organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Benzylspiro­[chromene-2,4′-piperi­dine]-4-carbo­nitrile

aDepartment of Physics, Thiagarajar College, Madurai 625 009, India
*Correspondence e-mail: vasan692000@yahoo.co.in

(Received 4 July 2012; accepted 13 August 2012; online 23 August 2012)

In the title compound, C21H20N2O, the piperidine ring adopts a chair conformation while the pyran ring adopts a screw-boat conformation. The piperidine ring forms dihedral angles of 65.75 (3) and 67.79 (5)° with the chroman and methyl-substituted benzene rings, respectively. The crystal structure features weak C—H⋯π and ππ [centroid–centroid distance = 3.8098 (8) Å] inter­actions.

Related literature

For the biological activity of piperidine­carbonitrile derivatives, see: Cardellicchio et al. (2010[Cardellicchio, C., Capozzi, M. A. M. & Naso, F. (2010). Tetrahedron Asymmetry, 21, 507-517.]); Huang et al. (2008[Huang, P. J. J., Youssef, D., Cameron, T. S. & Jha, A. (2008). Arkivoc, pp. 165-177.]); Kumar et al. (2010[Kumar, A., Gupta, M. K. & Kumar, M. (2010). Tetrahedron Lett. 51, 1582-1584.]); Arbiser et al. (2007[Arbiser, J. L., Kau, T., Konar, M., Narra, K., Ramchandran, R., Summers, S. A., Vlahos, C. J., Ye, K., Perry, B. N., Matter, W., Fischl, A., Cook, J., Silver, P. A., Bain, J., Cohen, P., Whitmire, D., Furness, S., Govindarajan, B. & Bowen, J. P. (2007). Blood, 109, 560-565.]). For uses of piperidine­carbonitrile derivatives, see: Barth et al. (2005[Barth, R. F., Coderre, J. A., Vicente, M. G. H. & Blue, T. E. (2005). Clin. Cancer Res. 11, 3987-4002.]); Vicente (2001[Vicente, M. G. H. (2001). Curr. Med. Chem. Anti-Canc. Agents, 1, 175-194.]); Terasaki et al. (2003[Terasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E. & Hosoya, K. (2003). Drug Discovery Today, 8, 944-954.]). For industrial applications, see: Eller et al. (2002[Eller, K., Henkes, E., Rossbacher, R. & Hoke, H. (2002). Amines, Aliphatic, in Ullmanns Encyclopedia of Industrial Chemistry, Vol. 1, p. 379. Weinheim: Wiley-VCH Verlag.]). For puckering prameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N2O

  • Mr = 316.39

  • Monoclinic, P 21 /c

  • a = 15.1666 (9) Å

  • b = 10.0472 (6) Å

  • c = 12.4360 (8) Å

  • β = 113.931 (2)°

  • V = 1732.11 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.974, Tmax = 0.981

  • 24973 measured reflections

  • 6238 independent reflections

  • 3363 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.152

  • S = 1.01

  • 6238 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.93 2.95 3.7587 (15) 146
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLUTON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Piperidine carbonitrile derivatives are used as sensitizers in photodynamic therapy (PDT) (Vicente, 2001) and in boron neutron capture therapy (BNCT) (Barth et al., 2005) of brain tumors, which protects the central nervous system from drugs and endogenous molecules (Terasaki et al., 2003) and exhibits good bioactivities (Cardellicchio et al. 2010; Huang et al. 2008; Kumar et al. 2010). Also, piperidines find application in the production of dipiperidinyl dithiuram tetrasulfide which is used as a rubber vulcanization accelerator (Eller et al. 2002). The piperidine structural motif is present in natural alkaloids of fire ant toxin solenopsin and is an inhibitor of phosphatidylinositol-3-kinase signalling and angiogenesis (Arbiser et al. 2007).

In the title molecule (Fig. 1), the puckering conformation (Cremer & Pople, 1975) of the pyran ring (C8/C7/C2/O1/C1/C9) is nearly screw boat (5S4) with parameters: Q = 0.3407 (12) Å, θ = 116.2 (2)° and ϕ = 213.0 (2)°. The deviation of O1 and C1 from the mean plane defined by the rest of the atoms is -0.6934 Å and 0.6178 Å, respectively. The puckering of the piperidine ring (N2/C10/C11/C1/C12/C13) with parameters of Q = 0.5660 (14) Å, θ = 173.13 (13) ° and ϕ = 181.5 (12) ° is close to ideal chair (1C4) and the deviations of N2 and C1 from the mean plane defined by the rest of the atoms by -0.6934 (16) Å and 0.6178 (17) Å, respectively.

The crystal structure of the title compound demonstrates the importance of weak interactions in optimizing the molecular aggregation in crystals. With the lone acceptor oxygen O1 unavailable for participation in intermolecular interactions for sterical reasons, the weak C–H···π and π···π interactions assume significance. A C3—H3···Cg1 (1 - x, 1/2 + y, 1/2 - z), Cg1 being the centroid of the benzene ring defined by C15 – C20, having a distance of 2.95 Å and angle of 146°, generates chains running along the b axis. A Cg2··· Cg2 (-x + 1, y + 1/2, -z + 1/2) interaction, Cg2 being the centroid of the benzene ring defined by C2 – C7, observed between two benzene rings of the chroman. The corresponding ring-centroid separation is 3.8098 (8) Å, with an interplanar spacing of ca 3.51 Å and a ring offset of ca 1.48 Å. These interactions generate a π-stacked extended sheets running parallel to the [011] direction (Fig. 3).

The accurate description of the crystal structure of title compound is of interest due to the absence of conventional hydrogen bonding and thus gains importance in the context of crystal structure prediction. Precise single-crystal X-ray investigations on similar compounds might throw light on the delicate nature of intermolecular interactions.

Related literature top

For the biological activity of piperidinecarbonitrile derivatives, see: Cardellicchio et al. (2010); Huang et al. (2008); Kumar et al (2010); Arbiser et al. (2007). For uses of piperidinecarbonitrile derivatives, see: Barth et al. (2005); Vicente (2001); Terasaki et al. (2003). For industrial applications, see: Eller et al. (2002). For puckering prameters, see: Cremer & Pople (1975).

Experimental top

Trimethylsilylcyanide (1.2 mmol) was added to a mixture of 1'1'-benzyl-3, 4-dihydrospiro [1-benzopyran-2, 4'- piperidine]-4-one (1.0 mmol) and catalytic amount of ZnI2 in dichloromethane (10 vol), under a nitrogen atmosphere. The reaction mixture was stirred at 50°C for 6 h and then cooled to room temperature, dilute HCl (5 ml) was added and stirring continued for additional 2 h. The solution was extracted with ethylacetate (20 ml), dried over Na2SO4 and evaporated to dryness. The crude product was dissolved in benzene (10 ml), to which tosic acid (0.1 mmol) had been added and the solution was heated to reflux for 2 h. After completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure. The residue was diluted with ethylacetate (20 ml), washed with bicarbonate solution (10 ml) dried and concentrated. The crude product was purified by column chromatography to provide the desired product as colorless solid. Crystals of the title compound were grown from its solution in ethanol by slow evaporation at room temperature.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLUTON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
The molecular structure of the title compound showing 50% probability displacement ellipsoids.

Part of the crystal structure of title compound showing the formation of a chain running along [010] direction generated by a C—H···π interaction. For the sake of clarity, the H atoms not involved in the motif have been omitted.

Crystal structure of title compound showing the formation of a extended sheet running along [011] plane generated by a C—H···π and π ···π interactions. For the sake of clarity, the H atoms not involved in the motif have been omitted
1'-Benzylspiro[chromene-2,4'-piperidine]-4-carbonitrile top
Crystal data top
C21H20N2OF(000) = 672
Mr = 316.39Dx = 1.213 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6238 reflections
a = 15.1666 (9) Åθ = 2.7–29.4°
b = 10.0472 (6) ŵ = 0.08 mm1
c = 12.4360 (8) ÅT = 298 K
β = 113.931 (2)°Block, colourless
V = 1732.11 (18) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
6238 independent reflections
Radiation source: fine-focus sealed tube3363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 32.8°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 2322
Tmin = 0.974, Tmax = 0.981k = 1515
24973 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.085P]
where P = (Fo2 + 2Fc2)/3
6238 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H20N2OV = 1732.11 (18) Å3
Mr = 316.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1666 (9) ŵ = 0.08 mm1
b = 10.0472 (6) ÅT = 298 K
c = 12.4360 (8) Å0.35 × 0.30 × 0.25 mm
β = 113.931 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
6238 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3363 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.981Rint = 0.033
24973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
6238 reflectionsΔρmin = 0.17 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20929 (5)0.90059 (8)0.08396 (8)0.0525 (2)
N10.11382 (9)0.61311 (13)0.09299 (14)0.0841 (4)
N20.43051 (7)0.73556 (11)0.14770 (9)0.0543 (3)
C10.22110 (8)0.76526 (11)0.05117 (10)0.0458 (3)
C20.13926 (8)0.92304 (11)0.12528 (10)0.0460 (3)
C30.15085 (9)1.02973 (13)0.19913 (11)0.0579 (3)
H30.20681.08080.22430.070*
C40.07830 (11)1.06010 (15)0.23549 (12)0.0686 (4)
H40.08591.13180.28580.082*
C50.00460 (10)0.98619 (15)0.19857 (12)0.0675 (4)
H50.05291.00800.22350.081*
C60.01627 (9)0.87965 (13)0.12457 (12)0.0578 (3)
H60.07270.82970.09960.069*
C70.05550 (8)0.84568 (11)0.08656 (10)0.0460 (3)
C80.04828 (8)0.73709 (11)0.00511 (11)0.0495 (3)
C90.12497 (8)0.70138 (12)0.01467 (11)0.0516 (3)
H90.11870.63590.07010.062*
C100.27778 (9)0.68420 (13)0.16113 (11)0.0540 (3)
H10A0.24480.68750.21350.065*
H10B0.27970.59200.13910.065*
C110.37980 (9)0.73457 (15)0.22566 (11)0.0600 (3)
H11A0.37840.82390.25440.072*
H11B0.41400.67780.29290.072*
C120.38213 (8)0.82572 (14)0.04959 (11)0.0562 (3)
H12A0.41770.82930.00010.067*
H12B0.38090.91460.07940.067*
C130.27973 (8)0.77961 (13)0.02271 (10)0.0515 (3)
H13A0.28160.69460.05870.062*
H13B0.24820.84320.08530.062*
C140.53183 (9)0.77325 (17)0.21193 (13)0.0705 (4)
H14A0.55900.72230.28430.085*
H14B0.53520.86670.23290.085*
C150.59135 (8)0.75002 (13)0.14180 (12)0.0566 (3)
C160.58601 (8)0.63042 (14)0.08502 (12)0.0605 (3)
H160.54520.56410.09030.073*
C170.63989 (9)0.60737 (15)0.02078 (13)0.0671 (4)
H170.63460.52640.01760.081*
C180.70137 (9)0.70297 (17)0.01293 (14)0.0722 (4)
H180.73800.68720.03030.087*
C190.70834 (10)0.82101 (18)0.06891 (18)0.0856 (5)
H190.75010.88620.06400.103*
C200.65394 (10)0.84503 (15)0.13306 (16)0.0792 (5)
H200.65950.92640.17090.095*
C210.04213 (9)0.66841 (13)0.05118 (13)0.0603 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0519 (4)0.0463 (5)0.0652 (6)0.0025 (3)0.0299 (4)0.0075 (4)
N10.0619 (7)0.0730 (8)0.1129 (11)0.0153 (6)0.0308 (7)0.0042 (8)
N20.0463 (5)0.0737 (7)0.0408 (6)0.0046 (4)0.0154 (4)0.0039 (5)
C10.0492 (5)0.0463 (6)0.0452 (6)0.0024 (4)0.0225 (5)0.0040 (5)
C20.0491 (5)0.0444 (6)0.0453 (6)0.0069 (5)0.0200 (5)0.0035 (5)
C30.0613 (7)0.0534 (7)0.0541 (8)0.0061 (6)0.0183 (6)0.0061 (6)
C40.0829 (9)0.0674 (9)0.0556 (8)0.0221 (7)0.0281 (7)0.0051 (7)
C50.0751 (9)0.0775 (9)0.0617 (9)0.0274 (7)0.0399 (7)0.0133 (7)
C60.0576 (6)0.0607 (8)0.0627 (8)0.0106 (6)0.0323 (6)0.0167 (6)
C70.0500 (5)0.0427 (6)0.0473 (7)0.0063 (4)0.0219 (5)0.0094 (5)
C80.0505 (6)0.0436 (6)0.0535 (7)0.0026 (5)0.0203 (5)0.0046 (5)
C90.0550 (6)0.0467 (6)0.0524 (7)0.0021 (5)0.0211 (5)0.0069 (5)
C100.0611 (7)0.0600 (7)0.0474 (7)0.0074 (5)0.0286 (6)0.0056 (6)
C110.0629 (7)0.0780 (9)0.0389 (7)0.0091 (6)0.0203 (6)0.0025 (6)
C120.0528 (6)0.0717 (8)0.0490 (7)0.0022 (6)0.0257 (5)0.0028 (6)
C130.0517 (6)0.0646 (7)0.0395 (6)0.0074 (5)0.0197 (5)0.0039 (5)
C140.0525 (7)0.0940 (11)0.0560 (8)0.0006 (7)0.0128 (6)0.0216 (8)
C150.0404 (5)0.0647 (8)0.0545 (8)0.0012 (5)0.0086 (5)0.0105 (6)
C160.0505 (6)0.0618 (8)0.0643 (9)0.0030 (6)0.0181 (6)0.0072 (6)
C170.0575 (7)0.0708 (9)0.0673 (9)0.0113 (6)0.0196 (6)0.0095 (7)
C180.0485 (7)0.0940 (11)0.0735 (10)0.0155 (7)0.0240 (7)0.0089 (8)
C190.0569 (8)0.0800 (11)0.1225 (15)0.0040 (7)0.0391 (9)0.0061 (10)
C200.0590 (7)0.0624 (9)0.1117 (13)0.0068 (6)0.0298 (8)0.0195 (8)
C210.0557 (7)0.0515 (7)0.0740 (9)0.0034 (5)0.0266 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1—C21.3732 (12)C10—H10A0.9700
O1—C11.4512 (13)C10—H10B0.9700
N1—C211.1413 (16)C11—H11A0.9700
N2—C121.4565 (16)C11—H11B0.9700
N2—C111.4618 (14)C12—C131.5173 (17)
N2—C141.4652 (16)C12—H12A0.9700
C1—C91.4965 (16)C12—H12B0.9700
C1—C131.5227 (14)C13—H13A0.9700
C1—C101.5227 (17)C13—H13B0.9700
C2—C31.3757 (16)C14—C151.5063 (17)
C2—C71.3977 (16)C14—H14A0.9700
C3—C41.3827 (18)C14—H14B0.9700
C3—H30.9300C15—C161.3793 (18)
C4—C51.369 (2)C15—C201.3812 (19)
C4—H40.9300C16—C171.3746 (18)
C5—C61.375 (2)C16—H160.9300
C5—H50.9300C17—C181.369 (2)
C6—C71.3936 (15)C17—H170.9300
C6—H60.9300C18—C191.357 (2)
C7—C81.4623 (16)C18—H180.9300
C8—C91.3319 (15)C19—C201.382 (2)
C8—C211.4380 (17)C19—H190.9300
C9—H90.9300C20—H200.9300
C10—C111.5122 (18)
C2—O1—C1117.47 (8)C10—C11—H11A109.5
C12—N2—C11109.76 (9)N2—C11—H11B109.5
C12—N2—C14110.89 (11)C10—C11—H11B109.5
C11—N2—C14110.97 (10)H11A—C11—H11B108.1
O1—C1—C9110.59 (8)N2—C12—C13110.69 (10)
O1—C1—C13104.46 (9)N2—C12—H12A109.5
C9—C1—C13112.85 (10)C13—C12—H12A109.5
O1—C1—C10109.75 (9)N2—C12—H12B109.5
C9—C1—C10109.38 (9)C13—C12—H12B109.5
C13—C1—C10109.72 (9)H12A—C12—H12B108.1
O1—C2—C3117.97 (10)C12—C13—C1112.29 (9)
O1—C2—C7120.84 (10)C12—C13—H13A109.1
C3—C2—C7121.02 (10)C1—C13—H13A109.1
C2—C3—C4119.16 (12)C12—C13—H13B109.1
C2—C3—H3120.4C1—C13—H13B109.1
C4—C3—H3120.4H13A—C13—H13B107.9
C5—C4—C3120.99 (13)N2—C14—C15112.75 (10)
C5—C4—H4119.5N2—C14—H14A109.0
C3—C4—H4119.5C15—C14—H14A109.0
C4—C5—C6119.86 (11)N2—C14—H14B109.0
C4—C5—H5120.1C15—C14—H14B109.0
C6—C5—H5120.1H14A—C14—H14B107.8
C5—C6—C7120.75 (12)C16—C15—C20117.47 (12)
C5—C6—H6119.6C16—C15—C14120.45 (12)
C7—C6—H6119.6C20—C15—C14122.07 (13)
C6—C7—C2118.22 (11)C17—C16—C15121.26 (13)
C6—C7—C8124.64 (11)C17—C16—H16119.4
C2—C7—C8117.11 (9)C15—C16—H16119.4
C9—C8—C21120.83 (11)C18—C17—C16120.38 (14)
C9—C8—C7120.22 (10)C18—C17—H17119.8
C21—C8—C7118.94 (10)C16—C17—H17119.8
C8—C9—C1120.88 (11)C19—C18—C17119.33 (13)
C8—C9—H9119.6C19—C18—H18120.3
C1—C9—H9119.6C17—C18—H18120.3
C11—C10—C1112.40 (10)C18—C19—C20120.53 (14)
C11—C10—H10A109.1C18—C19—H19119.7
C1—C10—H10A109.1C20—C19—H19119.7
C11—C10—H10B109.1C15—C20—C19121.00 (14)
C1—C10—H10B109.1C15—C20—H20119.5
H10A—C10—H10B107.9C19—C20—H20119.5
N2—C11—C10110.53 (10)N1—C21—C8178.19 (16)
N2—C11—H11A109.5
C2—O1—C1—C942.04 (13)C9—C1—C10—C11174.04 (9)
C2—O1—C1—C13163.72 (9)C13—C1—C10—C1149.76 (13)
C2—O1—C1—C1078.72 (11)C12—N2—C11—C1061.96 (14)
C1—O1—C2—C3154.00 (11)C14—N2—C11—C10175.13 (11)
C1—O1—C2—C730.59 (14)C1—C10—C11—N256.68 (14)
O1—C2—C3—C4175.57 (11)C11—N2—C12—C1361.80 (13)
C7—C2—C3—C40.17 (18)C14—N2—C12—C13175.24 (9)
C2—C3—C4—C50.4 (2)N2—C12—C13—C156.38 (13)
C3—C4—C5—C60.3 (2)O1—C1—C13—C1268.12 (12)
C4—C5—C6—C70.06 (19)C9—C1—C13—C12171.70 (10)
C5—C6—C7—C20.26 (17)C10—C1—C13—C1249.46 (13)
C5—C6—C7—C8177.93 (11)C12—N2—C14—C1568.92 (15)
O1—C2—C7—C6175.12 (10)C11—N2—C14—C15168.82 (12)
C3—C2—C7—C60.15 (17)N2—C14—C15—C1648.09 (18)
O1—C2—C7—C82.72 (15)N2—C14—C15—C20132.97 (15)
C3—C2—C7—C8177.99 (11)C20—C15—C16—C170.9 (2)
C6—C7—C8—C9171.55 (12)C14—C15—C16—C17179.90 (12)
C2—C7—C8—C910.76 (17)C15—C16—C17—C180.8 (2)
C6—C7—C8—C217.31 (18)C16—C17—C18—C190.2 (2)
C2—C7—C8—C21170.39 (11)C17—C18—C19—C200.1 (2)
C21—C8—C9—C1174.98 (11)C16—C15—C20—C190.5 (2)
C7—C8—C9—C13.85 (18)C14—C15—C20—C19179.50 (14)
O1—C1—C9—C829.20 (16)C18—C19—C20—C150.0 (3)
C13—C1—C9—C8145.79 (12)C9—C8—C21—N1122 (5)
C10—C1—C9—C891.78 (13)C7—C8—C21—N157 (5)
O1—C1—C10—C1164.47 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.953.7587 (15)146
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H20N2O
Mr316.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.1666 (9), 10.0472 (6), 12.4360 (8)
β (°) 113.931 (2)
V3)1732.11 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.974, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
24973, 6238, 3363
Rint0.033
(sin θ/λ)max1)0.762
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 1.01
No. of reflections6238
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLUTON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.953.7587 (15)146
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT-Madras, India, for the data collection.

References

First citationArbiser, J. L., Kau, T., Konar, M., Narra, K., Ramchandran, R., Summers, S. A., Vlahos, C. J., Ye, K., Perry, B. N., Matter, W., Fischl, A., Cook, J., Silver, P. A., Bain, J., Cohen, P., Whitmire, D., Furness, S., Govindarajan, B. & Bowen, J. P. (2007). Blood, 109, 560–565.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarth, R. F., Coderre, J. A., Vicente, M. G. H. & Blue, T. E. (2005). Clin. Cancer Res. 11, 3987–4002.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationCardellicchio, C., Capozzi, M. A. M. & Naso, F. (2010). Tetrahedron Asymmetry, 21, 507–517.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEller, K., Henkes, E., Rossbacher, R. & Hoke, H. (2002). Amines, Aliphatic, in Ullmanns Encyclopedia of Industrial Chemistry, Vol. 1, p. 379. Weinheim: Wiley-VCH Verlag.  Google Scholar
First citationHuang, P. J. J., Youssef, D., Cameron, T. S. & Jha, A. (2008). Arkivoc, pp. 165–177.  CrossRef Google Scholar
First citationKumar, A., Gupta, M. K. & Kumar, M. (2010). Tetrahedron Lett. 51, 1582–1584.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E. & Hosoya, K. (2003). Drug Discovery Today, 8, 944–954.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVicente, M. G. H. (2001). Curr. Med. Chem. Anti-Canc. Agents, 1, 175–194.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds