)F2—C17—C18—C16107.2 (3)
C5—C4—C9—C3178.8 (3)N1—C16—C18—C17106.4 (3)
N1—C8—C9—C4173.8 (3)C1—C2—C19—O2139.6 (3)
C7—C8—C9—C47.6 (5)C3—C2—C19—O233.9 (5)
N1—C8—C9—C36.2 (5)C1—C2—C19—O339.5 (4)
C7—C8—C9—C3172.4 (3)C3—C2—C19—O3147.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.892.072.929 (3)161
N3—H3A···O2i0.892.433.022 (3)124
O4—H4O···O3ii0.821.842.654 (4)173
N3—H3C···O2iii0.891.822.675 (4)159
N3—H3B···O40.891.912.788 (4)171
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H18ClF2N3O3·CH4O
Mr441.86
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.7455 (3), 8.2968 (3), 14.0638 (4)
β (°) 104.474 (3)
V3)988.07 (5)
Z2
Radiation typeCu Kα
µ (mm1)2.18
Crystal size (mm)0.2 × 0.1 × 0.05
Data collection
DiffractometerAgilent Xcalibur Sapphire3 Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.990, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5115, 2745, 2537
Rint0.033
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.08
No. of reflections2745
No. of parameters273
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.21
Absolute structureFlack, (1983), 856 Friedel pairs
Absolute structure parameter0.024 (19)

Computer programs: CrysAlis PRO (Agilent, 2011), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.892.072.929 (3)161
N3—H3A···O2i0.892.433.022 (3)124
O4—H4O···O3ii0.821.842.654 (4)173
N3—H3C···O2iii0.891.822.675 (4)159
N3—H3B···O40.891.912.788 (4)171
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1.
 

Acknowledgements

This work was supported by grants from the Major Science and Technology Projects of Guangdong Province (No. 2011 A080504007).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSuzuki, T., Araki, T., Kitaoka, H. & Tereda, K. (2010). Int. J. Pharm. 402, 110–116.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSuzuki, M., Kitaoka, H., Miwa, Y. & Taga, T. (2000). Anal. Sci. 16, 343–344.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamazaki, K. & Suzuki, M. (1998). Anal. Sci. 14, 463–464.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds